NetBSD/sys/arch/sparc64/dev/sbus.c

1300 lines
34 KiB
C

/* $NetBSD: sbus.c,v 1.9 1999/01/10 23:32:57 eeh Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)sbus.c 8.1 (Berkeley) 6/11/93
*/
/*
* Sbus stuff.
*/
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <vm/vm.h>
#include <machine/bus.h>
#include <sparc64/sparc64/vaddrs.h>
#include <sparc64/dev/sbusreg.h>
#include <dev/sbus/sbusvar.h>
#include <machine/autoconf.h>
#include <machine/ctlreg.h>
#include <machine/cpu.h>
#include <machine/sparc64.h>
#ifdef DEBUG
#define SDB_DVMA 0x1
#define SDB_INTR 0x2
int sbusdebug = 0;
#endif
void sbusreset __P((int));
int sbus_flush __P((struct sbus_softc *));
static bus_space_tag_t sbus_alloc_bustag __P((struct sbus_softc *));
static bus_dma_tag_t sbus_alloc_dmatag __P((struct sbus_softc *));
static int sbus_get_intr __P((struct sbus_softc *, int,
struct sbus_intr **, int *));
static int sbus_bus_mmap __P((bus_space_tag_t, bus_type_t, bus_addr_t,
int, bus_space_handle_t *));
static int _sbus_bus_map __P((
bus_space_tag_t,
bus_type_t,
bus_addr_t, /*offset*/
bus_size_t, /*size*/
int, /*flags*/
vaddr_t, /*preferred virtual address */
bus_space_handle_t *));
static void *sbus_intr_establish __P((
bus_space_tag_t,
int, /*level*/
int, /*flags*/
int (*) __P((void *)), /*handler*/
void *)); /*handler arg*/
/* autoconfiguration driver */
int sbus_match __P((struct device *, struct cfdata *, void *));
void sbus_attach __P((struct device *, struct device *, void *));
struct cfattach sbus_ca = {
sizeof(struct sbus_softc), sbus_match, sbus_attach
};
extern struct cfdriver sbus_cd;
/*
* DVMA routines
*/
void sbus_enter __P((struct sbus_softc *, vaddr_t, int64_t, int));
void sbus_remove __P((struct sbus_softc *, vaddr_t, size_t));
int sbus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int));
void sbus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
void sbus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
bus_size_t, int));
int sbus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
bus_size_t alignment, bus_size_t boundary,
bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags));
void sbus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs));
int sbus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs, size_t size, caddr_t *kvap, int flags));
void sbus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
size_t size));
/*
* Child devices receive the Sbus interrupt level in their attach
* arguments. We translate these to CPU IPLs using the following
* tables. Note: obio bus interrupt levels are identical to the
* processor IPL.
*
* The second set of tables is used when the Sbus interrupt level
* cannot be had from the PROM as an `interrupt' property. We then
* fall back on the `intr' property which contains the CPU IPL.
*/
/* Translate Sbus interrupt level to processor IPL */
static int intr_sbus2ipl_4c[] = {
0, 1, 2, 3, 5, 7, 8, 9
};
static int intr_sbus2ipl_4m[] = {
0, 2, 3, 5, 7, 9, 11, 13
};
/*
* This value is or'ed into the attach args' interrupt level cookie
* if the interrupt level comes from an `intr' property, i.e. it is
* not an Sbus interrupt level.
*/
#define SBUS_INTR_COMPAT 0x80000000
/*
* Print the location of some sbus-attached device (called just
* before attaching that device). If `sbus' is not NULL, the
* device was found but not configured; print the sbus as well.
* Return UNCONF (config_find ignores this if the device was configured).
*/
int
sbus_print(args, busname)
void *args;
const char *busname;
{
struct sbus_attach_args *sa = args;
int i;
if (busname)
printf("%s at %s", sa->sa_name, busname);
printf(" slot %ld offset 0x%lx", (long)sa->sa_slot,
(u_long)sa->sa_offset);
for (i=0; i<sa->sa_nintr; i++) {
struct sbus_intr *sbi = &sa->sa_intr[i];
printf(" vector %lx ipl %ld",
(u_long)sbi->sbi_vec,
(long)INTLEV(sbi->sbi_pri));
}
return (UNCONF);
}
int
sbus_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct mainbus_attach_args *ma = aux;
return (strcmp(cf->cf_driver->cd_name, ma->ma_name) == 0);
}
/*
* Attach an Sbus.
*/
void
sbus_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct sbus_softc *sc = (struct sbus_softc *)self;
struct mainbus_attach_args *ma = aux;
int node = ma->ma_node;
int node0, error;
bus_space_tag_t sbt;
struct sbus_attach_args sa;
char *busname = "sbus";
struct bootpath *bp = ma->ma_bp;
sc->sc_bustag = ma->ma_bustag;
sc->sc_dmatag = ma->ma_dmatag;
sc->sc_sysio = (struct sysioreg*)(u_long)ma->ma_address[0]; /* Use prom mapping for sysio. */
sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN; /* Find interrupt group no */
/* Setup interrupt translation tables */
sc->sc_intr2ipl = CPU_ISSUN4C
? intr_sbus2ipl_4c
: intr_sbus2ipl_4m;
/*
* Record clock frequency for synchronous SCSI.
* IS THIS THE CORRECT DEFAULT??
*/
sc->sc_clockfreq = getpropint(node, "clock-frequency", 25*1000*1000);
printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
sbt = sbus_alloc_bustag(sc);
sc->sc_dmatag = sbus_alloc_dmatag(sc);
/*
* Get the SBus burst transfer size if burst transfers are supported
*/
sc->sc_burst = getpropint(node, "burst-sizes", 0);
/* Propagate bootpath */
if (bp != NULL && strcmp(bp->name, busname) == 0)
bp++;
else
bp = NULL;
/*
* Collect address translations from the OBP.
*/
error = getprop(node, "ranges", sizeof(struct sbus_range),
&sc->sc_nrange, (void **)&sc->sc_range);
switch (error) {
case 0:
break;
#if 0
case ENOENT:
/* Fall back to our own `range' construction */
sc->sc_range = sbus_translations;
sc->sc_nrange =
sizeof(sbus_translations)/sizeof(sbus_translations[0]);
break;
#endif
default:
panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
}
/*
* Setup the iommu.
*
* The sun4u iommu is part of the SBUS controller so we will
* deal with it here. We could try to fake a device node so
* we can eventually share it with the PCI bus run by psyco,
* but I don't want to get into that sort of cruft.
*/
/*
* All IOMMUs will share the same TSB which is allocated in pmap_bootstrap.
*
* This makes device management easier.
*/
{
extern int64_t *iotsb;
extern paddr_t iotsbp;
extern int iotsbsize;
sc->sc_tsbsize = iotsbsize;
sc->sc_tsb = iotsb;
sc->sc_ptsb = iotsbp;
}
#if 1
/* Need to do 64-bit stores */
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_iommu.iommu_cr,
0, (IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN));
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_iommu.iommu_tsb,
0, sc->sc_ptsb);
#else
stxa(&sc->sc_sysio->sys_iommu.iommu_cr,ASI_NUCLEUS,(IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN));
stxa(&sc->sc_sysio->sys_iommu.iommu_tsb,ASI_NUCLEUS,sc->sc_ptsb);
#endif
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
{
/* Probe the iommu */
int64_t cr, tsb;
printf("iommu regs at: cr=%lx tsb=%lx flush=%lx\n", &sc->sc_sysio->sys_iommu.iommu_cr,
&sc->sc_sysio->sys_iommu.iommu_tsb, &sc->sc_sysio->sys_iommu.iommu_flush);
cr = sc->sc_sysio->sys_iommu.iommu_cr;
tsb = sc->sc_sysio->sys_iommu.iommu_tsb;
printf("iommu cr=%lx tsb=%lx\n", (long)cr, (long)tsb);
printf("sysio base %p phys %p TSB base %p phys %p",
(long)sc->sc_sysio, (long)pmap_extract(pmap_kernel(), (vaddr_t)sc->sc_sysio),
(long)sc->sc_tsb, (long)sc->sc_ptsb);
delay(1000000); /* 1 s */
}
#endif
/*
* Initialize streaming buffer.
*/
sc->sc_flushpa = pmap_extract(pmap_kernel(), (vaddr_t)&sc->sc_flush);
#if 1
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_strbuf.strbuf_ctl,
0, STRBUF_EN); /* Enable diagnostics mode? */
#else
stxa(&sc->sc_sysio->sys_strbuf.strbuf_ctl,ASI_NUCLEUS,STRBUF_EN);
#endif
/*
* Loop through ROM children, fixing any relative addresses
* and then configuring each device.
* `specials' is an array of device names that are treated
* specially:
*/
node0 = firstchild(node);
for (node = node0; node; node = nextsibling(node)) {
char *name = getpropstring(node, "name");
if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
node, bp, &sa) != 0) {
printf("sbus_attach: %s: incomplete\n", name);
continue;
}
(void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
sbus_destroy_attach_args(&sa);
}
}
int
sbus_setup_attach_args(sc, bustag, dmatag, node, bp, sa)
struct sbus_softc *sc;
bus_space_tag_t bustag;
bus_dma_tag_t dmatag;
int node;
struct bootpath *bp;
struct sbus_attach_args *sa;
{
/*struct sbus_reg sbusreg;*/
/*int base;*/
int error;
int n;
bzero(sa, sizeof(struct sbus_attach_args));
error = getprop(node, "name", 1, &n, (void **)&sa->sa_name);
if (error != 0)
return (error);
sa->sa_name[n] = '\0';
sa->sa_bustag = bustag;
sa->sa_dmatag = dmatag;
sa->sa_node = node;
sa->sa_bp = bp;
error = getprop(node, "reg", sizeof(struct sbus_reg),
&sa->sa_nreg, (void **)&sa->sa_reg);
if (error != 0) {
char buf[32];
if (error != ENOENT ||
!node_has_property(node, "device_type") ||
strcmp(getpropstringA(node, "device_type", buf),
"hierarchical") != 0)
return (error);
}
for (n = 0; n < sa->sa_nreg; n++) {
/* Convert to relative addressing, if necessary */
u_int32_t base = sa->sa_reg[n].sbr_offset;
if (SBUS_ABS(base)) {
sa->sa_reg[n].sbr_slot = SBUS_ABS_TO_SLOT(base);
sa->sa_reg[n].sbr_offset = SBUS_ABS_TO_OFFSET(base);
}
}
if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr)) != 0)
return (error);
error = getprop(node, "address", sizeof(u_int32_t),
&sa->sa_npromvaddrs, (void **)&sa->sa_promvaddrs);
if (error != 0 && error != ENOENT)
return (error);
return (0);
}
void
sbus_destroy_attach_args(sa)
struct sbus_attach_args *sa;
{
if (sa->sa_name != NULL)
free(sa->sa_name, M_DEVBUF);
if (sa->sa_nreg != 0)
free(sa->sa_reg, M_DEVBUF);
if (sa->sa_intr)
free(sa->sa_intr, M_DEVBUF);
if (sa->sa_promvaddrs)
free((void *)sa->sa_promvaddrs, M_DEVBUF);
bzero(sa, sizeof(struct sbus_attach_args));/*DEBUG*/
}
int
_sbus_bus_map(t, btype, offset, size, flags, vaddr, hp)
bus_space_tag_t t;
bus_type_t btype;
bus_addr_t offset;
bus_size_t size;
int flags;
vaddr_t vaddr;
bus_space_handle_t *hp;
{
struct sbus_softc *sc = t->cookie;
int64_t slot = btype;
int i;
for (i = 0; i < sc->sc_nrange; i++) {
bus_addr_t paddr;
if (sc->sc_range[i].cspace != slot)
continue;
/* We've found the connection to the parent bus */
paddr = sc->sc_range[i].poffset + offset;
paddr |= ((bus_addr_t)sc->sc_range[i].pspace<<32);
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("\n_sbus_bus_map: mapping paddr slot %lx offset %lx poffset %lx paddr %lx\n",
(long)slot, (long)offset, (long)sc->sc_range[i].poffset, (long)paddr);
#endif
return (bus_space_map2(sc->sc_bustag, 0, paddr,
size, flags, vaddr, hp));
}
return (EINVAL);
}
int
sbus_bus_mmap(t, btype, paddr, flags, hp)
bus_space_tag_t t;
bus_type_t btype;
bus_addr_t paddr;
int flags;
bus_space_handle_t *hp;
{
bus_addr_t offset = paddr;
int slot = (paddr>>32);
struct sbus_softc *sc = t->cookie;
int i;
for (i = 0; i < sc->sc_nrange; i++) {
bus_addr_t paddr;
if (sc->sc_range[i].cspace != slot)
continue;
paddr = sc->sc_range[i].poffset + offset;
paddr |= ((bus_addr_t)sc->sc_range[i].pspace<<32);
return (bus_space_mmap(sc->sc_bustag, 0, paddr,
flags, hp));
}
return (-1);
}
/*
* Each attached device calls sbus_establish after it initializes
* its sbusdev portion.
*/
void
sbus_establish(sd, dev)
register struct sbusdev *sd;
register struct device *dev;
{
register struct sbus_softc *sc;
register struct device *curdev;
/*
* We have to look for the sbus by name, since it is not necessarily
* our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
* We don't just use the device structure of the above-attached
* sbus, since we might (in the future) support multiple sbus's.
*/
for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) {
if (!curdev || !curdev->dv_xname)
panic("sbus_establish: can't find sbus parent for %s",
sd->sd_dev->dv_xname
? sd->sd_dev->dv_xname
: "<unknown>" );
if (strncmp(curdev->dv_xname, "sbus", 4) == 0)
break;
}
sc = (struct sbus_softc *) curdev;
sd->sd_dev = dev;
sd->sd_bchain = sc->sc_sbdev;
sc->sc_sbdev = sd;
}
/*
* Reset the given sbus. (???)
*/
void
sbusreset(sbus)
int sbus;
{
register struct sbusdev *sd;
struct sbus_softc *sc = sbus_cd.cd_devs[sbus];
struct device *dev;
printf("reset %s:", sc->sc_dev.dv_xname);
for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
if (sd->sd_reset) {
dev = sd->sd_dev;
(*sd->sd_reset)(dev);
printf(" %s", dev->dv_xname);
}
}
#if 1
/* Reload iommu regs */
bus_space_write_8(sc->ma_bustag, &sc->sc_sysio->sys_iommu.iommu_cr,
0, (IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN));
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_iommu.iommu_tsb,
0, sc->sc_ptsb);
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_strbuf.strbuf_ctl,
0, STRBUF_EN); /* Enable diagnostics mode? */
#else
/* Reload iommu regs */
stxa(&sc->sc_sysio->sys_iommu.iommu_cr,ASI_NUCLEUS,(IOMMUCR_TSB1K|IOMMUCR_8KPG|IOMMUCR_EN));
stxa(&sc->sc_sysio->sys_iommu.iommu_tsb,ASI_NUCLEUS,sc->sc_ptsb);
stxa(&sc->sc_sysio->sys_strbuf.strbuf_ctl,ASI_NUCLEUS,STRBUF_EN);
#endif
}
/*
* Here are the iommu control routines.
*/
void
sbus_enter(sc, va, pa, flags)
struct sbus_softc *sc;
vaddr_t va;
int64_t pa;
int flags;
{
int64_t tte;
#ifdef DIAGNOSTIC
if (va < sc->sc_dvmabase)
panic("sbus_enter: va 0x%lx not in DVMA space",va);
#endif
tte = MAKEIOTTE(pa, !(flags&BUS_DMA_NOWRITE), !(flags&BUS_DMA_NOCACHE),
!(flags&BUS_DMA_COHERENT));
/* Is the streamcache flush really needed? */
#if 1
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_strbuf.strbuf_pgflush,
0, va);
#else
stxa(&(sc->sc_sysio->sys_strbuf.strbuf_pgflush), ASI_NUCLEUS, va);
#endif
sbus_flush(sc);
sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)] = tte;
#if 1
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_iommu.iommu_flush,
0, va);
#else
stxa(&sc->sc_sysio->sys_iommu.iommu_flush,ASI_NUCLEUS,va);
#endif
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_enter: va %lx pa %lx TSB[%lx]@%p=%lx\n",
va, (long)pa, IOTSBSLOT(va,sc->sc_tsbsize),
&sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)],
(long)tte);
#endif
}
/*
* sbus_clear: clears mappings created by sbus_enter
*
* Only demap from IOMMU if flag is set.
*/
void
sbus_remove(sc, va, len)
struct sbus_softc *sc;
vaddr_t va;
size_t len;
{
#ifdef DIAGNOSTIC
if (va < sc->sc_dvmabase)
panic("sbus_remove: va 0x%lx not in DVMA space", (long)va);
if ((long)(va + len) < (long)va)
panic("sbus_remove: va 0x%lx + len 0x%lx wraps",
(long) va, (long) len);
if (len & ~0xfffffff)
panic("sbus_remove: rediculous len 0x%lx", (long)len);
#endif
va = trunc_page(va);
while (len > 0) {
/*
* Streaming buffer flushes:
*
* 1 Tell strbuf to flush by storing va to strbuf_pgflush
* If we're not on a cache line boundary (64-bits):
* 2 Store 0 in flag
* 3 Store pointer to flag in flushsync
* 4 wait till flushsync becomes 0x1
*
* If it takes more than .5 sec, something went wrong.
*/
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_remove: flushing va %p TSB[%lx]@%p=%lx, %lu bytes left\n",
(long)va, (long)IOTSBSLOT(va,sc->sc_tsbsize),
(long)&sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)],
(long)(sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)]),
(u_long)len);
#endif
#if 1
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_strbuf.strbuf_pgflush, 0, va);
#else
stxa(&(sc->sc_sysio->sys_strbuf.strbuf_pgflush), ASI_NUCLEUS, va);
#endif
if (len <= NBPG) {
sbus_flush(sc);
len = 0;
} else len -= NBPG;
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_remove: flushed va %p TSB[%lx]@%p=%lx, %lu bytes left\n",
(long)va, (long)IOTSBSLOT(va,sc->sc_tsbsize),
(long)&sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)],
(long)(sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)]),
(u_long)len);
#endif
sc->sc_tsb[IOTSBSLOT(va,sc->sc_tsbsize)] = 0;
#if 1
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_iommu.iommu_flush, 0, va);
#else
stxa(&sc->sc_sysio->sys_iommu.iommu_flush, ASI_NUCLEUS, va);
#endif
va += NBPG;
}
}
int
sbus_flush(sc)
struct sbus_softc *sc;
{
extern u_int64_t cpu_clockrate;
u_int64_t flushtimeout;
sc->sc_flush = 0;
membar_sync();
#if 1
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_strbuf.strbuf_flushsync, 0, sc->sc_flushpa);
#else
stxa(&sc->sc_sysio->sys_strbuf.strbuf_flushsync, ASI_NUCLEUS, sc->sc_flushpa);
#endif
membar_sync();
flushtimeout = tick() + cpu_clockrate/2; /* .5 sec after *now* */
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_flush: flush = %lx at va = %lx pa = %lx now=%lx until = %lx\n",
(long)sc->sc_flush, (long)&sc->sc_flush,
(long)sc->sc_flushpa, (long)tick(), flushtimeout);
#endif
/* Bypass non-coherent D$ */
#if 0
while( !ldxa(sc->sc_flushpa, ASI_PHYS_CACHED) && flushtimeout > tick()) membar_sync();
#else
{ int i; for(i=140000000/2; !ldxa(sc->sc_flushpa, ASI_PHYS_CACHED) && i; i--) membar_sync(); }
#endif
#ifdef DIAGNOSTIC
if( !sc->sc_flush ) {
printf("sbus_flush: flush timeout %p at %p\n", (long)sc->sc_flush,
(long)sc->sc_flushpa); /* panic? */
#ifdef DDB
Debugger();
#endif
}
#endif
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_flush: flushed\n");
#endif
return (sc->sc_flush);
}
/*
* Get interrupt attributes for an Sbus device.
*/
int
sbus_get_intr(sc, node, ipp, np)
struct sbus_softc *sc;
int node;
struct sbus_intr **ipp;
int *np;
{
int *ipl;
int i, n, error;
char buf[32];
/*
* The `interrupts' property contains the Sbus interrupt level.
*/
ipl = NULL;
if (getprop(node, "interrupts", sizeof(int), np, (void **)&ipl) == 0) {
/* Change format to an `struct sbus_intr' array */
struct sbus_intr *ip;
int pri = 0;
ip = malloc(*np * sizeof(struct sbus_intr), M_DEVBUF, M_NOWAIT);
if (ip == NULL)
return (ENOMEM);
/* Now things get ugly. We need to take this value which is
* the interrupt vector number and encode the IPL into it
* somehow. Luckily, the interrupt vector has lots of free
* space and we can easily stuff the IPL in there for a while.
*/
getpropstringA(node, "device_type", buf);
for (i=0; intrmap[i].in_class; i++) {
if (strcmp(intrmap[i].in_class, buf) == 0) {
pri = INTLEVENCODE(intrmap[i].in_lev);
break;
}
}
for (n = 0; n < *np; n++) {
/*
* We encode vector and priority into sbi_pri so we
* can pass them as a unit. This will go away if
* sbus_establish ever takes an sbus_intr instead
* of an integer level.
* Stuff the real vector in sbi_vec.
*/
ip[n].sbi_pri = pri|ipl[n];
ip[n].sbi_vec = ipl[n];
}
free(ipl, M_DEVBUF);
*ipp = ip;
return (0);
}
/* We really don't support the following */
/* printf("\nWARNING: sbus_get_intr() \"interrupts\" not found -- using \"intr\"\n"); */
/* And some devices don't even have interrupts */
/*
* Fall back on `intr' property.
*/
*ipp = NULL;
error = getprop(node, "intr", sizeof(struct sbus_intr),
np, (void **)ipp);
switch (error) {
case 0:
for (n = *np; n-- > 0;) {
/*
* Move the interrupt vector into place.
* We could remap the level, but the SBUS priorities
* are probably good enough.
*/
(*ipp)[n].sbi_vec = (*ipp)[n].sbi_pri;
(*ipp)[n].sbi_pri |= INTLEVENCODE((*ipp)[n].sbi_pri);
}
break;
case ENOENT:
error = 0;
break;
}
return (error);
}
/*
* Install an interrupt handler for an Sbus device.
*/
void *
sbus_intr_establish(t, level, flags, handler, arg)
bus_space_tag_t t;
int level;
int flags;
int (*handler) __P((void *));
void *arg;
{
struct sbus_softc *sc = t->cookie;
struct intrhand *ih;
int ipl;
long vec = level;
ih = (struct intrhand *)
malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
if (ih == NULL)
return (NULL);
if ((flags & BUS_INTR_ESTABLISH_SOFTINTR) != 0)
ipl = vec;
else if ((vec & SBUS_INTR_COMPAT) != 0)
ipl = vec & ~SBUS_INTR_COMPAT;
else {
/* Decode and remove IPL */
ipl = INTLEV(vec);
vec = INTVEC(vec);
#ifdef DEBUG
if (sbusdebug & SDB_INTR) {
printf("\nsbus: intr[%ld]%lx: %lx\n", (long)ipl, (long)vec,
intrlev[vec]);
printf("Hunting for IRQ...\n");
}
#endif
if ((vec & INTMAP_OBIO) == 0) {
/* We're in an SBUS slot */
/* Register the map and clear intr registers */
#ifdef DEBUG
if (sbusdebug & SDB_INTR) {
int64_t *intrptr = &(&sc->sc_sysio->sbus_slot0_int)[INTSLOT(vec)];
int64_t intrmap = *intrptr;
printf("Found SBUS %lx IRQ as %llx in slot %ld\n",
(long)vec, (long)intrmap,
(long)INTSLOT(vec));
}
#endif
ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[INTSLOT(vec)];
ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[INTVEC(vec)];
/* Enable the interrupt */
vec |= INTMAP_V;
/* Insert IGN */
vec |= sc->sc_ign;
bus_space_write_8(sc->sc_bustag, ih->ih_map, 0, vec);
} else {
int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
int64_t intrmap = 0;
int i;
/* Insert IGN */
vec |= sc->sc_ign;
for (i=0;
&intrptr[i] <= (int64_t *)&sc->sc_sysio->reserved_int_map &&
INTVEC(intrmap=intrptr[i]) != INTVEC(vec);
i++);
if (INTVEC(intrmap) == INTVEC(vec)) {
#ifdef DEBUG
if (sbusdebug & SDB_INTR)
printf("Found OBIO %lx IRQ as %lx in slot %d\n",
vec, (long)intrmap, i);
#endif
/* Register the map and clear intr registers */
ih->ih_map = &intrptr[i];
intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
ih->ih_clr = &intrptr[i];
/* Enable the interrupt */
intrmap |= INTMAP_V;
bus_space_write_8(sc->sc_bustag, ih->ih_map, 0, (u_long)intrmap);
} else panic("IRQ not found!");
}
}
#ifdef DEBUG
if (sbusdebug & SDB_INTR) { long i; for (i=0; i<1400000000; i++); }
#endif
ih->ih_fun = handler;
ih->ih_arg = arg;
ih->ih_number = vec;
ih->ih_pil = (1<<ipl);
if ((flags & BUS_INTR_ESTABLISH_FASTTRAP) != 0)
intr_fasttrap(ipl, (void (*)__P((void)))handler);
else
intr_establish(ipl, ih);
return (ih);
}
static bus_space_tag_t
sbus_alloc_bustag(sc)
struct sbus_softc *sc;
{
bus_space_tag_t sbt;
sbt = (bus_space_tag_t)
malloc(sizeof(struct sparc_bus_space_tag), M_DEVBUF, M_NOWAIT);
if (sbt == NULL)
return (NULL);
bzero(sbt, sizeof *sbt);
sbt->cookie = sc;
sbt->parent = sc->sc_bustag;
sbt->type = ASI_PRIMARY;
sbt->sparc_bus_map = _sbus_bus_map;
sbt->sparc_bus_mmap = sbus_bus_mmap;
sbt->sparc_intr_establish = sbus_intr_establish;
return (sbt);
}
static bus_dma_tag_t
sbus_alloc_dmatag(sc)
struct sbus_softc *sc;
{
bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
sdt = (bus_dma_tag_t)
malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
if (sdt == NULL)
/* Panic? */
return (psdt);
sdt->_cookie = sc;
sdt->_parent = psdt;
#define PCOPY(x) sdt->x = psdt->x
PCOPY(_dmamap_create);
PCOPY(_dmamap_destroy);
sdt->_dmamap_load = sbus_dmamap_load;
PCOPY(_dmamap_load_mbuf);
PCOPY(_dmamap_load_uio);
PCOPY(_dmamap_load_raw);
sdt->_dmamap_unload = sbus_dmamap_unload;
sdt->_dmamap_sync = sbus_dmamap_sync;
sdt->_dmamem_alloc = sbus_dmamem_alloc;
sdt->_dmamem_free = sbus_dmamem_free;
sdt->_dmamem_map = sbus_dmamem_map;
sdt->_dmamem_unmap = sbus_dmamem_unmap;
PCOPY(_dmamem_mmap);
#undef PCOPY
sc->sc_dmatag = sdt;
return (sdt);
}
int
sbus_dmamap_load(t, map, buf, buflen, p, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
{
int err;
bus_size_t sgsize;
paddr_t curaddr;
vaddr_t dvmaddr, vaddr = (vaddr_t)buf;
pmap_t pmap;
struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
if (map->dm_nsegs) {
/* Already in use?? */
#ifdef DIAGNOSTIC
printf("sbus_dmamap_load: map still in use\n");
#endif
bus_dmamap_unload(t, map);
}
if ((err = bus_dmamap_load(t->_parent, map, buf, buflen, p, flags)))
return (err);
if (p != NULL)
pmap = p->p_vmspace->vm_map.pmap;
else
pmap = pmap_kernel();
dvmaddr = trunc_page(map->dm_segs[0].ds_addr);
sgsize = round_page(buflen + ((int)vaddr & PGOFSET));
for (; buflen > 0; ) {
/*
* Get the physical address for this page.
*/
if ((curaddr = (bus_addr_t)pmap_extract(pmap, (vaddr_t)vaddr)) == NULL) {
bus_dmamap_unload(t, map);
return (-1);
}
/*
* Compute the segment size, and adjust counts.
*/
sgsize = NBPG - ((u_long)vaddr & PGOFSET);
if (buflen < sgsize)
sgsize = buflen;
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_dmamap_load: map %p loading va %lx at pa %lx\n",
map, (long)dvmaddr, (long)(curaddr & ~(NBPG-1)));
#endif
sbus_enter(sc, trunc_page(dvmaddr), trunc_page(curaddr), flags);
dvmaddr += PAGE_SIZE;
vaddr += sgsize;
buflen -= sgsize;
}
return (0);
}
void
sbus_dmamap_unload(t, map)
bus_dma_tag_t t;
bus_dmamap_t map;
{
vaddr_t addr;
int len;
struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
if (map->dm_nsegs != 1)
panic("_sbus_dmamap_unload: nsegs = %d", map->dm_nsegs);
addr = trunc_page(map->dm_segs[0].ds_addr);
len = map->dm_segs[0].ds_len;
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_dmamap_unload: map %p removing va %lx size %lx\n",
map, (long)addr, (long)len);
#endif
sbus_remove(sc, addr, len);
bus_dmamap_unload(t->_parent, map);
}
void
sbus_dmamap_sync(t, map, offset, len, ops)
bus_dma_tag_t t;
bus_dmamap_t map;
bus_addr_t offset;
bus_size_t len;
int ops;
{
struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
vaddr_t va = map->dm_segs[0].ds_addr + offset;
/*
* We only support one DMA segment; supporting more makes this code
* too unweildy.
*/
if (ops&BUS_DMASYNC_PREREAD) {
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_dmamap_sync: syncing va %p len %lu BUS_DMASYNC_PREREAD\n",
(long)va, (u_long)len);
#endif
/* Nothing to do */;
}
if (ops&BUS_DMASYNC_POSTREAD) {
/*
* We should sync the IOMMU streaming caches here first.
*/
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_dmamap_sync: syncing va %p len %lu BUS_DMASYNC_POSTREAD\n",
(long)va, (u_long)len);
#endif
while (len > 0) {
/*
* Streaming buffer flushes:
*
* 1 Tell strbuf to flush by storing va to strbuf_pgflush
* If we're not on a cache line boundary (64-bits):
* 2 Store 0 in flag
* 3 Store pointer to flag in flushsync
* 4 wait till flushsync becomes 0x1
*
* If it takes more than .5 sec, something went wrong.
*/
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_dmamap_sync: flushing va %p, %lu bytes left\n",
(long)va, (u_long)len);
#endif
#if 1
bus_space_write_8(sc->sc_bustag, &sc->sc_sysio->sys_strbuf.strbuf_pgflush, 0, va);
#else
stxa(&(sc->sc_sysio->sys_strbuf.strbuf_pgflush), ASI_NUCLEUS, va);
#endif
if (len <= NBPG) {
sbus_flush(sc);
len = 0;
} else
len -= NBPG;
va += NBPG;
}
}
if (ops&BUS_DMASYNC_PREWRITE) {
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_dmamap_sync: syncing va %p len %lu BUS_DMASYNC_PREWRITE\n",
(long)va, (u_long)len);
#endif
/* Nothing to do */;
}
if (ops&BUS_DMASYNC_POSTWRITE) {
#ifdef DEBUG
if (sbusdebug & SDB_DVMA)
printf("sbus_dmamap_sync: syncing va %p len %lu BUS_DMASYNC_POSTWRITE\n",
(long)va, (u_long)len);
#endif
/* Nothing to do */;
}
bus_dmamap_sync(t->_parent, map, offset, len, ops);
}
/*
* Take memory allocated by our parent bus and generate DVMA mappings for it.
*/
int
sbus_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
bus_dma_tag_t t;
bus_size_t size, alignment, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
{
paddr_t curaddr;
bus_addr_t dvmaddr;
vm_page_t m;
struct pglist *mlist;
int error;
int n;
struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
if ((error = bus_dmamem_alloc(t->_parent, size, alignment,
boundary, segs, nsegs, rsegs, flags)))
return (error);
/*
* Allocate a DVMA mapping for our new memory.
*/
for (n=0; n<*rsegs; n++) {
dvmaddr = dvmamap_alloc(segs[0].ds_len, flags);
if (dvmaddr == (bus_addr_t)-1) {
/* Free what we got and exit */
bus_dmamem_free(t->_parent, segs, nsegs);
return (ENOMEM);
}
segs[n].ds_addr = dvmaddr;
size = segs[n].ds_len;
mlist = segs[n]._ds_mlist;
/* Map memory into DVMA space */
for (m = mlist->tqh_first; m != NULL; m = m->pageq.tqe_next) {
curaddr = VM_PAGE_TO_PHYS(m);
sbus_enter(sc, dvmaddr, curaddr, flags);
dvmaddr += PAGE_SIZE;
}
}
return (0);
}
void
sbus_dmamem_free(t, segs, nsegs)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
{
vaddr_t addr;
int len;
int n;
struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
for (n=0; n<nsegs; n++) {
addr = segs[n].ds_addr;
len = segs[n].ds_len;
sbus_remove(sc, addr, len);
dvmamap_free(addr, len);
}
bus_dmamem_free(t->_parent, segs, nsegs);
}
/*
* Map the DVMA mappings into the kernel pmap.
* Check the flags to see whether we're streaming or coherent.
*/
int
sbus_dmamem_map(t, segs, nsegs, size, kvap, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
size_t size;
caddr_t *kvap;
int flags;
{
vm_page_t m;
vaddr_t va;
bus_addr_t addr;
struct pglist *mlist;
struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
int cbit;
/*
* digest flags:
*/
cbit = 0;
if (flags & BUS_DMA_COHERENT) /* Disable vcache */
cbit |= PMAP_NVC;
if (flags & BUS_DMA_NOCACHE) /* sideffects */
cbit |= PMAP_NC;
/*
* Now take this and map it into the CPU since it should already
* be in the the IOMMU.
*/
*kvap = (caddr_t)va = segs[0].ds_addr;
mlist = segs[0]._ds_mlist;
for (m = mlist->tqh_first; m != NULL; m = m->pageq.tqe_next) {
if (size == 0)
panic("_bus_dmamem_map: size botch");
addr = VM_PAGE_TO_PHYS(m);
pmap_enter(pmap_kernel(), va, addr | cbit,
VM_PROT_READ | VM_PROT_WRITE, TRUE);
va += PAGE_SIZE;
size -= PAGE_SIZE;
}
return (0);
}
/*
* Unmap DVMA mappings from kernel
*/
void
sbus_dmamem_unmap(t, kva, size)
bus_dma_tag_t t;
caddr_t kva;
size_t size;
{
struct sbus_softc *sc = (struct sbus_softc *)t->_cookie;
#ifdef DIAGNOSTIC
if ((u_long)kva & PGOFSET)
panic("_bus_dmamem_unmap");
#endif
size = round_page(size);
pmap_remove(pmap_kernel(), (vaddr_t)kva, size);
}