4882320d4b
From Dave Huang in PR 8205.
1872 lines
46 KiB
C
1872 lines
46 KiB
C
/* $NetBSD: if_vr.c,v 1.25 1999/08/14 11:23:39 hwr Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1997, 1998
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
|
|
*/
|
|
|
|
/*
|
|
* VIA Rhine fast ethernet PCI NIC driver
|
|
*
|
|
* Supports various network adapters based on the VIA Rhine
|
|
* and Rhine II PCI controllers, including the D-Link DFE530TX.
|
|
* Datasheets are available at http://www.via.com.tw.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The VIA Rhine controllers are similar in some respects to the
|
|
* the DEC tulip chips, except less complicated. The controller
|
|
* uses an MII bus and an external physical layer interface. The
|
|
* receiver has a one entry perfect filter and a 64-bit hash table
|
|
* multicast filter. Transmit and receive descriptors are similar
|
|
* to the tulip.
|
|
*
|
|
* The Rhine has a serious flaw in its transmit DMA mechanism:
|
|
* transmit buffers must be longword aligned. Unfortunately,
|
|
* the kernel doesn't guarantee that mbufs will be filled in starting
|
|
* at longword boundaries, so we have to do a buffer copy before
|
|
* transmission.
|
|
*
|
|
* Apparently, the receive DMA mechanism also has the same flaw. This
|
|
* means that on systems with struct alignment requirements, incoming
|
|
* frames must be copied to a new buffer which shifts the data forward
|
|
* 2 bytes so that the payload is aligned on a 4-byte boundary.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <vm/vm.h> /* for PAGE_SIZE */
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if defined(INET)
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#include "bpfilter.h"
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_vrreg.h>
|
|
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
#include <machine/bswap.h>
|
|
#define htopci(x) bswap32(x)
|
|
#define pcitoh(x) bswap32(x)
|
|
#else
|
|
#define htopci(x) (x)
|
|
#define pcitoh(x) (x)
|
|
#endif
|
|
|
|
#define VR_USEIOSPACE
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct vr_type {
|
|
pci_vendor_id_t vr_vid;
|
|
pci_product_id_t vr_did;
|
|
const char *vr_name;
|
|
} vr_devs[] = {
|
|
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
|
|
"VIA VT3043 (Rhine) 10/100" },
|
|
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
|
|
"VIA VT86C100A (Rhine-II) 10/100" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Transmit descriptor list size.
|
|
*/
|
|
#define VR_NTXDESC 64
|
|
#define VR_NTXDESC_MASK (VR_NTXDESC - 1)
|
|
#define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
|
|
|
|
/*
|
|
* Receive descriptor list size.
|
|
*/
|
|
#define VR_NRXDESC 64
|
|
#define VR_NRXDESC_MASK (VR_NRXDESC - 1)
|
|
#define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
|
|
|
|
/*
|
|
* Control data structres that are DMA'd to the Rhine chip. We allocate
|
|
* them in a single clump that maps to a single DMA segment to make several
|
|
* things easier.
|
|
*
|
|
* Note that since we always copy outgoing packets to aligned transmit
|
|
* buffers, we can reduce the transmit descriptors to one per packet.
|
|
*/
|
|
struct vr_control_data {
|
|
struct vr_desc vr_txdescs[VR_NTXDESC];
|
|
struct vr_desc vr_rxdescs[VR_NRXDESC];
|
|
};
|
|
|
|
#define VR_CDOFF(x) offsetof(struct vr_control_data, x)
|
|
#define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
|
|
#define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
|
|
|
|
/*
|
|
* Software state of transmit and receive descriptors.
|
|
*/
|
|
struct vr_descsoft {
|
|
struct mbuf *ds_mbuf; /* head of mbuf chain */
|
|
bus_dmamap_t ds_dmamap; /* our DMA map */
|
|
};
|
|
|
|
struct vr_softc {
|
|
struct device vr_dev; /* generic device glue */
|
|
void *vr_ih; /* interrupt cookie */
|
|
void *vr_ats; /* shutdown hook */
|
|
bus_space_tag_t vr_bst; /* bus space tag */
|
|
bus_space_handle_t vr_bsh; /* bus space handle */
|
|
bus_dma_tag_t vr_dmat; /* bus DMA tag */
|
|
pci_chipset_tag_t vr_pc; /* PCI chipset info */
|
|
struct ethercom vr_ec; /* Ethernet common info */
|
|
u_int8_t vr_enaddr[ETHER_ADDR_LEN];
|
|
struct mii_data vr_mii; /* MII/media info */
|
|
|
|
bus_dmamap_t vr_cddmamap; /* control data DMA map */
|
|
#define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
|
|
|
|
/*
|
|
* Software state for transmit and receive descriptors.
|
|
*/
|
|
struct vr_descsoft vr_txsoft[VR_NTXDESC];
|
|
struct vr_descsoft vr_rxsoft[VR_NRXDESC];
|
|
|
|
/*
|
|
* Control data structures.
|
|
*/
|
|
struct vr_control_data *vr_control_data;
|
|
|
|
int vr_txpending; /* number of TX requests pending */
|
|
int vr_txdirty; /* first dirty TX descriptor */
|
|
int vr_txlast; /* last used TX descriptor */
|
|
|
|
int vr_rxptr; /* next ready RX descriptor */
|
|
};
|
|
|
|
#define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
|
|
#define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
|
|
|
|
#define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
|
|
#define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
|
|
|
|
#define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
|
|
#define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
|
|
|
|
#define VR_CDTXSYNC(sc, x, ops) \
|
|
bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
|
|
VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
|
|
|
|
#define VR_CDRXSYNC(sc, x, ops) \
|
|
bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
|
|
VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
|
|
|
|
/*
|
|
* Note we rely on MCLBYTES being a power of two below.
|
|
*/
|
|
#define VR_INIT_RXDESC(sc, i) \
|
|
do { \
|
|
struct vr_desc *__d = VR_CDRX((sc), (i)); \
|
|
struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
|
|
\
|
|
__d->vr_next = htopci(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
|
|
__d->vr_status = htopci(VR_RXSTAT_FIRSTFRAG | \
|
|
VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
|
|
__d->vr_data = htopci(__ds->ds_dmamap->dm_segs[0].ds_addr); \
|
|
__d->vr_ctl = htopci(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
|
|
((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
|
|
VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
|
|
} while (0)
|
|
|
|
/*
|
|
* register space access macros
|
|
*/
|
|
#define CSR_WRITE_4(sc, reg, val) \
|
|
bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
|
|
#define CSR_WRITE_2(sc, reg, val) \
|
|
bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
|
|
#define CSR_WRITE_1(sc, reg, val) \
|
|
bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
|
|
|
|
#define CSR_READ_4(sc, reg) \
|
|
bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
|
|
#define CSR_READ_2(sc, reg) \
|
|
bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
|
|
#define CSR_READ_1(sc, reg) \
|
|
bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
|
|
|
|
#define VR_TIMEOUT 1000
|
|
|
|
static int vr_add_rxbuf __P((struct vr_softc *, int));
|
|
|
|
static void vr_rxeof __P((struct vr_softc *));
|
|
static void vr_rxeoc __P((struct vr_softc *));
|
|
static void vr_txeof __P((struct vr_softc *));
|
|
static int vr_intr __P((void *));
|
|
static void vr_start __P((struct ifnet *));
|
|
static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static int vr_init __P((struct vr_softc *));
|
|
static void vr_stop __P((struct vr_softc *, int));
|
|
static void vr_rxdrain __P((struct vr_softc *));
|
|
static void vr_watchdog __P((struct ifnet *));
|
|
static void vr_tick __P((void *));
|
|
|
|
static int vr_ifmedia_upd __P((struct ifnet *));
|
|
static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
static void vr_mii_sync __P((struct vr_softc *));
|
|
static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
|
|
static int vr_mii_readreg __P((struct device *, int, int));
|
|
static void vr_mii_writereg __P((struct device *, int, int, int));
|
|
static void vr_mii_statchg __P((struct device *));
|
|
|
|
static u_int8_t vr_calchash __P((u_int8_t *));
|
|
static void vr_setmulti __P((struct vr_softc *));
|
|
static void vr_reset __P((struct vr_softc *));
|
|
|
|
int vr_copy_small = 0;
|
|
|
|
#define VR_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_1(sc, reg, \
|
|
CSR_READ_1(sc, reg) | x)
|
|
|
|
#define VR_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_1(sc, reg, \
|
|
CSR_READ_1(sc, reg) & ~x)
|
|
|
|
#define VR_SETBIT16(sc, reg, x) \
|
|
CSR_WRITE_2(sc, reg, \
|
|
CSR_READ_2(sc, reg) | x)
|
|
|
|
#define VR_CLRBIT16(sc, reg, x) \
|
|
CSR_WRITE_2(sc, reg, \
|
|
CSR_READ_2(sc, reg) & ~x)
|
|
|
|
#define VR_SETBIT32(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) | x)
|
|
|
|
#define VR_CLRBIT32(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) & ~x)
|
|
|
|
#define SIO_SET(x) \
|
|
CSR_WRITE_1(sc, VR_MIICMD, \
|
|
CSR_READ_1(sc, VR_MIICMD) | x)
|
|
|
|
#define SIO_CLR(x) \
|
|
CSR_WRITE_1(sc, VR_MIICMD, \
|
|
CSR_READ_1(sc, VR_MIICMD) & ~x)
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void
|
|
vr_mii_sync(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAOUT);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void
|
|
vr_mii_send(sc, bits, cnt)
|
|
struct vr_softc *sc;
|
|
u_int32_t bits;
|
|
int cnt;
|
|
{
|
|
int i;
|
|
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
if (bits & i) {
|
|
SIO_SET(VR_MIICMD_DATAOUT);
|
|
} else {
|
|
SIO_CLR(VR_MIICMD_DATAOUT);
|
|
}
|
|
DELAY(1);
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int
|
|
vr_mii_readreg(self, phy, reg)
|
|
struct device *self;
|
|
int phy, reg;
|
|
{
|
|
struct vr_softc *sc = (struct vr_softc *)self;
|
|
int i, ack, val = 0;
|
|
|
|
CSR_WRITE_1(sc, VR_MIICMD, 0);
|
|
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
|
|
|
|
/*
|
|
* Turn on data xmit.
|
|
*/
|
|
SIO_SET(VR_MIICMD_DIR);
|
|
|
|
vr_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
vr_mii_send(sc, MII_COMMAND_START, 2);
|
|
vr_mii_send(sc, MII_COMMAND_READ, 2);
|
|
vr_mii_send(sc, phy, 5);
|
|
vr_mii_send(sc, reg, 5);
|
|
|
|
/* Idle bit */
|
|
SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAOUT));
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
|
|
/* Turn off xmit. */
|
|
SIO_CLR(VR_MIICMD_DIR);
|
|
|
|
/* Check for ack */
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN;
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for (i = 0; i < 16; i++) {
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
if (!ack) {
|
|
if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN)
|
|
val |= i;
|
|
DELAY(1);
|
|
}
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
fail:
|
|
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
|
|
return (val);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static void
|
|
vr_mii_writereg(self, phy, reg, val)
|
|
struct device *self;
|
|
int phy, reg, val;
|
|
{
|
|
struct vr_softc *sc = (struct vr_softc *)self;
|
|
|
|
CSR_WRITE_1(sc, VR_MIICMD, 0);
|
|
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
|
|
|
|
/*
|
|
* Turn on data output.
|
|
*/
|
|
SIO_SET(VR_MIICMD_DIR);
|
|
|
|
vr_mii_sync(sc);
|
|
|
|
vr_mii_send(sc, MII_COMMAND_START, 2);
|
|
vr_mii_send(sc, MII_COMMAND_WRITE, 2);
|
|
vr_mii_send(sc, phy, 5);
|
|
vr_mii_send(sc, reg, 5);
|
|
vr_mii_send(sc, MII_COMMAND_ACK, 2);
|
|
vr_mii_send(sc, val, 16);
|
|
|
|
/* Idle bit. */
|
|
SIO_SET(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
SIO_CLR(VR_MIICMD_CLK);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
SIO_CLR(VR_MIICMD_DIR);
|
|
}
|
|
|
|
static void
|
|
vr_mii_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct vr_softc *sc = (struct vr_softc *)self;
|
|
|
|
/*
|
|
* In order to fiddle with the 'full-duplex' bit in the netconfig
|
|
* register, we first have to put the transmit and/or receive logic
|
|
* in the idle state.
|
|
*/
|
|
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
|
|
|
|
if (sc->vr_mii.mii_media_active & IFM_FDX)
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
|
|
else
|
|
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
|
|
|
|
if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
|
|
|
|
/* XXX Update ifp->if_baudrate */
|
|
}
|
|
|
|
/*
|
|
* Calculate CRC of a multicast group address, return the lower 6 bits.
|
|
*/
|
|
static u_int8_t
|
|
vr_calchash(addr)
|
|
u_int8_t *addr;
|
|
{
|
|
u_int32_t crc, carry;
|
|
int i, j;
|
|
u_int8_t c;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
c = *(addr + i);
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ 0x04c11db6) | carry;
|
|
}
|
|
}
|
|
|
|
/* return the filter bit position */
|
|
return ((crc >> 26) & 0x0000003F);
|
|
}
|
|
|
|
/*
|
|
* Program the 64-bit multicast hash filter.
|
|
*/
|
|
static void
|
|
vr_setmulti(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int h = 0;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
struct ether_multistep step;
|
|
struct ether_multi *enm;
|
|
int mcnt = 0;
|
|
u_int8_t rxfilt;
|
|
|
|
ifp = &sc->vr_ec.ec_if;
|
|
|
|
rxfilt = CSR_READ_1(sc, VR_RXCFG);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
rxfilt |= VR_RXCFG_RX_MULTI;
|
|
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
|
|
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, VR_MAR0, 0);
|
|
CSR_WRITE_4(sc, VR_MAR1, 0);
|
|
|
|
/* now program new ones */
|
|
ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
|
|
continue;
|
|
|
|
h = vr_calchash(enm->enm_addrlo);
|
|
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
mcnt++;
|
|
}
|
|
|
|
if (mcnt)
|
|
rxfilt |= VR_RXCFG_RX_MULTI;
|
|
else
|
|
rxfilt &= ~VR_RXCFG_RX_MULTI;
|
|
|
|
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
|
|
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
|
|
}
|
|
|
|
static void
|
|
vr_reset(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
|
|
|
|
for (i = 0; i < VR_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
|
|
break;
|
|
}
|
|
if (i == VR_TIMEOUT)
|
|
printf("%s: reset never completed!\n",
|
|
sc->vr_dev.dv_xname);
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
* Note: the length fields are only 11 bits wide, which means the
|
|
* largest size we can specify is 2047. This is important because
|
|
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
|
|
* overflow the field and make a mess.
|
|
*/
|
|
static int
|
|
vr_add_rxbuf(sc, i)
|
|
struct vr_softc *sc;
|
|
int i;
|
|
{
|
|
struct vr_descsoft *ds = VR_DSRX(sc, i);
|
|
struct mbuf *m_new;
|
|
int error;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if ((m_new->m_flags & M_EXT) == 0) {
|
|
m_freem(m_new);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (ds->ds_mbuf != NULL)
|
|
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
|
|
|
|
ds->ds_mbuf = m_new;
|
|
|
|
error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
|
|
m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: unable to load rx DMA map %d, error = %d\n",
|
|
sc->vr_dev.dv_xname, i, error);
|
|
panic("vr_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
VR_INIT_RXDESC(sc, i);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static void
|
|
vr_rxeof(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct vr_desc *d;
|
|
struct vr_descsoft *ds;
|
|
int i, total_len;
|
|
u_int32_t rxstat;
|
|
|
|
ifp = &sc->vr_ec.ec_if;
|
|
|
|
for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
|
|
d = VR_CDRX(sc, i);
|
|
ds = VR_DSRX(sc, i);
|
|
|
|
VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rxstat = pcitoh(d->vr_status);
|
|
|
|
if (rxstat & VR_RXSTAT_OWN) {
|
|
/*
|
|
* We have processed all of the receive buffers.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
*/
|
|
if (rxstat & VR_RXSTAT_RXERR) {
|
|
const char *errstr;
|
|
|
|
ifp->if_ierrors++;
|
|
switch (rxstat & 0x000000FF) {
|
|
case VR_RXSTAT_CRCERR:
|
|
errstr = "crc error";
|
|
break;
|
|
case VR_RXSTAT_FRAMEALIGNERR:
|
|
errstr = "frame alignment error";
|
|
break;
|
|
case VR_RXSTAT_FIFOOFLOW:
|
|
errstr = "FIFO overflow";
|
|
break;
|
|
case VR_RXSTAT_GIANT:
|
|
errstr = "received giant packet";
|
|
break;
|
|
case VR_RXSTAT_RUNT:
|
|
errstr = "received runt packet";
|
|
break;
|
|
case VR_RXSTAT_BUSERR:
|
|
errstr = "system bus error";
|
|
break;
|
|
case VR_RXSTAT_BUFFERR:
|
|
errstr = "rx buffer error";
|
|
break;
|
|
default:
|
|
errstr = "unknown rx error";
|
|
break;
|
|
}
|
|
printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
|
|
errstr);
|
|
|
|
VR_INIT_RXDESC(sc, i);
|
|
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/* No errors; receive the packet. */
|
|
total_len = VR_RXBYTES(pcitoh(d->vr_status));
|
|
|
|
/*
|
|
* XXX The VIA Rhine chip includes the CRC with every
|
|
* received frame, and there's no way to turn this
|
|
* behavior off (at least, I can't find anything in
|
|
* the manual that explains how to do it) so we have
|
|
* to trim off the CRC manually.
|
|
*/
|
|
total_len -= ETHER_CRC_LEN;
|
|
|
|
#ifdef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*
|
|
* Otherwise, we add a new buffer to the receive
|
|
* chain. If this fails, we drop the packet and
|
|
* recycle the old buffer.
|
|
*/
|
|
if (vr_copy_small != 0 && total_len <= MHLEN) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
goto dropit;
|
|
memcpy(mtod(m, caddr_t),
|
|
mtod(ds->ds_mbuf, caddr_t), total_len);
|
|
VR_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
m = ds->ds_mbuf;
|
|
if (vr_add_rxbuf(sc, i) == ENOBUFS) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
VR_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->vr_dmat,
|
|
ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
* The Rhine's packet buffers must be 4-byte aligned.
|
|
* But this means that the data after the Ethernet header
|
|
* is misaligned. We must allocate a new buffer and
|
|
* copy the data, shifted forward 2 bytes.
|
|
*/
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
VR_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
if (total_len > (MHLEN - 2)) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
goto dropit;
|
|
}
|
|
}
|
|
m->m_data += 2;
|
|
|
|
/*
|
|
* Note that we use clusters for incoming frames, so the
|
|
* buffer is virtually contiguous.
|
|
*/
|
|
memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
|
|
total_len);
|
|
|
|
/* Allow the recieve descriptor to continue using its mbuf. */
|
|
VR_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
#endif /* __NO_STRICT_ALIGNMENT */
|
|
|
|
ifp->if_ipackets++;
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Handle BPF listeners. Let the BPF user see the packet, but
|
|
* don't pass it up to the ether_input() layer unless it's
|
|
* a broadcast packet, multicast packet, matches our ethernet
|
|
* address or the interface is in promiscuous mode.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
|
|
(rxstat & (VR_RXSTAT_RX_PHYS | VR_RXSTAT_RX_BROAD |
|
|
VR_RXSTAT_RX_MULTI)) == 0) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->vr_rxptr = i;
|
|
}
|
|
|
|
void
|
|
vr_rxeoc(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
|
|
vr_rxeof(sc);
|
|
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
|
|
CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void
|
|
vr_txeof(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->vr_ec.ec_if;
|
|
struct vr_desc *d;
|
|
struct vr_descsoft *ds;
|
|
u_int32_t txstat;
|
|
int i;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
for (i = sc->vr_txdirty; sc->vr_txpending != 0;
|
|
i = VR_NEXTTX(i), sc->vr_txpending--) {
|
|
d = VR_CDTX(sc, i);
|
|
ds = VR_DSTX(sc, i);
|
|
|
|
VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
txstat = pcitoh(d->vr_status);
|
|
if (txstat & VR_TXSTAT_OWN)
|
|
break;
|
|
|
|
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
|
|
0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
|
|
if (txstat & VR_TXSTAT_ERRSUM) {
|
|
ifp->if_oerrors++;
|
|
if (txstat & VR_TXSTAT_DEFER)
|
|
ifp->if_collisions++;
|
|
if (txstat & VR_TXSTAT_LATECOLL)
|
|
ifp->if_collisions++;
|
|
}
|
|
|
|
ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
sc->vr_txdirty = i;
|
|
|
|
/*
|
|
* Cancel the watchdog timer if there are no pending
|
|
* transmissions.
|
|
*/
|
|
if (sc->vr_txpending == 0)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
static int
|
|
vr_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct vr_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int16_t status;
|
|
int handled = 0, dotx = 0;
|
|
|
|
sc = arg;
|
|
ifp = &sc->vr_ec.ec_if;
|
|
|
|
/* Suppress unwanted interrupts. */
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
vr_stop(sc, 1);
|
|
return (0);
|
|
}
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, 0x0000);
|
|
|
|
for (;;) {
|
|
status = CSR_READ_2(sc, VR_ISR);
|
|
if (status)
|
|
CSR_WRITE_2(sc, VR_ISR, status);
|
|
|
|
if ((status & VR_INTRS) == 0)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
if (status & VR_ISR_RX_OK)
|
|
vr_rxeof(sc);
|
|
|
|
if (status &
|
|
(VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
|
|
VR_ISR_RX_DROPPED))
|
|
vr_rxeoc(sc);
|
|
|
|
if (status & VR_ISR_TX_OK) {
|
|
dotx = 1;
|
|
vr_txeof(sc);
|
|
}
|
|
|
|
if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
|
|
if (status & VR_ISR_TX_UNDERRUN)
|
|
printf("%s: transmit underrun\n",
|
|
sc->vr_dev.dv_xname);
|
|
if (status & VR_ISR_TX_ABRT)
|
|
printf("%s: transmit aborted\n",
|
|
sc->vr_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
dotx = 1;
|
|
vr_txeof(sc);
|
|
if (sc->vr_txpending) {
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
|
|
}
|
|
}
|
|
|
|
if (status & VR_ISR_BUSERR) {
|
|
printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
|
|
/* vr_init() calls vr_start() */
|
|
dotx = 0;
|
|
(void) vr_init(sc);
|
|
}
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
|
|
|
|
if (dotx)
|
|
vr_start(ifp);
|
|
|
|
return (handled);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
* physical addresses.
|
|
*/
|
|
static void
|
|
vr_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vr_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct vr_desc *d;
|
|
struct vr_descsoft *ds;
|
|
int error, firsttx, nexttx, opending;
|
|
|
|
/*
|
|
* Remember the previous txpending and the first transmit
|
|
* descriptor we use.
|
|
*/
|
|
opending = sc->vr_txpending;
|
|
firsttx = VR_NEXTTX(sc->vr_txlast);
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while (sc->vr_txpending < VR_NTXDESC) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IF_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Get the next available transmit descriptor.
|
|
*/
|
|
nexttx = VR_NEXTTX(sc->vr_txlast);
|
|
d = VR_CDTX(sc, nexttx);
|
|
ds = VR_DSTX(sc, nexttx);
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet didn't
|
|
* fit in one DMA segment, and we need to copy. Note,
|
|
* the packet must also be aligned.
|
|
*/
|
|
if ((mtod(m0, bus_addr_t) & 3) != 0 ||
|
|
bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
|
|
BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: unable to allocate Tx mbuf\n",
|
|
sc->vr_dev.dv_xname);
|
|
IF_PREPEND(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: unable to allocate Tx "
|
|
"cluster\n", sc->vr_dev.dv_xname);
|
|
m_freem(m);
|
|
IF_PREPEND(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
m_freem(m0);
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf(sc->vr_dmat,
|
|
ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: unable to load Tx buffer, "
|
|
"error = %d\n", sc->vr_dev.dv_xname, error);
|
|
IF_PREPEND(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
|
|
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later.
|
|
*/
|
|
ds->ds_mbuf = m0;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif
|
|
|
|
/*
|
|
* Fill in the transmit descriptor. The Rhine
|
|
* doesn't auto-pad, so we have to do this ourselves.
|
|
*/
|
|
d->vr_data = htopci(ds->ds_dmamap->dm_segs[0].ds_addr);
|
|
d->vr_ctl = htopci(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
|
|
VR_MIN_FRAMELEN : m0->m_pkthdr.len);
|
|
d->vr_ctl |=
|
|
htopci(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|VR_TXCTL_LASTFRAG);
|
|
|
|
/*
|
|
* If this is the first descriptor we're enqueuing,
|
|
* don't give it to the Rhine yet. That could cause
|
|
* a race condition. We'll do it below.
|
|
*/
|
|
if (nexttx == firsttx)
|
|
d->vr_status = 0;
|
|
else
|
|
d->vr_status = htopci(VR_TXSTAT_OWN);
|
|
|
|
VR_CDTXSYNC(sc, nexttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->vr_txpending++;
|
|
sc->vr_txlast = nexttx;
|
|
}
|
|
|
|
if (sc->vr_txpending == VR_NTXDESC) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->vr_txpending != opending) {
|
|
/*
|
|
* We enqueued packets. If the transmitter was idle,
|
|
* reset the txdirty pointer.
|
|
*/
|
|
if (opending == 0)
|
|
sc->vr_txdirty = firsttx;
|
|
|
|
/*
|
|
* Cause a transmit interrupt to happen on the
|
|
* last packet we enqueued.
|
|
*/
|
|
VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htopci(VR_TXCTL_FINT);
|
|
VR_CDTXSYNC(sc, sc->vr_txlast,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* The entire packet chain is set up. Give the
|
|
* first descriptor to the Rhine now.
|
|
*/
|
|
VR_CDTX(sc, firsttx)->vr_status = htopci(VR_TXSTAT_OWN);
|
|
VR_CDTXSYNC(sc, firsttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Start the transmitter. */
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
|
|
|
|
/* Set the watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the interface. Must be called at splnet.
|
|
*/
|
|
static int
|
|
vr_init(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->vr_ec.ec_if;
|
|
struct vr_desc *d;
|
|
struct vr_descsoft *ds;
|
|
int i, error = 0;
|
|
|
|
/* Cancel pending I/O. */
|
|
vr_stop(sc, 0);
|
|
|
|
/* Reset the Rhine to a known state. */
|
|
vr_reset(sc);
|
|
|
|
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
|
|
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
|
|
|
|
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
|
|
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
|
|
|
|
/*
|
|
* Initialize the transmit desciptor ring. txlast is initialized
|
|
* to the end of the list so that it will wrap around to the first
|
|
* descriptor when the first packet is transmitted.
|
|
*/
|
|
for (i = 0; i < VR_NTXDESC; i++) {
|
|
d = VR_CDTX(sc, i);
|
|
memset(d, 0, sizeof(struct vr_desc));
|
|
d->vr_next = htopci(VR_CDTXADDR(sc, VR_NEXTTX(i)));
|
|
VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sc->vr_txpending = 0;
|
|
sc->vr_txdirty = 0;
|
|
sc->vr_txlast = VR_NTXDESC - 1;
|
|
|
|
/*
|
|
* Initialize the receive descriptor ring.
|
|
*/
|
|
for (i = 0; i < VR_NRXDESC; i++) {
|
|
ds = VR_DSRX(sc, i);
|
|
if (ds->ds_mbuf == NULL) {
|
|
if ((error = vr_add_rxbuf(sc, i)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
sc->vr_dev.dv_xname, i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
vr_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
sc->vr_rxptr = 0;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
|
|
else
|
|
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
|
|
|
|
/* Set capture broadcast bit to capture broadcast frames. */
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
|
|
else
|
|
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
|
|
|
|
/* Program the multicast filter, if necessary. */
|
|
vr_setmulti(sc);
|
|
|
|
/* Give the transmit and recieve rings to the Rhine. */
|
|
CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
|
|
CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
|
|
|
|
/* Set current media. */
|
|
mii_mediachg(&sc->vr_mii);
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
|
|
VR_CMD_TX_ON|VR_CMD_RX_ON|
|
|
VR_CMD_RX_GO);
|
|
|
|
/* Enable interrupts. */
|
|
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
|
|
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* Start one second timer. */
|
|
timeout(vr_tick, sc, hz);
|
|
|
|
/* Attempt to start output on the interface. */
|
|
vr_start(ifp);
|
|
|
|
out:
|
|
if (error)
|
|
printf("%s: interface not running\n", sc->vr_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
vr_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vr_softc *sc = ifp->if_softc;
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
mii_mediachg(&sc->vr_mii);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
vr_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct vr_softc *sc = ifp->if_softc;
|
|
|
|
mii_pollstat(&sc->vr_mii);
|
|
ifmr->ifm_status = sc->vr_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->vr_mii.mii_media_active;
|
|
}
|
|
|
|
static int
|
|
vr_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct vr_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if ((error = vr_init(sc)) != 0)
|
|
break;
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif /* INET */
|
|
default:
|
|
error = vr_init(sc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
bcopy((caddr_t) sc->vr_enaddr,
|
|
(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
|
|
ETHER_ADDR_LEN);
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu > ETHERMTU)
|
|
error = EINVAL;
|
|
else
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) != 0) {
|
|
/*
|
|
* If interface is marked down and it is running, then
|
|
* stop it.
|
|
*/
|
|
vr_stop(sc, 1);
|
|
} else if ((ifp->if_flags & IFF_UP) != 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
/*
|
|
* If interface is marked up and it is stopped, then
|
|
* start it.
|
|
*/
|
|
error = vr_init(sc);
|
|
} else if ((ifp->if_flags & IFF_UP) != 0) {
|
|
/*
|
|
* Reset the interface to pick up changes in any other
|
|
* flags that affect the hardware state.
|
|
*/
|
|
error = vr_init(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (command == SIOCADDMULTI)
|
|
error = ether_addmulti(ifr, &sc->vr_ec);
|
|
else
|
|
error = ether_delmulti(ifr, &sc->vr_ec);
|
|
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
vr_setmulti(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vr_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vr_softc *sc = ifp->if_softc;
|
|
|
|
printf("%s: device timeout\n", sc->vr_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
|
|
(void) vr_init(sc);
|
|
}
|
|
|
|
/*
|
|
* One second timer, used to tick MII.
|
|
*/
|
|
static void
|
|
vr_tick(arg)
|
|
void *arg;
|
|
{
|
|
struct vr_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->vr_mii);
|
|
splx(s);
|
|
|
|
timeout(vr_tick, sc, hz);
|
|
}
|
|
|
|
/*
|
|
* Drain the receive queue.
|
|
*/
|
|
static void
|
|
vr_rxdrain(sc)
|
|
struct vr_softc *sc;
|
|
{
|
|
struct vr_descsoft *ds;
|
|
int i;
|
|
|
|
for (i = 0; i < VR_NRXDESC; i++) {
|
|
ds = VR_DSRX(sc, i);
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* transmit lists.
|
|
*/
|
|
static void
|
|
vr_stop(sc, drain)
|
|
struct vr_softc *sc;
|
|
int drain;
|
|
{
|
|
struct vr_descsoft *ds;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
/* Cancel one second timer. */
|
|
untimeout(vr_tick, sc);
|
|
|
|
ifp = &sc->vr_ec.ec_if;
|
|
ifp->if_timer = 0;
|
|
|
|
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
|
|
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
|
|
CSR_WRITE_2(sc, VR_IMR, 0x0000);
|
|
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
|
|
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
for (i = 0; i < VR_NTXDESC; i++) {
|
|
ds = VR_DSTX(sc, i);
|
|
if (ds->ds_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
|
|
m_freem(ds->ds_mbuf);
|
|
ds->ds_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
if (drain) {
|
|
/*
|
|
* Release the receive buffers.
|
|
*/
|
|
vr_rxdrain(sc);
|
|
}
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
static struct vr_type *vr_lookup __P((struct pci_attach_args *));
|
|
static int vr_probe __P((struct device *, struct cfdata *, void *));
|
|
static void vr_attach __P((struct device *, struct device *, void *));
|
|
static void vr_shutdown __P((void *));
|
|
|
|
struct cfattach vr_ca = {
|
|
sizeof (struct vr_softc), vr_probe, vr_attach
|
|
};
|
|
|
|
static struct vr_type *
|
|
vr_lookup(pa)
|
|
struct pci_attach_args *pa;
|
|
{
|
|
struct vr_type *vrt;
|
|
|
|
for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
|
|
if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
|
|
PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
|
|
return (vrt);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
vr_probe(parent, match, aux)
|
|
struct device *parent;
|
|
struct cfdata *match;
|
|
void *aux;
|
|
{
|
|
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
|
|
|
|
if (vr_lookup(pa) != NULL)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void
|
|
vr_shutdown(arg)
|
|
void *arg;
|
|
{
|
|
struct vr_softc *sc = (struct vr_softc *)arg;
|
|
|
|
vr_stop(sc, 1);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static void
|
|
vr_attach(parent, self, aux)
|
|
struct device *parent;
|
|
struct device *self;
|
|
void *aux;
|
|
{
|
|
struct vr_softc *sc = (struct vr_softc *) self;
|
|
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
|
|
bus_dma_segment_t seg;
|
|
struct vr_type *vrt;
|
|
u_int32_t command;
|
|
struct ifnet *ifp;
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
int i, rseg, error;
|
|
|
|
#define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
|
|
#define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
|
|
|
|
vrt = vr_lookup(pa);
|
|
if (vrt == NULL) {
|
|
printf("\n");
|
|
panic("vr_attach: impossible");
|
|
}
|
|
|
|
printf(": %s Ethernet\n", vrt->vr_name);
|
|
|
|
/*
|
|
* Handle power management nonsense.
|
|
*/
|
|
|
|
command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
|
|
if (command == 0x01) {
|
|
command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
|
|
if (command & VR_PSTATE_MASK) {
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
/* Save important PCI config data. */
|
|
iobase = PCI_CONF_READ(VR_PCI_LOIO);
|
|
membase = PCI_CONF_READ(VR_PCI_LOMEM);
|
|
irq = PCI_CONF_READ(VR_PCI_INTLINE);
|
|
|
|
/* Reset the power state. */
|
|
printf("%s: chip is in D%d power mode "
|
|
"-- setting to D0\n",
|
|
sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
|
|
command &= 0xFFFFFFFC;
|
|
PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
|
|
|
|
/* Restore PCI config data. */
|
|
PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
|
|
PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
|
|
PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
|
|
}
|
|
}
|
|
|
|
/* Make sure bus mastering is enabled. */
|
|
command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
|
|
command |= PCI_COMMAND_MASTER_ENABLE;
|
|
PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
{
|
|
bus_space_tag_t iot, memt;
|
|
bus_space_handle_t ioh, memh;
|
|
int ioh_valid, memh_valid;
|
|
pci_intr_handle_t intrhandle;
|
|
const char *intrstr;
|
|
|
|
ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
|
|
PCI_MAPREG_TYPE_IO, 0,
|
|
&iot, &ioh, NULL, NULL) == 0);
|
|
memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
|
|
PCI_MAPREG_TYPE_MEM |
|
|
PCI_MAPREG_MEM_TYPE_32BIT,
|
|
0, &memt, &memh, NULL, NULL) == 0);
|
|
#if defined(VR_USEIOSPACE)
|
|
if (ioh_valid) {
|
|
sc->vr_bst = iot;
|
|
sc->vr_bsh = ioh;
|
|
} else if (memh_valid) {
|
|
sc->vr_bst = memt;
|
|
sc->vr_bsh = memh;
|
|
}
|
|
#else
|
|
if (memh_valid) {
|
|
sc->vr_bst = memt;
|
|
sc->vr_bsh = memh;
|
|
} else if (ioh_valid) {
|
|
sc->vr_bst = iot;
|
|
sc->vr_bsh = ioh;
|
|
}
|
|
#endif
|
|
else {
|
|
printf(": unable to map device registers\n");
|
|
return;
|
|
}
|
|
|
|
/* Allocate interrupt */
|
|
if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
|
|
pa->pa_intrline, &intrhandle)) {
|
|
printf("%s: couldn't map interrupt\n",
|
|
sc->vr_dev.dv_xname);
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(pa->pa_pc, intrhandle);
|
|
sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
|
|
vr_intr, sc);
|
|
if (sc->vr_ih == NULL) {
|
|
printf("%s: couldn't establish interrupt",
|
|
sc->vr_dev.dv_xname);
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
}
|
|
printf("%s: interrupting at %s\n",
|
|
sc->vr_dev.dv_xname, intrstr);
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
vr_reset(sc);
|
|
|
|
/*
|
|
* Get station address. The way the Rhine chips work,
|
|
* you're not allowed to directly access the EEPROM once
|
|
* they've been programmed a special way. Consequently,
|
|
* we need to read the node address from the PAR0 and PAR1
|
|
* registers.
|
|
*/
|
|
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
|
|
DELAY(200);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
|
|
|
|
/*
|
|
* A Rhine chip was detected. Inform the world.
|
|
*/
|
|
printf("%s: Ethernet address: %s\n",
|
|
sc->vr_dev.dv_xname, ether_sprintf(eaddr));
|
|
|
|
bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
|
|
|
|
sc->vr_dmat = pa->pa_dmat;
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load
|
|
* the DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->vr_dmat,
|
|
sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
0)) != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->vr_dev.dv_xname, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
|
|
sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->vr_dev.dv_xname, error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->vr_dmat,
|
|
sizeof(struct vr_control_data), 1,
|
|
sizeof(struct vr_control_data), 0, 0,
|
|
&sc->vr_cddmamap)) != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->vr_dev.dv_xname, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
|
|
sc->vr_control_data, sizeof(struct vr_control_data), NULL,
|
|
0)) != 0) {
|
|
printf("%s: unable to load control data DMA map, error = %d\n",
|
|
sc->vr_dev.dv_xname, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < VR_NTXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
|
|
1, MCLBYTES, 0, 0,
|
|
&VR_DSTX(sc, i)->ds_dmamap)) != 0) {
|
|
printf("%s: unable to create tx DMA map %d, "
|
|
"error = %d\n", sc->vr_dev.dv_xname, i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < VR_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0,
|
|
&VR_DSRX(sc, i)->ds_dmamap)) != 0) {
|
|
printf("%s: unable to create rx DMA map %d, "
|
|
"error = %d\n", sc->vr_dev.dv_xname, i, error);
|
|
goto fail_5;
|
|
}
|
|
VR_DSRX(sc, i)->ds_mbuf = NULL;
|
|
}
|
|
|
|
ifp = &sc->vr_ec.ec_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = vr_ioctl;
|
|
ifp->if_start = vr_start;
|
|
ifp->if_watchdog = vr_watchdog;
|
|
ifp->if_baudrate = 10000000;
|
|
bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
|
|
/*
|
|
* Initialize MII/media info.
|
|
*/
|
|
sc->vr_mii.mii_ifp = ifp;
|
|
sc->vr_mii.mii_readreg = vr_mii_readreg;
|
|
sc->vr_mii.mii_writereg = vr_mii_writereg;
|
|
sc->vr_mii.mii_statchg = vr_mii_statchg;
|
|
ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
|
|
mii_phy_probe(&sc->vr_dev, &sc->vr_mii, 0xffffffff);
|
|
if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->vr_enaddr);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(&sc->vr_ec.ec_if.if_bpf,
|
|
ifp, DLT_EN10MB, sizeof (struct ether_header));
|
|
#endif
|
|
|
|
sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
|
|
if (sc->vr_ats == NULL)
|
|
printf("%s: warning: couldn't establish shutdown hook\n",
|
|
sc->vr_dev.dv_xname);
|
|
return;
|
|
|
|
fail_5:
|
|
for (i = 0; i < VR_NRXDESC; i++) {
|
|
if (sc->vr_rxsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->vr_dmat,
|
|
sc->vr_rxsoft[i].ds_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < VR_NTXDESC; i++) {
|
|
if (sc->vr_txsoft[i].ds_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->vr_dmat,
|
|
sc->vr_txsoft[i].ds_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
|
|
sizeof(struct vr_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->vr_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|