NetBSD/sys/ufs/ffs/ffs_softdep.c

5994 lines
176 KiB
C

/* $NetBSD: ffs_softdep.c,v 1.90 2007/05/07 11:13:01 yamt Exp $ */
/*
* Copyright 1998 Marshall Kirk McKusick. All Rights Reserved.
*
* The soft updates code is derived from the appendix of a University
* of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
* "Soft Updates: A Solution to the Metadata Update Problem in File
* Systems", CSE-TR-254-95, August 1995).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)ffs_softdep.c 9.56 (McKusick) 1/17/00
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ffs_softdep.c,v 1.90 2007/05/07 11:13:01 yamt Exp $");
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/callout.h>
#include <sys/fcntl.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/inttypes.h>
#include <sys/kauth.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/softdep.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufs_bswap.h>
#include <uvm/uvm.h>
static POOL_INIT(sdpcpool, sizeof(struct buf), 0, 0, 0, "sdpcpool",
&pool_allocator_nointr, IPL_NONE);
u_int softdep_lockedbufs;
extern struct simplelock bqueue_slock; /* XXX */
MALLOC_DEFINE(M_PAGEDEP, "pagedep", "file page dependencies");
MALLOC_DEFINE(M_INODEDEP, "inodedep", "Inode depependencies");
MALLOC_DEFINE(M_NEWBLK, "newblk", "New block allocation");
/*
* These definitions need to be adapted to the system to which
* this file is being ported.
*/
/*
* Mapping of dependency structure types to malloc types.
*/
#define D_PAGEDEP 1
#define D_INODEDEP 2
#define D_NEWBLK 3
#define D_BMSAFEMAP 4
#define D_ALLOCDIRECT 5
#define D_INDIRDEP 6
#define D_ALLOCINDIR 7
#define D_FREEFRAG 8
#define D_FREEBLKS 9
#define D_FREEFILE 10
#define D_DIRADD 11
#define D_MKDIR 12
#define D_DIRREM 13
#define D_NEWDIRBLK 14
#define D_LAST 14
/*
* Names of softdep types.
*/
const char *softdep_typenames[] = {
"invalid",
"pagedep",
"inodedep",
"newblk",
"bmsafemap",
"allocdirect",
"indirdep",
"allocindir",
"freefrag",
"freeblks",
"freefile",
"diradd",
"mkdir",
"dirrem",
"newdirblk",
};
#define TYPENAME(type) \
((unsigned)(type) <= D_LAST ? softdep_typenames[type] : "???")
/*
* Finding the current process.
*/
#define CURPROC curproc
#define CURPROC_PID (curproc ? curproc->p_pid : 0)
/*
* End system adaptation definitions.
*/
/*
* Definitions for page cache info hashtable.
*/
#define PCBPHASHSIZE 1024
LIST_HEAD(, buf) pcbphashhead[PCBPHASHSIZE];
#define PCBPHASH(vp, lbn) ((((vaddr_t)(vp) >> 8) ^ (lbn)) & (PCBPHASHSIZE - 1))
/*
* Internal function prototypes.
*/
static void softdep_error(const char *, int);
static void drain_output(struct vnode *, int);
static int getdirtybuf(struct buf **, int);
static void clear_remove(struct lwp *);
static void clear_inodedeps(struct lwp *);
static int flush_pagedep_deps(struct vnode *, struct mount *,
struct diraddhd *);
static int flush_inodedep_deps(struct fs *, ino_t);
static int handle_written_filepage(struct pagedep *, struct buf *);
static void diradd_inode_written(struct diradd *, struct inodedep *);
static int handle_written_inodeblock(struct inodedep *, struct buf *);
static void handle_allocdirect_partdone(struct allocdirect *);
static void handle_allocindir_partdone(struct allocindir *);
static void initiate_write_filepage(struct pagedep *, struct buf *);
static void handle_written_mkdir(struct mkdir *, int);
static void initiate_write_inodeblock_ufs1(struct inodedep *,
struct buf *);
static void initiate_write_inodeblock_ufs2(struct inodedep *,
struct buf *);
static void handle_workitem_freefile(struct freefile *);
static void handle_workitem_remove(struct dirrem *);
static struct dirrem *newdirrem(struct buf *, struct inode *,
struct inode *, int, struct dirrem **);
static void free_diradd(struct diradd *);
static void free_allocindir(struct allocindir *, struct inodedep *);
static void free_newdirblk(struct newdirblk *);
static int indir_trunc(const struct freeblks *, daddr_t, int, daddr_t,
int64_t *);
static void deallocate_dependencies(struct buf *, struct inodedep *);
static void free_allocdirect(struct allocdirectlst *,
struct allocdirect *, int);
static int check_inode_unwritten(struct inodedep *);
static int free_inodedep(struct inodedep *);
static void handle_workitem_freeblocks(struct freeblks *);
static void merge_inode_lists(struct inodedep *);
static void setup_allocindir_phase2(struct buf *, struct inode *,
struct allocindir *);
static struct allocindir *newallocindir(struct inode *, int, daddr_t,
daddr_t);
static void handle_workitem_freefrag(struct freefrag *);
static struct freefrag *newfreefrag(struct inode *, daddr_t, long);
static void allocdirect_merge(struct allocdirectlst *,
struct allocdirect *, struct allocdirect *);
static struct bmsafemap *bmsafemap_lookup(struct buf *);
static int newblk_lookup(struct fs *, daddr_t, int,
struct newblk **);
static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
static int pagedep_lookup(struct inode *, daddr_t, int,
struct pagedep **);
static void pause_timer(void *);
static int request_cleanup(int, int);
static void add_to_worklist(struct worklist *);
static struct buf *softdep_setup_pagecache(struct inode *, daddr_t,
long);
static void softdep_collect_pagecache(struct inode *);
static void softdep_free_pagecache(struct inode *);
static struct vnode *softdep_lookupvp(struct fs *, ino_t);
static struct buf *softdep_lookup_pcbp(struct vnode *, daddr_t);
#ifdef UVMHIST
void softdep_pageiodone1(struct buf *);
#endif
void softdep_pageiodone(struct buf *);
void softdep_flush_vnode(struct vnode *, daddr_t);
static void softdep_trackbufs(int, bool);
#define PCBP_BITMAP(off, size) \
(((1 << howmany((size), PAGE_SIZE)) - 1) << ((off) >> PAGE_SHIFT))
/*
* Exported softdep operations.
*/
static void softdep_disk_io_initiation(struct buf *);
static void softdep_disk_write_complete(struct buf *);
static void softdep_deallocate_dependencies(struct buf *);
static int softdep_fsync(struct vnode *, int);
static int softdep_process_worklist(struct mount *);
static void softdep_move_dependencies(struct buf *, struct buf *);
static int softdep_count_dependencies(struct buf *bp, int);
struct bio_ops bioops = {
softdep_disk_io_initiation, /* io_start */
softdep_disk_write_complete, /* io_complete */
softdep_deallocate_dependencies, /* io_deallocate */
softdep_fsync, /* io_fsync */
softdep_process_worklist, /* io_sync */
softdep_move_dependencies, /* io_movedeps */
softdep_count_dependencies, /* io_countdeps */
softdep_pageiodone, /* io_pageiodone */
};
/*
* Locking primitives.
*
* For a uniprocessor, all we need to do is protect against disk
* interrupts. For a multiprocessor, this lock would have to be
* a mutex. A single mutex is used throughout this file, though
* finer grain locking could be used if contention warranted it.
*
* For a multiprocessor, the sleep call would accept a lock and
* release it after the sleep processing was complete. In a uniprocessor
* implementation there is no such interlock, so we simple mark
* the places where it needs to be done with the `interlocked' form
* of the lock calls. Since the uniprocessor sleep already interlocks
* the spl, there is nothing that really needs to be done.
*/
#ifndef /* NOT */ DEBUG
static struct lockit {
int lkt_spl;
} lk = { 0 };
#define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio()
#define FREE_LOCK(lk) splx((lk)->lkt_spl)
#define ACQUIRE_LOCK_INTERLOCKED(lk, s) (lk)->lkt_spl = s
#define FREE_LOCK_INTERLOCKED(lk) (lk)->lkt_spl
#else /* DEBUG */
static struct lockit {
int lkt_spl;
volatile pid_t lkt_held;
} lk = { 0, -1 };
static int lockcnt;
static void acquire_lock(struct lockit *);
static void free_lock(struct lockit *);
static void acquire_lock_interlocked(struct lockit *, int);
static int free_lock_interlocked(struct lockit *);
#define ACQUIRE_LOCK(lk) acquire_lock(lk)
#define FREE_LOCK(lk) free_lock(lk)
#define ACQUIRE_LOCK_INTERLOCKED(lk, s) acquire_lock_interlocked(lk, s)
#define FREE_LOCK_INTERLOCKED(lk) free_lock_interlocked(lk)
static void
acquire_lock(lkp)
struct lockit *lkp;
{
if (lkp->lkt_held != -1) {
if (lkp->lkt_held == CURPROC_PID)
panic("softdep_lock: locking against myself");
else
panic("softdep_lock: lock held by %d", lkp->lkt_held);
}
lkp->lkt_spl = splbio();
lkp->lkt_held = CURPROC_PID;
lockcnt++;
}
static void
free_lock(lkp)
struct lockit *lkp;
{
if (lkp->lkt_held == -1)
panic("softdep_unlock: lock not held");
lkp->lkt_held = -1;
splx(lkp->lkt_spl);
}
static void
acquire_lock_interlocked(lkp, s)
struct lockit *lkp;
int s;
{
if (lkp->lkt_held != -1) {
if (lkp->lkt_held == CURPROC_PID)
panic("softdep_lock_interlocked: locking against self");
else
panic("softdep_lock_interlocked: lock held by %d",
lkp->lkt_held);
}
lkp->lkt_spl = s;
lkp->lkt_held = CURPROC_PID;
lockcnt++;
}
static int
free_lock_interlocked(lkp)
struct lockit *lkp;
{
if (lkp->lkt_held == -1)
panic("softdep_unlock_interlocked: lock not held");
lkp->lkt_held = -1;
return lkp->lkt_spl;
}
#endif /* DEBUG */
/*
* Place holder for real semaphores.
*/
struct sema {
int value;
pid_t holder;
const char *name;
int prio;
int timo;
};
static void sema_init(struct sema *, const char *, int, int);
static int sema_get(struct sema *, struct lockit *);
static void sema_release(struct sema *);
static void
sema_init(semap, name, prio, timo)
struct sema *semap;
const char *name;
int prio, timo;
{
semap->holder = -1;
semap->value = 0;
semap->name = name;
semap->prio = prio;
semap->timo = timo;
}
static int
sema_get(semap, interlock)
struct sema *semap;
struct lockit *interlock;
{
int s = 0; /* Quell an uninitialized variable warning */
if (semap->value++ > 0) {
if (interlock != NULL)
s = FREE_LOCK_INTERLOCKED(interlock);
tsleep((void *)semap, semap->prio, semap->name, semap->timo);
if (interlock != NULL) {
ACQUIRE_LOCK_INTERLOCKED(interlock, s);
FREE_LOCK(interlock);
}
return (0);
}
semap->holder = CURPROC_PID;
if (interlock != NULL)
FREE_LOCK(interlock);
return (1);
}
static void
sema_release(semap)
struct sema *semap;
{
if (semap->value <= 0 || semap->holder != CURPROC_PID)
panic("sema_release: not held");
if (--semap->value > 0) {
semap->value = 0;
wakeup(semap);
}
semap->holder = -1;
}
/*
* Memory management.
*/
static POOL_INIT(pagedep_pool, sizeof(struct pagedep), 0, 0, 0, "pagedeppl",
&pool_allocator_nointr, IPL_NONE);
static POOL_INIT(inodedep_pool, sizeof(struct inodedep), 0, 0, 0, "inodedeppl",
&pool_allocator_nointr, IPL_NONE);
static POOL_INIT(newblk_pool, sizeof(struct newblk), 0, 0, 0, "newblkpl",
&pool_allocator_nointr, IPL_NONE);
static POOL_INIT(bmsafemap_pool, sizeof(struct bmsafemap), 0, 0, 0,
"bmsafemappl", &pool_allocator_nointr, IPL_NONE);
static POOL_INIT(allocdirect_pool, sizeof(struct allocdirect), 0, 0, 0,
"allocdirectpl", &pool_allocator_nointr, IPL_NONE);
static POOL_INIT(indirdep_pool, sizeof(struct indirdep), 0, 0, 0, "indirdeppl",
&pool_allocator_nointr, IPL_NONE);
static POOL_INIT(allocindir_pool, sizeof(struct allocindir), 0, 0, 0,
"allocindirpl", &pool_allocator_nointr, IPL_NONE);
static POOL_INIT(freefrag_pool, sizeof(struct freefrag), 0, 0, 0,
"freefragpl", &pool_allocator_nointr, IPL_NONE);
static POOL_INIT(freeblks_pool, sizeof(struct freeblks), 0, 0, 0,
"freeblkspl", &pool_allocator_nointr, IPL_NONE);
static POOL_INIT(freefile_pool, sizeof(struct freefile), 0, 0, 0,
"freefilepl", &pool_allocator_nointr, IPL_NONE);
static POOL_INIT(diradd_pool, sizeof(struct diradd), 0, 0, 0, "diraddpl",
&pool_allocator_nointr, IPL_NONE);
static POOL_INIT(mkdir_pool, sizeof(struct mkdir), 0, 0, 0, "mkdirpl",
&pool_allocator_nointr, IPL_NONE);
static POOL_INIT(dirrem_pool, sizeof(struct dirrem), 0, 0, 0, "dirrempl",
&pool_allocator_nointr, IPL_NONE);
static POOL_INIT(newdirblk_pool, sizeof (struct newdirblk), 0, 0, 0,
"newdirblkpl", &pool_allocator_nointr, IPL_NONE);
static inline void
softdep_free(struct worklist *item, int type)
{
switch (type) {
case D_PAGEDEP:
pool_put(&pagedep_pool, item);
return;
case D_INODEDEP:
pool_put(&inodedep_pool, item);
return;
case D_BMSAFEMAP:
pool_put(&bmsafemap_pool, item);
return;
case D_ALLOCDIRECT:
pool_put(&allocdirect_pool, item);
return;
case D_INDIRDEP:
pool_put(&indirdep_pool, item);
return;
case D_ALLOCINDIR:
pool_put(&allocindir_pool, item);
return;
case D_FREEFRAG:
pool_put(&freefrag_pool, item);
return;
case D_FREEBLKS:
pool_put(&freeblks_pool, item);
return;
case D_FREEFILE:
pool_put(&freefile_pool, item);
return;
case D_DIRADD:
pool_put(&diradd_pool, item);
return;
case D_MKDIR:
pool_put(&mkdir_pool, item);
return;
case D_DIRREM:
pool_put(&dirrem_pool, item);
return;
case D_NEWDIRBLK:
pool_put(&newdirblk_pool, item);
return;
}
panic("softdep_free: unknown type %d", type);
}
struct workhead softdep_freequeue;
static inline void
softdep_freequeue_add(struct worklist *item)
{
int s;
s = splbio();
LIST_INSERT_HEAD(&softdep_freequeue, item, wk_list);
splx(s);
}
static inline void
softdep_freequeue_process(void)
{
struct worklist *wk;
while ((wk = LIST_FIRST(&softdep_freequeue)) != NULL) {
LIST_REMOVE(wk, wk_list);
FREE_LOCK(&lk);
softdep_free(wk, wk->wk_type);
ACQUIRE_LOCK(&lk);
}
}
static char emerginoblk[MAXBSIZE];
static int emerginoblk_inuse;
static const struct buf *emerginoblk_origbp;
static struct simplelock emerginoblk_slock = SIMPLELOCK_INITIALIZER;
static inline void *
inodedep_allocdino(struct inodedep *inodedep, const struct buf *origbp,
size_t size)
{
void *vp;
int s;
KASSERT(inodedep->id_savedino1 == NULL);
if (curproc != uvm.pagedaemon_proc)
return malloc(size, M_INODEDEP, M_WAITOK);
vp = malloc(size, M_INODEDEP, M_NOWAIT);
if (vp)
return vp;
s = splbio();
simple_lock(&emerginoblk_slock);
while (emerginoblk_inuse && emerginoblk_origbp != origbp)
ltsleep(&emerginoblk_inuse, PVM, "emdino", 0,
&emerginoblk_slock);
emerginoblk_origbp = origbp;
emerginoblk_inuse++;
KASSERT(emerginoblk_inuse <= sizeof(emerginoblk) /
MIN(sizeof(struct ufs1_dinode), sizeof(struct ufs2_dinode)));
simple_unlock(&emerginoblk_slock);
splx(s);
KASSERT(inodedep->id_savedino1 == NULL);
vp = emerginoblk +
size * ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
KASSERT((void *)&emerginoblk[0] <= vp);
KASSERT(vp < (void *)&emerginoblk[MAXBSIZE]);
return vp;
}
static inline void
inodedep_freedino(struct inodedep *inodedep)
{
void *vp = inodedep->id_savedino1;
inodedep->id_savedino1 = NULL;
KASSERT(vp != NULL);
if (__predict_false((void *)&emerginoblk[0] <= vp &&
vp < (void *)&emerginoblk[MAXBSIZE])) {
int s;
KASSERT(emerginoblk_inuse > 0);
s = splbio();
simple_lock(&emerginoblk_slock);
emerginoblk_inuse--;
if (emerginoblk_inuse == 0)
wakeup(&emerginoblk_inuse);
simple_unlock(&emerginoblk_slock);
splx(s);
return;
}
free(vp, M_INODEDEP);
}
/*
* Worklist queue management.
* These routines require that the lock be held.
*/
#ifndef /* NOT */ DEBUG
#define WORKLIST_INSERT(head, item) do { \
(item)->wk_state |= ONWORKLIST; \
LIST_INSERT_HEAD(head, item, wk_list); \
} while (0)
#define WORKLIST_REMOVE(item) do { \
(item)->wk_state &= ~ONWORKLIST; \
LIST_REMOVE(item, wk_list); \
} while (0)
#define WORKITEM_FREE(item, type) \
softdep_freequeue_add((struct worklist *)item)
#else /* DEBUG */
static void worklist_insert(struct workhead *, struct worklist *);
static void worklist_remove(struct worklist *);
static void workitem_free(struct worklist *, int);
#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
#define WORKLIST_REMOVE(item) worklist_remove(item)
#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
static void
worklist_insert(head, item)
struct workhead *head;
struct worklist *item;
{
if (lk.lkt_held == -1)
panic("worklist_insert: lock not held");
if (item->wk_state & ONWORKLIST)
panic("worklist_insert: already on list");
item->wk_state |= ONWORKLIST;
LIST_INSERT_HEAD(head, item, wk_list);
}
static void
worklist_remove(item)
struct worklist *item;
{
if (lk.lkt_held == -1)
panic("worklist_remove: lock not held");
if ((item->wk_state & ONWORKLIST) == 0)
panic("worklist_remove: not on list");
item->wk_state &= ~ONWORKLIST;
LIST_REMOVE(item, wk_list);
}
static void
workitem_free(struct worklist *item, int type)
{
if (item->wk_state & ONWORKLIST)
panic("workitem_free: still on list");
softdep_freequeue_add(item);
}
#endif /* DEBUG */
/*
* Workitem queue management
*/
static struct workhead softdep_workitem_pending;
static struct worklist *worklist_tail;
static int softdep_worklist_busy; /* 1 => trying to do unmount */
static int softdep_worklist_req; /* serialized waiters */
static int max_softdeps; /* maximum number of structs before slowdown */
static int tickdelay = 2; /* number of ticks to pause during slowdown */
static int proc_waiting; /* tracks whether we have a timeout posted */
static struct callout pause_timer_ch = CALLOUT_INITIALIZER;
static struct proc *filesys_syncer; /* proc of filesystem syncer process */
static int req_clear_inodedeps; /* syncer process flush some inodedeps */
#define FLUSH_INODES 1
static int req_clear_remove; /* syncer process flush some freeblks */
#define FLUSH_REMOVE 2
/*
* runtime statistics
*/
static int stat_blk_limit_push; /* number of times block limit neared */
static int stat_ino_limit_push; /* number of times inode limit neared */
#ifdef DEBUG
static int stat_blk_limit_hit; /* number of times block slowdown imposed */
static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
#endif
static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
#ifdef DEBUG
#include <uvm/uvm_extern.h>
#include <sys/sysctl.h>
struct ctldebug debug20 = { "max_softdeps", &max_softdeps };
struct ctldebug debug21 = { "tickdelay", &tickdelay };
struct ctldebug debug23 = { "blk_limit_push", &stat_blk_limit_push };
struct ctldebug debug24 = { "ino_limit_push", &stat_ino_limit_push };
struct ctldebug debug25 = { "blk_limit_hit", &stat_blk_limit_hit };
struct ctldebug debug26 = { "ino_limit_hit", &stat_ino_limit_hit };
struct ctldebug debug27 = { "indir_blk_ptrs", &stat_indir_blk_ptrs };
struct ctldebug debug28 = { "inode_bitmap", &stat_inode_bitmap };
struct ctldebug debug29 = { "direct_blk_ptrs", &stat_direct_blk_ptrs };
struct ctldebug debug30 = { "dir_entry", &stat_dir_entry };
#endif /* DEBUG */
/*
* Add an item to the end of the work queue.
* This routine requires that the lock be held.
* This is the only routine that adds items to the list.
* The following routine is the only one that removes items
* and does so in order from first to last.
*/
static void
add_to_worklist(wk)
struct worklist *wk;
{
if (wk->wk_state & ONWORKLIST)
panic("add_to_worklist: already on list");
wk->wk_state |= ONWORKLIST;
if (LIST_FIRST(&softdep_workitem_pending) == NULL)
LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
else
LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
worklist_tail = wk;
}
/*
* Process that runs once per second to handle items in the background queue.
*
* Note that we ensure that everything is done in the order in which they
* appear in the queue. The code below depends on this property to ensure
* that blocks of a file are freed before the inode itself is freed. This
* ordering ensures that no new <vfsid, inum, lbn> triples will be generated
* until all the old ones have been purged from the dependency lists.
*/
static int
softdep_process_worklist(matchmnt)
struct mount *matchmnt;
{
struct lwp *l = curlwp; /* XXX */
struct worklist *wk, *wkend;
struct mount *mp;
int matchcnt;
/*
* First process any items on the delayed-free queue.
*/
ACQUIRE_LOCK(&lk);
softdep_freequeue_process();
FREE_LOCK(&lk);
/*
* Record the process identifier of our caller so that we can give
* this process preferential treatment in request_cleanup below.
*/
filesys_syncer = l->l_proc;
matchcnt = 0;
/*
* There is no danger of having multiple processes run this
* code. It is single threaded solely so that softdep_flushfiles
* (below) can get an accurate count of the number of items
* related to its mount point that are in the list.
*/
if (matchmnt == NULL) {
if (softdep_worklist_busy < 0)
return (-1);
softdep_worklist_busy += 1;
}
/*
* If requested, try removing inode or removal dependencies.
*/
if (req_clear_inodedeps) {
clear_inodedeps(l);
req_clear_inodedeps = 0;
wakeup(&proc_waiting);
}
if (req_clear_remove) {
clear_remove(l);
req_clear_remove = 0;
wakeup(&proc_waiting);
}
ACQUIRE_LOCK(&lk);
while ((wk = LIST_FIRST(&softdep_workitem_pending)) != 0) {
/*
* Remove the item to be processed. If we are removing the last
* item on the list, we need to recalculate the tail pointer.
* As this happens rarely and usually when the list is short,
* we just run down the list to find it rather than tracking it
* in the above loop.
*/
WORKLIST_REMOVE(wk);
if (wk == worklist_tail) {
LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list)
if (LIST_NEXT(wkend, wk_list) == NULL)
break;
worklist_tail = wkend;
}
FREE_LOCK(&lk);
switch (wk->wk_type) {
case D_DIRREM:
/* removal of a directory entry */
mp = WK_DIRREM(wk)->dm_mnt;
if (mp == matchmnt)
matchcnt += 1;
handle_workitem_remove(WK_DIRREM(wk));
break;
case D_FREEBLKS:
/* releasing blocks and/or fragments from a file */
mp = WK_FREEBLKS(wk)->fb_ump->um_mountp;
if (mp == matchmnt)
matchcnt += 1;
handle_workitem_freeblocks(WK_FREEBLKS(wk));
break;
case D_FREEFRAG:
/* releasing a fragment when replaced as a file grows */
mp = WK_FREEFRAG(wk)->ff_mnt;
if (mp == matchmnt)
matchcnt += 1;
handle_workitem_freefrag(WK_FREEFRAG(wk));
break;
case D_FREEFILE:
/* releasing an inode when its link count drops to 0 */
mp = WK_FREEFILE(wk)->fx_mnt;
if (mp == matchmnt)
matchcnt += 1;
handle_workitem_freefile(WK_FREEFILE(wk));
break;
default:
panic("softdep_process_worklist: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
/*
* If a umount operation wants to run the worklist
* accurately, abort.
*/
if (softdep_worklist_req && matchmnt == NULL) {
ACQUIRE_LOCK(&lk);
matchcnt = -1;
break;
}
/*
* If requested, try removing inode or removal dependencies.
*/
if (req_clear_inodedeps) {
clear_inodedeps(l);
req_clear_inodedeps = 0;
wakeup(&proc_waiting);
}
if (req_clear_remove) {
clear_remove(l);
req_clear_remove = 0;
wakeup(&proc_waiting);
}
/*
* Process any new items on the delayed-free queue.
*/
ACQUIRE_LOCK(&lk);
softdep_freequeue_process();
}
if (matchmnt == NULL) {
softdep_worklist_busy -= 1;
if (softdep_worklist_req && softdep_worklist_busy == 0)
wakeup(&softdep_worklist_req);
}
FREE_LOCK(&lk);
return (matchcnt);
}
/*
* Move dependencies from one buffer to another.
*/
static void
softdep_move_dependencies(oldbp, newbp)
struct buf *oldbp;
struct buf *newbp;
{
struct worklist *wk, *wktail;
if (LIST_FIRST(&newbp->b_dep) != NULL)
panic("softdep_move_dependencies: need merge code");
wktail = 0;
ACQUIRE_LOCK(&lk);
while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
LIST_REMOVE(wk, wk_list);
if (wktail == 0)
LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
else
LIST_INSERT_AFTER(wktail, wk, wk_list);
wktail = wk;
}
FREE_LOCK(&lk);
}
/*
* Purge the work list of all items associated with a particular mount point.
*/
int
softdep_flushworklist(oldmnt, countp, l)
struct mount *oldmnt;
int *countp;
struct lwp *l;
{
struct vnode *devvp;
int count, error = 0;
struct proc *p;
p = l->l_proc;
/*
* Await our turn to clear out the queue.
*/
while (softdep_worklist_busy) {
softdep_worklist_req += 1;
tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0);
softdep_worklist_req -= 1;
}
softdep_worklist_busy = -1;
/*
* Alternately flush the block device associated with the mount
* point and process any dependencies that the flushing
* creates. We continue until no more worklist dependencies
* are found.
*/
*countp = 0;
devvp = VFSTOUFS(oldmnt)->um_devvp;
while ((count = softdep_process_worklist(oldmnt)) > 0) {
*countp += count;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(devvp, l->l_cred, FSYNC_WAIT, 0, 0, l);
VOP_UNLOCK(devvp, 0);
if (error)
break;
}
softdep_worklist_busy = 0;
if (softdep_worklist_req)
wakeup(&softdep_worklist_req);
return (error);
}
/*
* Flush all vnodes and worklist items associated with a specified mount point.
*/
int
softdep_flushfiles(oldmnt, flags, l)
struct mount *oldmnt;
int flags;
struct lwp *l;
{
int error, count, loopcnt;
/*
* Alternately flush the vnodes associated with the mount
* point and process any dependencies that the flushing
* creates. In theory, this loop can happen at most twice,
* but we give it a few extra just to be sure.
*/
for (loopcnt = 10; loopcnt > 0; loopcnt--) {
/*
* Do another flush in case any vnodes were brought in
* as part of the cleanup operations.
*/
if ((error = ffs_flushfiles(oldmnt, flags, l)) != 0)
break;
if ((error = softdep_flushworklist(oldmnt, &count, l)) != 0 ||
count == 0)
break;
}
/*
* If we are unmounting then it is an error to fail. If we
* are simply trying to downgrade to read-only, then filesystem
* activity can keep us busy forever, so we just fail with EBUSY.
*/
if (loopcnt == 0) {
if (oldmnt->mnt_iflag & IMNT_UNMOUNT)
panic("softdep_flushfiles: looping");
error = EBUSY;
}
return (error);
}
/*
* Structure hashing.
*
* There are three types of structures that can be looked up:
* 1) pagedep structures identified by mount point, inode number,
* and logical block.
* 2) inodedep structures identified by mount point and inode number.
* 3) newblk structures identified by mount point and
* physical block number.
*
* The "pagedep" and "inodedep" dependency structures are hashed
* separately from the file blocks and inodes to which they correspond.
* This separation helps when the in-memory copy of an inode or
* file block must be replaced. It also obviates the need to access
* an inode or file page when simply updating (or de-allocating)
* dependency structures. Lookup of newblk structures is needed to
* find newly allocated blocks when trying to associate them with
* their allocdirect or allocindir structure.
*
* The lookup routines optionally create and hash a new instance when
* an existing entry is not found.
*/
#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
/*
* Structures and routines associated with pagedep caching.
*/
LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
u_long pagedep_hash; /* size of hash table - 1 */
#define PAGEDEP_HASH(mp, inum, lbn) \
(((((register_t)(uintptr_t)(mp)) >> 13) + \
(inum) + (lbn)) & pagedep_hash)
static struct sema pagedep_in_progress;
/*
* Look up a pagedep. Return 1 if found, 0 if not found or found
* when asked to allocate but not associated with any buffer.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in pagedeppp.
* This routine must be called with splbio interrupts blocked.
*/
static int
pagedep_lookup(ip, lbn, flags, pagedeppp)
struct inode *ip;
daddr_t lbn;
int flags;
struct pagedep **pagedeppp;
{
struct pagedep *pagedep;
struct pagedep_hashhead *pagedephd;
struct mount *mp;
int i;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("pagedep_lookup: lock not held");
#endif
mp = ITOV(ip)->v_mount;
pagedephd = &pagedep_hashtbl[PAGEDEP_HASH(mp, ip->i_number, lbn)];
top:
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
if (ip->i_number == pagedep->pd_ino &&
lbn == pagedep->pd_lbn &&
mp == pagedep->pd_mnt)
break;
}
if (pagedep) {
*pagedeppp = pagedep;
if ((flags & DEPALLOC) != 0 &&
(pagedep->pd_state & ONWORKLIST) == 0)
return (0);
return (1);
}
if ((flags & DEPALLOC) == 0) {
*pagedeppp = NULL;
return (0);
}
if (sema_get(&pagedep_in_progress, &lk) == 0) {
ACQUIRE_LOCK(&lk);
goto top;
}
pagedep = pool_get(&pagedep_pool, PR_WAITOK);
bzero(pagedep, sizeof(struct pagedep));
pagedep->pd_list.wk_type = D_PAGEDEP;
pagedep->pd_mnt = mp;
pagedep->pd_ino = ip->i_number;
pagedep->pd_lbn = lbn;
LIST_INIT(&pagedep->pd_dirremhd);
LIST_INIT(&pagedep->pd_pendinghd);
for (i = 0; i < DAHASHSZ; i++)
LIST_INIT(&pagedep->pd_diraddhd[i]);
ACQUIRE_LOCK(&lk);
LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
sema_release(&pagedep_in_progress);
*pagedeppp = pagedep;
return (0);
}
/*
* Structures and routines associated with inodedep caching.
*/
LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
static u_long inodedep_hash; /* size of hash table - 1 */
static long num_inodedep; /* number of inodedep allocated */
#define INODEDEP_HASH(fs, inum) \
(((((register_t)(uintptr_t)(fs)) >> 13) + (inum)) & inodedep_hash)
static struct sema inodedep_in_progress;
/*
* Look up a inodedep. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in inodedeppp.
* This routine must be called with splbio interrupts blocked.
*/
static int
inodedep_lookup(fs, inum, flags, inodedeppp)
struct fs *fs;
ino_t inum;
int flags;
struct inodedep **inodedeppp;
{
struct inodedep *inodedep;
struct inodedep_hashhead *inodedephd;
int firsttry;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("inodedep_lookup: lock not held");
#endif
firsttry = 1;
inodedephd = &inodedep_hashtbl[INODEDEP_HASH(fs, inum)];
top:
LIST_FOREACH(inodedep, inodedephd, id_hash) {
if (inum == inodedep->id_ino && fs == inodedep->id_fs)
break;
}
if (inodedep) {
*inodedeppp = inodedep;
return (1);
}
if ((flags & DEPALLOC) == 0) {
*inodedeppp = NULL;
return (0);
}
/*
* If we are over our limit, try to improve the situation.
*/
if (num_inodedep > max_softdeps && firsttry && speedup_syncer() == 0 &&
request_cleanup(FLUSH_INODES, 1)) {
firsttry = 0;
goto top;
}
if (sema_get(&inodedep_in_progress, &lk) == 0) {
ACQUIRE_LOCK(&lk);
goto top;
}
num_inodedep += 1;
inodedep = pool_get(&inodedep_pool, PR_WAITOK);
inodedep->id_list.wk_type = D_INODEDEP;
inodedep->id_fs = fs;
inodedep->id_ino = inum;
inodedep->id_state = ALLCOMPLETE;
inodedep->id_nlinkdelta = 0;
inodedep->id_savedino1 = NULL;
inodedep->id_savedsize = -1;
inodedep->id_buf = NULL;
LIST_INIT(&inodedep->id_pendinghd);
LIST_INIT(&inodedep->id_inowait);
LIST_INIT(&inodedep->id_bufwait);
TAILQ_INIT(&inodedep->id_inoupdt);
TAILQ_INIT(&inodedep->id_newinoupdt);
ACQUIRE_LOCK(&lk);
LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
sema_release(&inodedep_in_progress);
*inodedeppp = inodedep;
return (0);
}
/*
* Structures and routines associated with newblk caching.
*/
LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
u_long newblk_hash; /* size of hash table - 1 */
#define NEWBLK_HASH(fs, inum) \
(&newblk_hashtbl[((((register_t)(uintptr_t)(fs)) >> 13) + \
(inum)) & newblk_hash])
static struct sema newblk_in_progress;
/*
* Look up a newblk. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in newblkpp.
*/
static int
newblk_lookup(fs, newblkno, flags, newblkpp)
struct fs *fs;
daddr_t newblkno;
int flags;
struct newblk **newblkpp;
{
struct newblk *newblk;
struct newblk_hashhead *newblkhd;
newblkhd = NEWBLK_HASH(fs, newblkno);
top:
for (newblk = LIST_FIRST(newblkhd); newblk;
newblk = LIST_NEXT(newblk, nb_hash))
if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
break;
if (newblk) {
*newblkpp = newblk;
return (1);
}
if ((flags & DEPALLOC) == 0) {
*newblkpp = NULL;
return (0);
}
if (sema_get(&newblk_in_progress, 0) == 0)
goto top;
newblk = pool_get(&newblk_pool, PR_WAITOK);
newblk->nb_state = 0;
newblk->nb_fs = fs;
newblk->nb_newblkno = newblkno;
LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
sema_release(&newblk_in_progress);
*newblkpp = newblk;
return (0);
}
/*
* Executed during filesystem system initialization before
* mounting any file systems.
*/
void
softdep_initialize()
{
int i;
LIST_INIT(&mkdirlisthd);
LIST_INIT(&softdep_workitem_pending);
max_softdeps = desiredvnodes * 4;
pagedep_hashtbl = hashinit(desiredvnodes / 5, HASH_LIST, M_PAGEDEP,
M_WAITOK, &pagedep_hash);
sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);
inodedep_hashtbl = hashinit(desiredvnodes, HASH_LIST, M_INODEDEP,
M_WAITOK, &inodedep_hash);
sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);
newblk_hashtbl = hashinit(64, HASH_LIST, M_NEWBLK, M_WAITOK,
&newblk_hash);
sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);
for (i = 0; i < PCBPHASHSIZE; i++) {
LIST_INIT(&pcbphashhead[i]);
}
}
/*
* Reinitialize pagedep hash table.
*/
void
softdep_reinitialize()
{
struct pagedep_hashhead *oldhash1, *hash1;
struct pagedep *pagedep;
struct inodedep_hashhead *oldhash2, *hash2;
struct inodedep *inodedep;
u_long oldmask1, oldmask2, mask1, mask2, val;
int i;
hash1 = hashinit(desiredvnodes / 5, HASH_LIST, M_PAGEDEP, M_WAITOK,
&mask1);
hash2 = hashinit(desiredvnodes, HASH_LIST, M_INODEDEP, M_WAITOK,
&mask2);
max_softdeps = desiredvnodes * 4;
ACQUIRE_LOCK(&lk);
oldhash1 = pagedep_hashtbl;
oldmask1 = pagedep_hash;
pagedep_hashtbl = hash1;
pagedep_hash = mask1;
oldhash2 = inodedep_hashtbl;
oldmask2 = inodedep_hash;
inodedep_hashtbl = hash2;
inodedep_hash = mask2;
for (i = 0; i <= oldmask1; i++) {
while ((pagedep = LIST_FIRST(&oldhash1[i])) != NULL) {
LIST_REMOVE(pagedep, pd_hash);
val = PAGEDEP_HASH(pagedep->pd_mnt, pagedep->pd_ino,
pagedep->pd_lbn);
LIST_INSERT_HEAD(&hash1[val], pagedep, pd_hash);
}
}
for (i = 0; i <= oldmask2; i++) {
while ((inodedep = LIST_FIRST(&oldhash2[i])) != NULL) {
LIST_REMOVE(inodedep, id_hash);
val = INODEDEP_HASH(inodedep->id_fs, inodedep->id_ino);
LIST_INSERT_HEAD(&hash2[val], inodedep, id_hash);
}
}
FREE_LOCK(&lk);
hashdone(oldhash1, M_PAGEDEP);
hashdone(oldhash2, M_INODEDEP);
}
/*
* Called at mount time to notify the dependency code that a
* filesystem wishes to use it.
*
* Currently only called o re-calculate the sb totals if a filesystem
* previously used soft dependencies. If it is going to be called
* for other purposes, the condition for which it is called should
* be checked.
*/
int
softdep_mount(devvp, mp, fs, cred)
struct vnode *devvp;
struct mount *mp;
struct fs *fs;
kauth_cred_t cred;
{
struct csum_total cstotal;
struct cg *cgp;
struct buf *bp;
int error, cyl;
#ifdef FFS_EI
int needswap = UFS_FSNEEDSWAP(fs);
#endif
mp->mnt_flag &= ~MNT_ASYNC;
/*
* When doing soft updates, the counters in the
* superblock may have gotten out of sync, so we have
* to scan the cylinder groups and recalculate them.
*/
if ((fs->fs_clean & FS_ISCLEAN) ||
(fs->fs_fmod != 0 && (fs->fs_clean & FS_WASCLEAN)))
return (0);
bzero(&cstotal, sizeof cstotal);
for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
fs->fs_cgsize, cred, &bp)) != 0) {
brelse(bp);
return (error);
}
cgp = (struct cg *)bp->b_data;
cstotal.cs_nffree += ufs_rw32(cgp->cg_cs.cs_nffree, needswap);
cstotal.cs_nbfree += ufs_rw32(cgp->cg_cs.cs_nbfree, needswap);
cstotal.cs_nifree += ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
cstotal.cs_ndir += ufs_rw32(cgp->cg_cs.cs_ndir, needswap);
fs->fs_cs(fs, cyl) = cgp->cg_cs;
brelse(bp);
}
#ifdef DEBUG
if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
printf("ffs_mountfs: superblock updated for soft updates\n");
#endif
bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
return (0);
}
/*
* Protecting the freemaps (or bitmaps).
*
* To eliminate the need to execute fsck before mounting a file system
* after a power failure, one must (conservatively) guarantee that the
* on-disk copy of the bitmaps never indicate that a live inode or block is
* free. So, when a block or inode is allocated, the bitmap should be
* updated (on disk) before any new pointers. When a block or inode is
* freed, the bitmap should not be updated until all pointers have been
* reset. The latter dependency is handled by the delayed de-allocation
* approach described below for block and inode de-allocation. The former
* dependency is handled by calling the following procedure when a block or
* inode is allocated. When an inode is allocated an "inodedep" is created
* with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
* Each "inodedep" is also inserted into the hash indexing structure so
* that any additional link additions can be made dependent on the inode
* allocation.
*
* The ufs file system maintains a number of free block counts (e.g., per
* cylinder group, per cylinder and per <cylinder, rotational position> pair)
* in addition to the bitmaps. These counts are used to improve efficiency
* during allocation and therefore must be consistent with the bitmaps.
* There is no convenient way to guarantee post-crash consistency of these
* counts with simple update ordering, for two main reasons: (1) The counts
* and bitmaps for a single cylinder group block are not in the same disk
* sector. If a disk write is interrupted (e.g., by power failure), one may
* be written and the other not. (2) Some of the counts are located in the
* superblock rather than the cylinder group block. So, we focus our soft
* updates implementation on protecting the bitmaps. When mounting a
* filesystem, we recompute the auxiliary counts from the bitmaps.
*/
/*
* Called just after updating the cylinder group block to allocate an inode.
*/
void
softdep_setup_inomapdep(bp, ip, newinum)
struct buf *bp; /* buffer for cylgroup block with inode map */
struct inode *ip; /* inode related to allocation */
ino_t newinum; /* new inode number being allocated */
{
struct inodedep *inodedep;
struct bmsafemap *bmsafemap;
/*
* Create a dependency for the newly allocated inode.
* Panic if it already exists as something is seriously wrong.
* Otherwise add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*/
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ip->i_fs, newinum, DEPALLOC, &inodedep) != 0)
panic("softdep_setup_inomapdep: found inode");
inodedep->id_buf = bp;
inodedep->id_state &= ~DEPCOMPLETE;
bmsafemap = bmsafemap_lookup(bp);
LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
FREE_LOCK(&lk);
}
/*
* Called just after updating the cylinder group block to
* allocate block or fragment.
*/
void
softdep_setup_blkmapdep(bp, fs, newblkno)
struct buf *bp; /* buffer for cylgroup block with block map */
struct fs *fs; /* filesystem doing allocation */
daddr_t newblkno; /* number of newly allocated block */
{
struct newblk *newblk;
struct bmsafemap *bmsafemap;
/*
* Create a dependency for the newly allocated block.
* Add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*/
if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
panic("softdep_setup_blkmapdep: found block");
ACQUIRE_LOCK(&lk);
newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
FREE_LOCK(&lk);
}
/*
* Find the bmsafemap associated with a cylinder group buffer.
* If none exists, create one. The buffer must be locked when
* this routine is called and this routine must be called with
* splbio interrupts blocked.
*/
static struct bmsafemap *
bmsafemap_lookup(bp)
struct buf *bp;
{
struct bmsafemap *bmsafemap;
struct worklist *wk;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("bmsafemap_lookup: lock not held");
#endif
for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list))
if (wk->wk_type == D_BMSAFEMAP)
return (WK_BMSAFEMAP(wk));
FREE_LOCK(&lk);
bmsafemap = pool_get(&bmsafemap_pool, PR_WAITOK);
bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
bmsafemap->sm_list.wk_state = 0;
bmsafemap->sm_buf = bp;
LIST_INIT(&bmsafemap->sm_allocdirecthd);
LIST_INIT(&bmsafemap->sm_allocindirhd);
LIST_INIT(&bmsafemap->sm_inodedephd);
LIST_INIT(&bmsafemap->sm_newblkhd);
ACQUIRE_LOCK(&lk);
WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
return (bmsafemap);
}
/*
* Direct block allocation dependencies.
*
* When a new block is allocated, the corresponding disk locations must be
* initialized (with zeros or new data) before the on-disk inode points to
* them. Also, the freemap from which the block was allocated must be
* updated (on disk) before the inode's pointer. These two dependencies are
* independent of each other and are needed for all file blocks and indirect
* blocks that are pointed to directly by the inode. Just before the
* "in-core" version of the inode is updated with a newly allocated block
* number, a procedure (below) is called to setup allocation dependency
* structures. These structures are removed when the corresponding
* dependencies are satisfied or when the block allocation becomes obsolete
* (i.e., the file is deleted, the block is de-allocated, or the block is a
* fragment that gets upgraded). All of these cases are handled in
* procedures described later.
*
* When a file extension causes a fragment to be upgraded, either to a larger
* fragment or to a full block, the on-disk location may change (if the
* previous fragment could not simply be extended). In this case, the old
* fragment must be de-allocated, but not until after the inode's pointer has
* been updated. In most cases, this is handled by later procedures, which
* will construct a "freefrag" structure to be added to the workitem queue
* when the inode update is complete (or obsolete). The main exception to
* this is when an allocation occurs while a pending allocation dependency
* (for the same block pointer) remains. This case is handled in the main
* allocation dependency setup procedure by immediately freeing the
* unreferenced fragments.
*/
void
softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip; /* inode to which block is being added */
daddr_t lbn; /* block pointer within inode */
daddr_t newblkno; /* disk block number being added */
daddr_t oldblkno; /* previous block number, 0 unless frag */
long newsize; /* size of new block */
long oldsize; /* size of new block */
struct buf *bp; /* bp for allocated block */
{
struct allocdirect *adp, *oldadp;
struct allocdirectlst *adphead;
struct bmsafemap *bmsafemap;
struct inodedep *inodedep;
struct pagedep *pagedep;
struct newblk *newblk;
UVMHIST_FUNC("softdep_setup_allocdirect"); UVMHIST_CALLED(ubchist);
adp = pool_get(&allocdirect_pool, PR_WAITOK);
bzero(adp, sizeof(struct allocdirect));
adp->ad_list.wk_type = D_ALLOCDIRECT;
adp->ad_lbn = lbn;
adp->ad_newblkno = newblkno;
adp->ad_oldblkno = oldblkno;
adp->ad_newsize = newsize;
adp->ad_oldsize = oldsize;
adp->ad_state = ATTACHED;
if (newblkno == oldblkno)
adp->ad_freefrag = NULL;
else
adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
panic("softdep_setup_allocdirect: lost block");
/*
* If we were not passed a bp to attach the dep to,
* then this must be for a regular file.
* Allocate a buffer to represent the page cache pages
* that are the real dependency. The pages themselves
* cannot refer to the dependency since we don't want to
* add a field to struct vm_page for this.
*/
if (bp == NULL) {
bp = softdep_setup_pagecache(ip, lbn, newsize);
UVMHIST_LOG(ubchist, "bp = %p, size = %ld -> %ld",
bp, oldsize, newsize, 0);
}
ACQUIRE_LOCK(&lk);
(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
adp->ad_inodedep = inodedep;
if (newblk->nb_state == DEPCOMPLETE) {
adp->ad_state |= DEPCOMPLETE;
adp->ad_buf = NULL;
} else {
bmsafemap = newblk->nb_bmsafemap;
adp->ad_buf = bmsafemap->sm_buf;
LIST_REMOVE(newblk, nb_deps);
LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
}
LIST_REMOVE(newblk, nb_hash);
pool_put(&newblk_pool, newblk);
WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
if (lbn >= NDADDR) {
/* allocating an indirect block */
if (oldblkno != 0)
panic("softdep_setup_allocdirect: non-zero indir");
} else {
/*
* Allocating a direct block.
*
* If we are allocating a directory block, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR &&
pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
}
/*
* The list of allocdirects must be kept in sorted and ascending
* order so that the rollback routines can quickly determine the
* first uncommitted block (the size of the file stored on disk
* ends at the end of the lowest committed fragment, or if there
* are no fragments, at the end of the highest committed block).
* Since files generally grow, the typical case is that the new
* block is to be added at the end of the list. We speed this
* special case by checking against the last allocdirect in the
* list before laboriously traversing the list looking for the
* insertion point.
*/
adphead = &inodedep->id_newinoupdt;
oldadp = TAILQ_LAST(adphead, allocdirectlst);
if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
/* insert at end of list */
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
if (oldadp != NULL && oldadp->ad_lbn == lbn)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(&lk);
return;
}
for (oldadp = TAILQ_FIRST(adphead); oldadp;
oldadp = TAILQ_NEXT(oldadp, ad_next)) {
if (oldadp->ad_lbn >= lbn)
break;
}
if (oldadp == NULL)
panic("softdep_setup_allocdirect: lost entry");
/* insert in middle of list */
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
if (oldadp->ad_lbn == lbn)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(&lk);
}
/*
* Replace an old allocdirect dependency with a newer one.
* This routine must be called with splbio interrupts blocked.
*/
static void
allocdirect_merge(adphead, newadp, oldadp)
struct allocdirectlst *adphead; /* head of list holding allocdirects */
struct allocdirect *newadp; /* allocdirect being added */
struct allocdirect *oldadp; /* existing allocdirect being checked */
{
struct worklist *wk;
struct freefrag *freefrag;
struct newdirblk *newdirblk;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("allocdirect_merge: lock not held");
#endif
if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
newadp->ad_oldsize != oldadp->ad_newsize ||
newadp->ad_lbn >= NDADDR)
panic("allocdirect_merge: ob %" PRId64 " != nb %" PRId64 " || "
"lbn %" PRId64 " >= %d ||\nosize %ld != nsize %ld",
newadp->ad_oldblkno,
oldadp->ad_newblkno,
newadp->ad_lbn, NDADDR,
newadp->ad_oldsize,
oldadp->ad_newsize);
newadp->ad_oldblkno = oldadp->ad_oldblkno;
newadp->ad_oldsize = oldadp->ad_oldsize;
/*
* If the old dependency had a fragment to free or had never
* previously had a block allocated, then the new dependency
* can immediately post its freefrag and adopt the old freefrag.
* This action is done by swapping the freefrag dependencies.
* The new dependency gains the old one's freefrag, and the
* old one gets the new one and then immediately puts it on
* the worklist when it is freed by free_allocdirect. It is
* not possible to do this swap when the old dependency had a
* non-zero size but no previous fragment to free. This condition
* arises when the new block is an extension of the old block.
* Here, the first part of the fragment allocated to the new
* dependency is part of the block currently claimed on disk by
* the old dependency, so cannot legitimately be freed until the
* conditions for the new dependency are fulfilled.
*/
if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
freefrag = newadp->ad_freefrag;
newadp->ad_freefrag = oldadp->ad_freefrag;
oldadp->ad_freefrag = freefrag;
}
/*
* If we are tracking a new directory-block allocation,
* move it from the old allocdirect to the new allocdirect.
*/
if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
newdirblk = WK_NEWDIRBLK(wk);
WORKLIST_REMOVE(&newdirblk->db_list);
if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
panic("allocdirect_merge: extra newdirblk");
WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
}
free_allocdirect(adphead, oldadp, 0);
}
/*
* Allocate a new freefrag structure if needed.
*/
static struct freefrag *
newfreefrag(ip, blkno, size)
struct inode *ip;
daddr_t blkno;
long size;
{
struct freefrag *freefrag;
struct fs *fs;
if (blkno == 0)
return (NULL);
fs = ip->i_fs;
if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
panic("newfreefrag: frag size");
freefrag = pool_get(&freefrag_pool, PR_WAITOK);
freefrag->ff_list.wk_type = D_FREEFRAG;
freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
freefrag->ff_inum = ip->i_number;
freefrag->ff_fs = fs;
freefrag->ff_mnt = ITOV(ip)->v_mount;
freefrag->ff_blkno = blkno;
freefrag->ff_fragsize = size;
return (freefrag);
}
/*
* This workitem de-allocates fragments that were replaced during
* file block allocation.
*/
static void
handle_workitem_freefrag(freefrag)
struct freefrag *freefrag;
{
struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt);
ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
freefrag->ff_fragsize, freefrag->ff_inum);
pool_put(&freefrag_pool, freefrag);
}
/*
* Indirect block allocation dependencies.
*
* The same dependencies that exist for a direct block also exist when
* a new block is allocated and pointed to by an entry in a block of
* indirect pointers. The undo/redo states described above are also
* used here. Because an indirect block contains many pointers that
* may have dependencies, a second copy of the entire in-memory indirect
* block is kept. The buffer cache copy is always completely up-to-date.
* The second copy, which is used only as a source for disk writes,
* contains only the safe pointers (i.e., those that have no remaining
* update dependencies). The second copy is freed when all pointers
* are safe. The cache is not allowed to replace indirect blocks with
* pending update dependencies. If a buffer containing an indirect
* block with dependencies is written, these routines will mark it
* dirty again. It can only be successfully written once all the
* dependencies are removed. The ffs_fsync routine in conjunction with
* softdep_sync_metadata work together to get all the dependencies
* removed so that a file can be successfully written to disk. Three
* procedures are used when setting up indirect block pointer
* dependencies. The division is necessary because of the organization
* of the "balloc" routine and because of the distinction between file
* pages and file metadata blocks.
*/
/*
* Allocate a new allocindir structure.
*/
static struct allocindir *
newallocindir(ip, ptrno, newblkno, oldblkno)
struct inode *ip; /* inode for file being extended */
int ptrno; /* offset of pointer in indirect block */
daddr_t newblkno; /* disk block number being added */
daddr_t oldblkno; /* previous block number, 0 if none */
{
struct allocindir *aip;
aip = pool_get(&allocindir_pool, PR_WAITOK);
bzero(aip, sizeof(struct allocindir));
aip->ai_list.wk_type = D_ALLOCINDIR;
aip->ai_state = ATTACHED;
aip->ai_offset = ptrno;
aip->ai_newblkno = newblkno;
aip->ai_oldblkno = oldblkno;
aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
return (aip);
}
/*
* Called just before setting an indirect block pointer
* to a newly allocated file page.
*/
void
softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
struct inode *ip; /* inode for file being extended */
daddr_t lbn; /* allocated block number within file */
struct buf *bp; /* buffer with indirect blk referencing page */
int ptrno; /* offset of pointer in indirect block */
daddr_t newblkno; /* disk block number being added */
daddr_t oldblkno; /* previous block number, 0 if none */
struct buf *nbp; /* buffer holding allocated page */
{
struct allocindir *aip;
struct pagedep *pagedep;
aip = newallocindir(ip, ptrno, newblkno, oldblkno);
if (nbp == NULL) {
nbp = softdep_setup_pagecache(ip, lbn, ip->i_fs->fs_bsize);
}
ACQUIRE_LOCK(&lk);
/*
* If we are allocating a directory page, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR &&
pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
FREE_LOCK(&lk);
setup_allocindir_phase2(bp, ip, aip);
}
/*
* Called just before setting an indirect block pointer to a
* newly allocated indirect block.
*/
void
softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
struct buf *nbp; /* newly allocated indirect block */
struct inode *ip; /* inode for file being extended */
struct buf *bp; /* indirect block referencing allocated block */
int ptrno; /* offset of pointer in indirect block */
daddr_t newblkno; /* disk block number being added */
{
struct allocindir *aip;
aip = newallocindir(ip, ptrno, newblkno, 0);
ACQUIRE_LOCK(&lk);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
FREE_LOCK(&lk);
setup_allocindir_phase2(bp, ip, aip);
}
/*
* Called to finish the allocation of the "aip" allocated
* by one of the two routines above.
*/
static void
setup_allocindir_phase2(bp, ip, aip)
struct buf *bp; /* in-memory copy of the indirect block */
struct inode *ip; /* inode for file being extended */
struct allocindir *aip; /* allocindir allocated by the above routines */
{
struct worklist *wk;
struct indirdep *indirdep, *newindirdep;
struct bmsafemap *bmsafemap;
struct allocindir *oldaip;
struct freefrag *freefrag;
struct newblk *newblk;
if (bp->b_lblkno >= 0)
panic("setup_allocindir_phase2: not indir blk");
for (indirdep = NULL, newindirdep = NULL; ; ) {
ACQUIRE_LOCK(&lk);
for (wk = LIST_FIRST(&bp->b_dep); wk;
wk = LIST_NEXT(wk, wk_list)) {
if (wk->wk_type != D_INDIRDEP)
continue;
indirdep = WK_INDIRDEP(wk);
break;
}
if (indirdep == NULL && newindirdep) {
indirdep = newindirdep;
WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
newindirdep = NULL;
}
FREE_LOCK(&lk);
if (indirdep) {
if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
&newblk) == 0)
panic("setup_allocindir: lost block");
ACQUIRE_LOCK(&lk);
if (newblk->nb_state == DEPCOMPLETE) {
aip->ai_state |= DEPCOMPLETE;
aip->ai_buf = NULL;
} else {
bmsafemap = newblk->nb_bmsafemap;
aip->ai_buf = bmsafemap->sm_buf;
LIST_REMOVE(newblk, nb_deps);
LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
aip, ai_deps);
}
LIST_REMOVE(newblk, nb_hash);
pool_put(&newblk_pool, newblk);
aip->ai_indirdep = indirdep;
/*
* Check to see if there is an existing dependency
* for this block. If there is, merge the old
* dependency into the new one.
*/
if (aip->ai_oldblkno == 0)
oldaip = NULL;
else
for (oldaip=LIST_FIRST(&indirdep->ir_deplisthd);
oldaip; oldaip = LIST_NEXT(oldaip, ai_next))
if (oldaip->ai_offset == aip->ai_offset)
break;
freefrag = NULL;
if (oldaip != NULL) {
if (oldaip->ai_newblkno != aip->ai_oldblkno)
panic("setup_allocindir_phase2: blkno");
aip->ai_oldblkno = oldaip->ai_oldblkno;
freefrag = aip->ai_freefrag;
aip->ai_freefrag = oldaip->ai_freefrag;
oldaip->ai_freefrag = NULL;
free_allocindir(oldaip, NULL);
}
LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
KASSERT(indirdep->ir_savebp != NULL);
if (ip->i_ump->um_fstype == UFS1)
((int32_t *)indirdep->ir_savebp->b_data)
[aip->ai_offset] = aip->ai_oldblkno;
else
((int64_t *)indirdep->ir_savebp->b_data)
[aip->ai_offset] = aip->ai_oldblkno;
FREE_LOCK(&lk);
if (freefrag != NULL)
handle_workitem_freefrag(freefrag);
}
if (newindirdep) {
if (indirdep->ir_savebp != NULL) {
brelse(newindirdep->ir_savebp);
softdep_trackbufs(-1, false);
}
WORKITEM_FREE(newindirdep, D_INDIRDEP);
}
if (indirdep)
break;
newindirdep = pool_get(&indirdep_pool, PR_WAITOK);
newindirdep->ir_list.wk_type = D_INDIRDEP;
newindirdep->ir_state = ATTACHED;
if (ip->i_ump->um_fstype == UFS1)
newindirdep->ir_state |= UFS1FMT;
LIST_INIT(&newindirdep->ir_deplisthd);
LIST_INIT(&newindirdep->ir_donehd);
if (bp->b_blkno == bp->b_lblkno) {
VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
NULL);
}
softdep_trackbufs(1, true);
newindirdep->ir_savebp =
getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0);
newindirdep->ir_savebp->b_flags |= B_ASYNC;
bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
}
}
/*
* Block de-allocation dependencies.
*
* When blocks are de-allocated, the on-disk pointers must be nullified before
* the blocks are made available for use by other files. (The true
* requirement is that old pointers must be nullified before new on-disk
* pointers are set. We chose this slightly more stringent requirement to
* reduce complexity.) Our implementation handles this dependency by updating
* the inode (or indirect block) appropriately but delaying the actual block
* de-allocation (i.e., freemap and free space count manipulation) until
* after the updated versions reach stable storage. After the disk is
* updated, the blocks can be safely de-allocated whenever it is convenient.
* This implementation handles only the common case of reducing a file's
* length to zero. Other cases are handled by the conventional synchronous
* write approach.
*
* The ffs implementation with which we worked double-checks
* the state of the block pointers and file size as it reduces
* a file's length. Some of this code is replicated here in our
* soft updates implementation. The freeblks->fb_chkcnt field is
* used to transfer a part of this information to the procedure
* that eventually de-allocates the blocks.
*
* This routine should be called from the routine that shortens
* a file's length, before the inode's size or block pointers
* are modified. It will save the block pointer information for
* later release and zero the inode so that the calling routine
* can release it.
*/
void
softdep_setup_freeblocks(
struct inode *ip, /* The inode whose length is to be reduced */
off_t length, /* The new length for the file */
int flags)
{
struct freeblks *freeblks;
struct inodedep *inodedep;
struct allocdirect *adp;
struct vnode *vp = ITOV(ip);
struct buf *bp;
struct fs *fs = ip->i_fs;
int i, error, delayx;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
if (length != 0)
panic("softdep_setup_freeblocks: non-zero length");
freeblks = pool_get(&freeblks_pool, PR_WAITOK);
bzero(freeblks, sizeof(struct freeblks));
freeblks->fb_list.wk_type = D_FREEBLKS;
freeblks->fb_uid = ip->i_uid;
freeblks->fb_previousinum = ip->i_number;
freeblks->fb_ump = ip->i_ump;
freeblks->fb_oldsize = ip->i_size;
freeblks->fb_newsize = length;
freeblks->fb_chkcnt = DIP(ip, blocks);
if (ip->i_ump->um_fstype == UFS1) {
for (i = 0; i < NDADDR; i++) {
freeblks->fb_dblks[i] =
ufs_rw32(ip->i_ffs1_db[i], needswap);
ip->i_ffs1_db[i] = 0;
}
for (i = 0; i < NIADDR; i++) {
freeblks->fb_iblks[i] =
ufs_rw32(ip->i_ffs1_ib[i], needswap);
ip->i_ffs1_ib[i] = 0;
}
} else {
for (i = 0; i < NDADDR; i++) {
freeblks->fb_dblks[i] =
ufs_rw64(ip->i_ffs2_db[i], needswap);
ip->i_ffs2_db[i] = 0;
}
for (i = 0; i < NIADDR; i++) {
freeblks->fb_iblks[i] =
ufs_rw64(ip->i_ffs2_ib[i], needswap);
ip->i_ffs2_ib[i] = 0;
}
}
DIP_ASSIGN(ip, blocks, 0);
ip->i_size = 0;
DIP_ASSIGN(ip, size, 0);
/*
* If the file was removed, then the space being freed was
* accounted for then (see softdep_filereleased()). If the
* file is merely being truncated, then we account for it now.
*/
if ((ip->i_flag & IN_SPACECOUNTED) == 0)
fs->fs_pendingblocks += freeblks->fb_chkcnt;
/*
* Push the zero'ed inode to to its disk buffer so that we are free
* to delete its dependencies below. Once the dependencies are gone
* the buffer can be safely released.
*/
if ((error = bread(ip->i_devvp,
fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp)) != 0)
softdep_error("softdep_setup_freeblocks", error);
if (ip->i_ump->um_fstype == UFS1) {
#ifdef FFS_EI
if (needswap)
ffs_dinode1_swap(ip->i_din.ffs1_din,
(struct ufs1_dinode *)
bp->b_data+ino_to_fsbo(fs, ip->i_number));
else
#endif
*((struct ufs1_dinode *)
bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
*ip->i_din.ffs1_din;
} else {
#ifdef FFS_EI
if (needswap)
ffs_dinode2_swap(ip->i_din.ffs2_din,
(struct ufs2_dinode *)
bp->b_data+ino_to_fsbo(fs, ip->i_number));
else
#endif
*((struct ufs2_dinode *)
bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
*ip->i_din.ffs2_din;
}
/*
* Find and eliminate any inode dependencies.
*/
ACQUIRE_LOCK(&lk);
(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & IOSTARTED) != 0)
panic("softdep_setup_freeblocks: inode busy");
/*
* Add the freeblks structure to the list of operations that
* must await the zero'ed inode being written to disk. If we
* still have a bitmap dependency (delayx == 0), then the inode
* has never been written to disk, so we can process the
* freeblks below once we have deleted the dependencies.
*/
delayx = (inodedep->id_state & DEPCOMPLETE);
if (delayx)
WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
/*
* Because the file length has been truncated to zero, any
* pending block allocation dependency structures associated
* with this inode are obsolete and can simply be de-allocated.
* We must first merge the two dependency lists to get rid of
* any duplicate freefrag structures, then purge the merged list.
* If we still have a bitmap dependency, then the inode has never
* been written to disk, so we can free any fragments without delay.
* We must remove any pagecache markers from the pagecache
* hashtable first because any I/Os in flight will want to see
* dependencies attached to their pagecache markers. We cannot
* free the pagecache markers until after we've freed all the
* dependencies that reference them later.
*/
softdep_collect_pagecache(ip);
merge_inode_lists(inodedep);
while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
free_allocdirect(&inodedep->id_inoupdt, adp, delayx);
FREE_LOCK(&lk);
bdwrite(bp);
/*
* We must wait for any I/O in progress to finish so that
* all potential buffers on the dirty list will be visible.
* Once they are all there, walk the list and get rid of
* any dependencies.
*/
ACQUIRE_LOCK(&lk);
drain_output(vp, 1);
while (getdirtybuf(&vp->v_dirtyblkhd.lh_first, MNT_WAIT)) {
bp = vp->v_dirtyblkhd.lh_first;
(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
deallocate_dependencies(bp, inodedep);
bp->b_flags |= B_INVAL | B_NOCACHE;
FREE_LOCK(&lk);
brelse(bp);
ACQUIRE_LOCK(&lk);
}
softdep_free_pagecache(ip);
if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
(void) free_inodedep(inodedep);
FREE_LOCK(&lk);
/*
* If the inode has never been written to disk (delayx == 0),
* then we can process the freeblks now that we have deleted
* the dependencies.
*/
if (!delayx)
handle_workitem_freeblocks(freeblks);
}
/*
* Reclaim any dependency structures from a buffer that is about to
* be reallocated to a new vnode. The buffer must be locked, thus,
* no I/O completion operations can occur while we are manipulating
* its associated dependencies. The mutex is held so that other I/O's
* associated with related dependencies do not occur.
*/
static void
deallocate_dependencies(bp, inodedep)
struct buf *bp;
struct inodedep *inodedep;
{
struct worklist *wk;
struct indirdep *indirdep;
struct allocindir *aip;
struct pagedep *pagedep;
struct dirrem *dirrem;
struct diradd *dap;
int i;
while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
switch (wk->wk_type) {
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
/*
* None of the indirect pointers will ever be visible,
* so they can simply be tossed. GOINGAWAY ensures
* that allocated pointers will be saved in the buffer
* cache until they are freed. Note that they will
* only be able to be found by their physical address
* since the inode mapping the logical address will
* be gone. The save buffer used for the safe copy
* was allocated in setup_allocindir_phase2 using
* the physical address so it could be used for this
* purpose. Hence we swap the safe copy with the real
* copy, allowing the safe copy to be freed and holding
* on to the real copy for later use in indir_trunc.
*/
if (indirdep->ir_state & GOINGAWAY)
panic("deallocate_dependencies: already gone");
indirdep->ir_state |= GOINGAWAY;
while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
free_allocindir(aip, inodedep);
if (bp->b_lblkno >= 0 ||
bp->b_blkno != indirdep->ir_savebp->b_lblkno)
panic("deallocate_dependencies: not indir");
bcopy(bp->b_data, indirdep->ir_savebp->b_data,
bp->b_bcount);
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
continue;
case D_PAGEDEP:
pagedep = WK_PAGEDEP(wk);
/*
* None of the directory additions will ever be
* visible, so they can simply be tossed.
*/
for (i = 0; i < DAHASHSZ; i++)
while ((dap =
LIST_FIRST(&pagedep->pd_diraddhd[i])))
free_diradd(dap);
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
free_diradd(dap);
/*
* Copy any directory remove dependencies to the list
* to be processed after the zero'ed inode is written.
* If the inode has already been written, then they
* can be dumped directly onto the work list.
*/
while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd))
!= NULL) {
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_dirinum = pagedep->pd_ino;
if (inodedep == NULL ||
(inodedep->id_state & ALLCOMPLETE) ==
ALLCOMPLETE)
add_to_worklist(&dirrem->dm_list);
else
WORKLIST_INSERT(&inodedep->id_bufwait,
&dirrem->dm_list);
}
if ((pagedep->pd_state & NEWBLOCK) != 0) {
LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
if (wk->wk_type == D_NEWDIRBLK &&
WK_NEWDIRBLK(wk)->db_pagedep ==
pagedep)
break;
if (wk != NULL) {
WORKLIST_REMOVE(wk);
free_newdirblk(WK_NEWDIRBLK(wk));
} else {
FREE_LOCK(&lk);
panic("deallocate_dependencies: "
"lost pagedep");
}
}
WORKLIST_REMOVE(&pagedep->pd_list);
LIST_REMOVE(pagedep, pd_hash);
WORKITEM_FREE(pagedep, D_PAGEDEP);
continue;
case D_ALLOCINDIR:
free_allocindir(WK_ALLOCINDIR(wk), inodedep);
continue;
case D_ALLOCDIRECT:
case D_INODEDEP:
panic("deallocate_dependencies: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
default:
panic("deallocate_dependencies: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
}
/*
* Free an allocdirect. Generate a new freefrag work request if appropriate.
* This routine must be called with splbio interrupts blocked.
*/
static void
free_allocdirect(adphead, adp, delayx)
struct allocdirectlst *adphead;
struct allocdirect *adp;
int delayx;
{
struct newdirblk *newdirblk;
struct worklist *wk;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("free_allocdirect: lock not held");
#endif
if ((adp->ad_state & DEPCOMPLETE) == 0)
LIST_REMOVE(adp, ad_deps);
TAILQ_REMOVE(adphead, adp, ad_next);
if ((adp->ad_state & COMPLETE) == 0)
WORKLIST_REMOVE(&adp->ad_list);
if (adp->ad_freefrag != NULL) {
if (delayx)
WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
&adp->ad_freefrag->ff_list);
else
add_to_worklist(&adp->ad_freefrag->ff_list);
}
if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
newdirblk = WK_NEWDIRBLK(wk);
WORKLIST_REMOVE(&newdirblk->db_list);
if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
panic("free_allocdirect: extra newdirblk");
if (delayx)
WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
&newdirblk->db_list);
else
free_newdirblk(newdirblk);
}
WORKITEM_FREE(adp, D_ALLOCDIRECT);
}
/*
* Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
* This routine must be called with splbio interrupts blocked.
*/
static void
free_newdirblk(newdirblk)
struct newdirblk *newdirblk;
{
struct pagedep *pagedep;
struct diradd *dap;
int i;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("free_newdirblk: lock not held");
#endif
/*
* If the pagedep is still linked onto the directory buffer
* dependency chain, then some of the entries on the
* pd_pendinghd list may not be committed to disk yet. In
* this case, we will simply clear the NEWBLOCK flag and
* let the pd_pendinghd list be processed when the pagedep
* is next written. If the pagedep is no longer on the buffer
* dependency chain, then all the entries on the pd_pending
* list are committed to disk and we can free them here.
*/
pagedep = newdirblk->db_pagedep;
pagedep->pd_state &= ~NEWBLOCK;
if ((pagedep->pd_state & ONWORKLIST) == 0)
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
free_diradd(dap);
/*
* If no dependencies remain, the pagedep will be freed.
*/
for (i = 0; i < DAHASHSZ; i++)
if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
break;
if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
LIST_REMOVE(pagedep, pd_hash);
WORKITEM_FREE(pagedep, D_PAGEDEP);
}
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
}
/*
* Prepare an inode to be freed. The actual free operation is not
* done until the zero'ed inode has been written to disk.
*/
void
softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
{
struct inode *ip = VTOI(pvp);
struct inodedep *inodedep;
struct freefile *freefile;
/*
* This sets up the inode de-allocation dependency.
*/
freefile = pool_get(&freefile_pool, PR_WAITOK);
freefile->fx_list.wk_type = D_FREEFILE;
freefile->fx_list.wk_state = 0;
freefile->fx_mode = mode;
freefile->fx_oldinum = ino;
freefile->fx_devvp = ip->i_devvp;
freefile->fx_fs = ip->i_fs;
freefile->fx_mnt = ITOV(ip)->v_mount;
if ((ip->i_flag & IN_SPACECOUNTED) == 0)
ip->i_fs->fs_pendinginodes += 1;
/*
* If the inodedep does not exist, then the zero'ed inode has
* been written to disk. If the allocated inode has never been
* written to disk, then the on-disk inode is zero'ed. In either
* case we can free the file immediately.
*/
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
check_inode_unwritten(inodedep)) {
FREE_LOCK(&lk);
handle_workitem_freefile(freefile);
return;
}
WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
FREE_LOCK(&lk);
}
/*
* Check to see if an inode has never been written to disk. If
* so free the inodedep and return success, otherwise return failure.
* This routine must be called with splbio interrupts blocked.
*
* If we still have a bitmap dependency, then the inode has never
* been written to disk. Drop the dependency as it is no longer
* necessary since the inode is being deallocated. We set the
* ALLCOMPLETE flags since the bitmap now properly shows that the
* inode is not allocated. Even if the inode is actively being
* written, it has been rolled back to its zero'ed state, so we
* are ensured that a zero inode is what is on the disk. For short
* lived files, this change will usually result in removing all the
* dependencies from the inode so that it can be freed immediately.
*/
static int
check_inode_unwritten(inodedep)
struct inodedep *inodedep;
{
if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
LIST_FIRST(&inodedep->id_bufwait) != NULL ||
LIST_FIRST(&inodedep->id_inowait) != NULL ||
TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
inodedep->id_nlinkdelta != 0)
return (0);
inodedep->id_state |= ALLCOMPLETE;
LIST_REMOVE(inodedep, id_deps);
inodedep->id_buf = NULL;
if (inodedep->id_state & ONWORKLIST)
WORKLIST_REMOVE(&inodedep->id_list);
if (inodedep->id_savedino1 != NULL) {
inodedep_freedino(inodedep);
}
if (free_inodedep(inodedep) == 0)
panic("check_inode_unwritten: busy inode");
return (1);
}
/*
* Try to free an inodedep structure. Return 1 if it could be freed.
*/
static int
free_inodedep(inodedep)
struct inodedep *inodedep;
{
if ((inodedep->id_state & ONWORKLIST) != 0 ||
(inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
LIST_FIRST(&inodedep->id_bufwait) != NULL ||
LIST_FIRST(&inodedep->id_inowait) != NULL ||
TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
return (0);
LIST_REMOVE(inodedep, id_hash);
WORKITEM_FREE(inodedep, D_INODEDEP);
num_inodedep -= 1;
return (1);
}
/*
* This workitem routine performs the block de-allocation.
* The workitem is added to the pending list after the updated
* inode block has been written to disk. As mentioned above,
* checks regarding the number of blocks de-allocated (compared
* to the number of blocks allocated for the file) are also
* performed in this function.
*/
static void
handle_workitem_freeblocks(freeblks)
struct freeblks *freeblks;
{
struct vnode *devvp;
daddr_t bn;
struct fs *fs;
int i, level, bsize, nblocks;
int64_t blocksreleased = 0;
int error, allerror = 0;
daddr_t baselbns[NIADDR], tmpval;
devvp = freeblks->fb_ump->um_devvp;
fs = freeblks->fb_ump->um_fs;
tmpval = 1;
baselbns[0] = NDADDR;
for (i = 1; i < NIADDR; i++) {
tmpval *= NINDIR(fs);
baselbns[i] = baselbns[i - 1] + tmpval;
}
nblocks = btodb(fs->fs_bsize);
blocksreleased = 0;
/*
* Indirect blocks first.
*/
for (level = (NIADDR - 1); level >= 0; level--) {
if ((bn = freeblks->fb_iblks[level]) == 0)
continue;
if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), level,
baselbns[level], &blocksreleased)) != 0)
allerror = error;
ffs_blkfree(fs, devvp, bn, fs->fs_bsize,
freeblks->fb_previousinum);
fs->fs_pendingblocks -= nblocks;
blocksreleased += nblocks;
}
/*
* All direct blocks or frags.
*/
for (i = (NDADDR - 1); i >= 0; i--) {
if ((bn = freeblks->fb_dblks[i]) == 0)
continue;
bsize = sblksize(fs, freeblks->fb_oldsize, i);
ffs_blkfree(fs, devvp, bn, bsize, freeblks->fb_previousinum);
fs->fs_pendingblocks -= btodb(bsize);
blocksreleased += btodb(bsize);
}
#ifdef DIAGNOSTIC
if (freeblks->fb_chkcnt != blocksreleased)
printf("handle_workitem_freeblocks: block count");
if (allerror)
softdep_error("handle_workitem_freeblks", allerror);
#endif /* DIAGNOSTIC */
WORKITEM_FREE(freeblks, D_FREEBLKS);
}
/*
* Release blocks associated with the inode freeblks->fb_previousinum and
* stored in the indirect block dbn.
* If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*/
static int
indir_trunc(freeblks, dbn, level, lbn, countp)
const struct freeblks *freeblks;
daddr_t dbn;
int level;
daddr_t lbn;
int64_t *countp;
{
struct buf *bp;
int32_t *bap1 = NULL;
int64_t *bap2 = NULL;
daddr_t nb;
struct fs *fs = freeblks->fb_ump->um_fs;
struct worklist *wk;
struct indirdep *indirdep;
daddr_t lbnadd;
int i, nblocks, ufs1fmt;
int error, allerror = 0;
struct vnode *devvp = freeblks->fb_ump->um_devvp;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
lbnadd = 1;
for (i = level; i > 0; i--)
lbnadd *= NINDIR(fs);
/*
* Get buffer of block pointers to be freed. This routine is not
* called until the zero'ed inode has been written, so it is safe
* to free blocks as they are encountered. Because the inode has
* been zero'ed, calls to bmap on these blocks will fail. So, we
* have to use the on-disk address and the block device for the
* filesystem to look them up. If the file was deleted before its
* indirect blocks were all written to disk, the routine that set
* us up (deallocate_dependencies) will have arranged to leave
* a complete copy of the indirect block in memory for our use.
* Otherwise we have to read the blocks in from the disk.
*/
ACQUIRE_LOCK(&lk);
if ((bp = incore(devvp, dbn)) != NULL &&
(wk = LIST_FIRST(&bp->b_dep)) != NULL) {
if (wk->wk_type != D_INDIRDEP ||
(indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
(indirdep->ir_state & GOINGAWAY) == 0)
panic("indir_trunc: lost indirdep");
WORKLIST_REMOVE(wk);
WORKITEM_FREE(indirdep, D_INDIRDEP);
if (LIST_FIRST(&bp->b_dep) != NULL)
panic("indir_trunc: dangling dep");
FREE_LOCK(&lk);
} else {
FREE_LOCK(&lk);
softdep_trackbufs(1, false);
error = bread(devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp);
if (error)
return (error);
}
/*
* Recursively free indirect blocks.
*/
if (freeblks->fb_ump->um_fstype == UFS1) {
ufs1fmt = 1;
bap1 = (int32_t *)bp->b_data;
} else {
ufs1fmt = 0;
bap2 = (int64_t *)bp->b_data;
}
nblocks = btodb(fs->fs_bsize);
for (i = NINDIR(fs) - 1; i >= 0; i--) {
if (ufs1fmt)
nb = ufs_rw32(bap1[i], needswap);
else
nb = ufs_rw64(bap2[i], needswap);
if (nb == 0)
continue;
if (level != 0) {
if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
level - 1, lbn + (i * lbnadd), countp)) != 0)
allerror = error;
}
ffs_blkfree(fs, devvp, nb, fs->fs_bsize,
freeblks->fb_previousinum);
fs->fs_pendingblocks -= nblocks;
*countp += nblocks;
}
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
softdep_trackbufs(-1, false);
return (allerror);
}
/*
* Free an allocindir.
* This routine must be called with splbio interrupts blocked.
*/
static void
free_allocindir(aip, inodedep)
struct allocindir *aip;
struct inodedep *inodedep;
{
struct freefrag *freefrag;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("free_allocindir: lock not held");
#endif
if ((aip->ai_state & DEPCOMPLETE) == 0)
LIST_REMOVE(aip, ai_deps);
if (aip->ai_state & ONWORKLIST)
WORKLIST_REMOVE(&aip->ai_list);
LIST_REMOVE(aip, ai_next);
if ((freefrag = aip->ai_freefrag) != NULL) {
if (inodedep == NULL)
add_to_worklist(&freefrag->ff_list);
else
WORKLIST_INSERT(&inodedep->id_bufwait,
&freefrag->ff_list);
}
WORKITEM_FREE(aip, D_ALLOCINDIR);
}
/*
* Directory entry addition dependencies.
*
* When adding a new directory entry, the inode (with its incremented link
* count) must be written to disk before the directory entry's pointer to it.
* Also, if the inode is newly allocated, the corresponding freemap must be
* updated (on disk) before the directory entry's pointer. These requirements
* are met via undo/redo on the directory entry's pointer, which consists
* simply of the inode number.
*
* As directory entries are added and deleted, the free space within a
* directory block can become fragmented. The ufs file system will compact
* a fragmented directory block to make space for a new entry. When this
* occurs, the offsets of previously added entries change. Any "diradd"
* dependency structures corresponding to these entries must be updated with
* the new offsets.
*/
/*
* This routine is called after the in-memory inode's link
* count has been incremented, but before the directory entry's
* pointer to the inode has been set.
*/
int
softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for directory */
off_t diroffset; /* offset of new entry in directory */
ino_t newinum; /* inode referenced by new directory entry */
struct buf *newdirbp; /* non-NULL => contents of new mkdir */
int isnewblk; /* entry is in a newly allocated block */
{
int offset; /* offset of new entry within directory block */
daddr_t lbn; /* block in directory containing new entry */
struct fs *fs;
struct diradd *dap;
struct allocdirect *adp;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct newdirblk *newdirblk = 0;
struct mkdir *mkdir1 = NULL, *mkdir2 = NULL;
/*
* Whiteouts have no dependencies.
*/
if (newinum == WINO) {
if (newdirbp != NULL)
bdwrite(newdirbp);
return (0);
}
fs = dp->i_fs;
lbn = lblkno(fs, diroffset);
offset = blkoff(fs, diroffset);
dap = pool_get(&diradd_pool, PR_WAITOK);
bzero(dap, sizeof(struct diradd));
dap->da_list.wk_type = D_DIRADD;
dap->da_offset = offset;
dap->da_newinum = newinum;
dap->da_state = ATTACHED;
if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
newdirblk = pool_get(&newdirblk_pool, PR_WAITOK);
newdirblk->db_list.wk_type = D_NEWDIRBLK;
newdirblk->db_state = 0;
}
if (newdirbp == NULL) {
dap->da_state |= DEPCOMPLETE;
ACQUIRE_LOCK(&lk);
} else {
dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
mkdir1 = pool_get(&mkdir_pool, PR_WAITOK);
mkdir1->md_list.wk_type = D_MKDIR;
mkdir1->md_state = MKDIR_BODY;
mkdir1->md_diradd = dap;
mkdir2 = pool_get(&mkdir_pool, PR_WAITOK);
mkdir2->md_list.wk_type = D_MKDIR;
mkdir2->md_state = MKDIR_PARENT;
mkdir2->md_diradd = dap;
/*
* Dependency on "." and ".." being written to disk.
*/
mkdir1->md_buf = newdirbp;
ACQUIRE_LOCK(&lk);
LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
FREE_LOCK(&lk);
bdwrite(newdirbp);
/*
* Dependency on link count increase for parent directory
*/
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0
|| (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state &= ~MKDIR_PARENT;
WORKITEM_FREE(mkdir2, D_MKDIR);
} else {
LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
}
}
/*
* Link into parent directory pagedep to await its being written.
*/
if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
dap->da_pagedep = pagedep;
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
da_pdlist);
/*
* Link into its inodedep. Put it on the id_bufwait list if the inode
* is not yet written. If it is written, do the post-inode write
* processing to put it on the id_pendinghd list.
*/
(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
diradd_inode_written(dap, inodedep);
else
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
if (isnewblk) {
/*
* Directories growing into indirect blocks are rare
* enough and the frequency of new block allocation
* in those cases even more rare, that we choose not
* to bother tracking them. Rather we simply force the
* new directory entry to disk.
*/
if (lbn >= NDADDR) {
FREE_LOCK(&lk);
/*
* We only have a new allocation when at the
* beginning of a new block, not when we are
* expanding into an existing block.
*/
if (blkoff(fs, diroffset) == 0)
return (1);
return (0);
}
/*
* We only have a new allocation when at the beginning
* of a new fragment, not when we are expanding into an
* existing fragment. Also, there is nothing to do if we
* are already tracking this block.
*/
if (fragoff(fs, diroffset) != 0) {
FREE_LOCK(&lk);
return (0);
}
if ((pagedep->pd_state & NEWBLOCK) != 0) {
WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
FREE_LOCK(&lk);
return (0);
}
/*
* Find our associated allocdirect and have it track us.
*/
if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0)
panic("softdep_setup_directory_add: lost inodedep");
adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
if (adp == NULL || adp->ad_lbn != lbn) {
FREE_LOCK(&lk);
panic("softdep_setup_directory_add: lost entry");
}
pagedep->pd_state |= NEWBLOCK;
newdirblk->db_pagedep = pagedep;
WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
}
FREE_LOCK(&lk);
return (0);
}
/*
* This procedure is called to change the offset of a directory
* entry when compacting a directory block which must be owned
* exclusively by the caller. Note that the actual entry movement
* must be done in this procedure to ensure that no I/O completions
* occur while the move is in progress.
*/
void
softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
struct inode *dp; /* inode for directory */
void *base; /* address of dp->i_offset */
void *oldloc; /* address of old directory location */
void *newloc; /* address of new directory location */
int entrysize; /* size of directory entry */
{
int offset, oldoffset, newoffset;
struct pagedep *pagedep;
struct diradd *dap;
daddr_t lbn;
ACQUIRE_LOCK(&lk);
lbn = lblkno(dp->i_fs, dp->i_offset);
offset = blkoff(dp->i_fs, dp->i_offset);
if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
goto done;
oldoffset = offset + ((char *)oldloc - (char *)base);
newoffset = offset + ((char *)newloc - (char *)base);
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(oldoffset)]);
dap; dap = LIST_NEXT(dap, da_pdlist)) {
if (dap->da_offset != oldoffset)
continue;
dap->da_offset = newoffset;
if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
break;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
dap, da_pdlist);
break;
}
if (dap == NULL) {
for (dap = LIST_FIRST(&pagedep->pd_pendinghd);
dap; dap = LIST_NEXT(dap, da_pdlist)) {
if (dap->da_offset == oldoffset) {
dap->da_offset = newoffset;
break;
}
}
}
done:
bcopy(oldloc, newloc, entrysize);
FREE_LOCK(&lk);
}
/*
* Free a diradd dependency structure. This routine must be called
* with splbio interrupts blocked.
*/
static void
free_diradd(dap)
struct diradd *dap;
{
struct dirrem *dirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct mkdir *mkdir, *nextmd;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("free_diradd: lock not held");
#endif
WORKLIST_REMOVE(&dap->da_list);
LIST_REMOVE(dap, da_pdlist);
if ((dap->da_state & DIRCHG) == 0) {
pagedep = dap->da_pagedep;
} else {
dirrem = dap->da_previous;
pagedep = dirrem->dm_pagedep;
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
0, &inodedep) != 0)
(void) free_inodedep(inodedep);
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
nextmd = LIST_NEXT(mkdir, md_mkdirs);
if (mkdir->md_diradd != dap)
continue;
dap->da_state &= ~mkdir->md_state;
WORKLIST_REMOVE(&mkdir->md_list);
LIST_REMOVE(mkdir, md_mkdirs);
WORKITEM_FREE(mkdir, D_MKDIR);
}
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
panic("free_diradd: unfound ref");
}
WORKITEM_FREE(dap, D_DIRADD);
}
/*
* Directory entry removal dependencies.
*
* When removing a directory entry, the entry's inode pointer must be
* zero'ed on disk before the corresponding inode's link count is decremented
* (possibly freeing the inode for re-use). This dependency is handled by
* updating the directory entry but delaying the inode count reduction until
* after the directory block has been written to disk. After this point, the
* inode count can be decremented whenever it is convenient.
*/
/*
* This routine should be called immediately after removing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will do this task when it is safe.
*/
void
softdep_setup_remove(bp, dp, ip, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
{
struct dirrem *dirrem, *prevdirrem;
/*
* Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
/*
* If the COMPLETE flag is clear, then there were no active
* entries and we want to roll back to a zeroed entry until
* the new inode is committed to disk. If the COMPLETE flag is
* set then we have deleted an entry that never made it to
* disk. If the entry we deleted resulted from a name change,
* then the old name still resides on disk. We cannot delete
* its inode (returned to us in prevdirrem) until the zeroed
* directory entry gets to disk. The new inode has never been
* referenced on the disk, so can be deleted immediately.
*/
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
dm_next);
FREE_LOCK(&lk);
} else {
u_int ipflag, dpflag;
struct vnode *vp = ITOV(ip);
struct vnode *dvp = ITOV(dp);
if (prevdirrem != NULL)
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
prevdirrem, dm_next);
dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
FREE_LOCK(&lk);
ipflag = vn_setrecurse(vp);
dpflag = vn_setrecurse(dvp);
handle_workitem_remove(dirrem);
vn_restorerecurse(dvp, dpflag);
vn_restorerecurse(vp, ipflag);
}
}
/*
* Allocate a new dirrem if appropriate and return it along with
* its associated pagedep. Called without a lock, returns with lock.
*/
static long num_dirrem; /* number of dirrem allocated */
static struct dirrem *
newdirrem(bp, dp, ip, isrmdir, prevdirremp)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
struct dirrem **prevdirremp; /* previously referenced inode, if any */
{
int offset;
daddr_t lbn;
struct diradd *dap;
struct dirrem *dirrem;
struct pagedep *pagedep;
/*
* Whiteouts have no deletion dependencies.
*/
if (ip == NULL)
panic("newdirrem: whiteout");
/*
* If we are over our limit, try to improve the situation.
* Limiting the number of dirrem structures will also limit
* the number of freefile and freeblks structures.
*/
if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
(void) request_cleanup(FLUSH_REMOVE, 0);
num_dirrem += 1;
dirrem = pool_get(&dirrem_pool, PR_WAITOK);
bzero(dirrem, sizeof(struct dirrem));
dirrem->dm_list.wk_type = D_DIRREM;
dirrem->dm_state = isrmdir ? RMDIR : 0;
dirrem->dm_mnt = ITOV(ip)->v_mount;
dirrem->dm_oldinum = ip->i_number;
*prevdirremp = NULL;
ACQUIRE_LOCK(&lk);
lbn = lblkno(dp->i_fs, dp->i_offset);
offset = blkoff(dp->i_fs, dp->i_offset);
if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
dirrem->dm_pagedep = pagedep;
/*
* Check for a diradd dependency for the same directory entry.
* If present, then both dependencies become obsolete and can
* be de-allocated. Check for an entry on both the pd_dirraddhd
* list and the pd_pendinghd list.
*/
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(offset)]);
dap; dap = LIST_NEXT(dap, da_pdlist))
if (dap->da_offset == offset)
break;
if (dap == NULL) {
for (dap = LIST_FIRST(&pagedep->pd_pendinghd);
dap; dap = LIST_NEXT(dap, da_pdlist))
if (dap->da_offset == offset)
break;
if (dap == NULL)
return (dirrem);
}
/*
* Must be ATTACHED at this point.
*/
if ((dap->da_state & ATTACHED) == 0)
panic("newdirrem: not ATTACHED");
if (dap->da_newinum != ip->i_number)
panic("newdirrem: inum %llu should be %llu",
(unsigned long long)ip->i_number,
(unsigned long long)dap->da_newinum);
/*
* If we are deleting a changed name that never made it to disk,
* then return the dirrem describing the previous inode (which
* represents the inode currently referenced from this entry on disk).
*/
if ((dap->da_state & DIRCHG) != 0) {
*prevdirremp = dap->da_previous;
dap->da_state &= ~DIRCHG;
dap->da_pagedep = pagedep;
}
/*
* We are deleting an entry that never made it to disk.
* Mark it COMPLETE so we can delete its inode immediately.
*/
dirrem->dm_state |= COMPLETE;
free_diradd(dap);
return (dirrem);
}
/*
* Directory entry change dependencies.
*
* Changing an existing directory entry requires that an add operation
* be completed first followed by a deletion. The semantics for the addition
* are identical to the description of adding a new entry above except
* that the rollback is to the old inode number rather than zero. Once
* the addition dependency is completed, the removal is done as described
* in the removal routine above.
*/
/*
* This routine should be called immediately after changing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will perform this task when it is safe.
*/
void
softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
ino_t newinum; /* new inode number for changed entry */
int isrmdir; /* indicates if doing RMDIR */
{
int offset;
struct diradd *dap = NULL;
struct dirrem *dirrem, *prevdirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
offset = blkoff(dp->i_fs, dp->i_offset);
/*
* Whiteouts do not need diradd dependencies.
*/
if (newinum != WINO) {
dap = pool_get(&diradd_pool, PR_WAITOK);
bzero(dap, sizeof(struct diradd));
dap->da_list.wk_type = D_DIRADD;
dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
dap->da_offset = offset;
dap->da_newinum = newinum;
}
/*
* Allocate a new dirrem and ACQUIRE_LOCK.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
pagedep = dirrem->dm_pagedep;
/*
* The possible values for isrmdir:
* 0 - non-directory file rename
* 1 - directory rename within same directory
* inum - directory rename to new directory of given inode number
* When renaming to a new directory, we are both deleting and
* creating a new directory entry, so the link count on the new
* directory should not change. Thus we do not need the followup
* dirrem which is usually done in handle_workitem_remove. We set
* the DIRCHG flag to tell handle_workitem_remove to skip the
* followup dirrem.
*/
if (isrmdir > 1)
dirrem->dm_state |= DIRCHG;
/*
* Whiteouts have no additional dependencies,
* so just put the dirrem on the correct list.
*/
if (newinum == WINO) {
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
dm_next);
} else {
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
FREE_LOCK(&lk);
return;
}
/*
* If the COMPLETE flag is clear, then there were no active
* entries and we want to roll back to the previous inode until
* the new inode is committed to disk. If the COMPLETE flag is
* set, then we have deleted an entry that never made it to disk.
* If the entry we deleted resulted from a name change, then the old
* inode reference still resides on disk. Any rollback that we do
* needs to be to that old inode (returned to us in prevdirrem). If
* the entry we deleted resulted from a create, then there is
* no entry on the disk, so we want to roll back to zero rather
* than the uncommitted inode. In either of the COMPLETE cases we
* want to immediately free the unwritten and unreferenced inode.
*/
if ((dirrem->dm_state & COMPLETE) == 0) {
dap->da_previous = dirrem;
} else {
if (prevdirrem != NULL) {
dap->da_previous = prevdirrem;
} else {
dap->da_state &= ~DIRCHG;
dap->da_pagedep = pagedep;
}
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
/*
* Link into its inodedep. Put it on the id_bufwait list if the inode
* is not yet written. If it is written, do the post-inode write
* processing to put it on the id_pendinghd list.
*/
if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
(inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state |= COMPLETE;
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
} else {
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
}
FREE_LOCK(&lk);
}
/*
* Called whenever the link count on an inode is changed.
* It creates an inode dependency so that the new reference(s)
* to the inode cannot be committed to disk until the updated
* inode has been written.
*/
void
softdep_change_linkcnt(ip)
struct inode *ip; /* the inode with the increased link count */
{
struct inodedep *inodedep;
ACQUIRE_LOCK(&lk);
(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
if (ip->i_nlink < ip->i_ffs_effnlink)
panic("softdep_change_linkcnt: bad delta");
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_ffs_effnlink;
FREE_LOCK(&lk);
}
/*
* Called when the effective link count and the reference count
* on an inode drops to zero. At this point there are no names
* referencing the file in the filesystem and no active file
* references. The space associated with the file will be freed
* as soon as the necessary soft dependencies are cleared.
*/
void
softdep_releasefile(ip)
struct inode *ip; /* inode with the zero effective link count */
{
struct inodedep *inodedep;
if (ip->i_ffs_effnlink > 0)
panic("softdep_filerelease: file still referenced");
/*
* We may be called several times as the real reference count
* drops to zero. We only want to account for the space once.
*/
if (ip->i_flag & IN_SPACECOUNTED)
return;
/*
* We have to deactivate a snapshot otherwise copyonwrites may
* add blocks and the cleanup may remove blocks after we have
* tried to account for them.
*/
if ((ip->i_flags & SF_SNAPSHOT) != 0)
ffs_snapremove(ITOV(ip));
/*
* If we are tracking an nlinkdelta, we have to also remember
* whether we accounted for the freed space yet.
*/
ACQUIRE_LOCK(&lk);
if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep)))
inodedep->id_state |= SPACECOUNTED;
FREE_LOCK(&lk);
ip->i_fs->fs_pendingblocks += DIP(ip, blocks);
ip->i_fs->fs_pendinginodes += 1;
ip->i_flag |= IN_SPACECOUNTED;
}
/*
* This workitem decrements the inode's link count.
* If the link count reaches zero, the file is removed.
*/
static void
handle_workitem_remove(dirrem)
struct dirrem *dirrem;
{
struct lwp *l = curlwp; /* XXX */
struct inodedep *inodedep;
struct vnode *vp;
struct inode *ip;
ino_t oldinum;
int error;
if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
softdep_error("handle_workitem_remove: vget", error);
return;
}
ip = VTOI(vp);
ACQUIRE_LOCK(&lk);
if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0)
panic("handle_workitem_remove: lost inodedep");
/*
* Normal file deletion.
*/
if ((dirrem->dm_state & RMDIR) == 0) {
ip->i_nlink--;
DIP_ASSIGN(ip, nlink, ip->i_nlink);
ip->i_flag |= IN_CHANGE;
if (ip->i_nlink < ip->i_ffs_effnlink)
panic("handle_workitem_remove: bad file delta");
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_ffs_effnlink;
FREE_LOCK(&lk);
vput(vp);
num_dirrem -= 1;
WORKITEM_FREE(dirrem, D_DIRREM);
return;
}
/*
* Directory deletion. Decrement reference count for both the
* just deleted parent directory entry and the reference for ".".
* Next truncate the directory to length zero. When the
* truncation completes, arrange to have the reference count on
* the parent decremented to account for the loss of "..".
*/
ip->i_nlink -= 2;
DIP_ADD(ip, nlink, -2);
ip->i_flag |= IN_CHANGE;
if (ip->i_nlink < ip->i_ffs_effnlink)
panic("handle_workitem_remove: bad dir delta");
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_ffs_effnlink;
FREE_LOCK(&lk);
if ((error = ffs_truncate(vp, (off_t)0, 0, l->l_cred, l)) != 0)
softdep_error("handle_workitem_remove: truncate", error);
/*
* Rename a directory to a new parent. Since, we are both deleting
* and creating a new directory entry, the link count on the new
* directory should not change. Thus we skip the followup dirrem.
*/
if (dirrem->dm_state & DIRCHG) {
vput(vp);
num_dirrem -= 1;
WORKITEM_FREE(dirrem, D_DIRREM);
return;
}
/*
* If the inodedep does not exist, then the zero'ed inode has
* been written to disk. If the allocated inode has never been
* written to disk, then the on-disk inode is zero'ed. In either
* case we can remove the file immediately.
*/
ACQUIRE_LOCK(&lk);
dirrem->dm_state = 0;
oldinum = dirrem->dm_oldinum;
dirrem->dm_oldinum = dirrem->dm_dirinum;
if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
check_inode_unwritten(inodedep)) {
FREE_LOCK(&lk);
vput(vp);
handle_workitem_remove(dirrem);
return;
}
WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
FREE_LOCK(&lk);
ip->i_flag |= IN_CHANGE;
ffs_update(vp, NULL, NULL, 0);
vput(vp);
}
/*
* Inode de-allocation dependencies.
*
* When an inode's link count is reduced to zero, it can be de-allocated. We
* found it convenient to postpone de-allocation until after the inode is
* written to disk with its new link count (zero). At this point, all of the
* on-disk inode's block pointers are nullified and, with careful dependency
* list ordering, all dependencies related to the inode will be satisfied and
* the corresponding dependency structures de-allocated. So, if/when the
* inode is reused, there will be no mixing of old dependencies with new
* ones. This artificial dependency is set up by the block de-allocation
* procedure above (softdep_setup_freeblocks) and completed by the
* following procedure.
*/
static void
handle_workitem_freefile(freefile)
struct freefile *freefile;
{
#ifdef DEBUG
struct inodedep *idp;
#endif
int error;
#ifdef DEBUG
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp))
panic("handle_workitem_freefile: inodedep survived");
FREE_LOCK(&lk);
#endif
freefile->fx_fs->fs_pendinginodes -= 1;
if ((error = ffs_freefile(freefile->fx_fs, freefile->fx_devvp,
freefile->fx_oldinum, freefile->fx_mode)) != 0)
softdep_error("handle_workitem_freefile", error);
WORKITEM_FREE(freefile, D_FREEFILE);
}
/*
* Disk writes.
*
* The dependency structures constructed above are most actively used when file
* system blocks are written to disk. No constraints are placed on when a
* block can be written, but unsatisfied update dependencies are made safe by
* modifying (or replacing) the source memory for the duration of the disk
* write. When the disk write completes, the memory block is again brought
* up-to-date.
*
* In-core inode structure reclamation.
*
* Because there are a finite number of "in-core" inode structures, they are
* reused regularly. By transferring all inode-related dependencies to the
* in-memory inode block and indexing them separately (via "inodedep"s), we
* can allow "in-core" inode structures to be reused at any time and avoid
* any increase in contention.
*
* Called just before entering the device driver to initiate a new disk I/O.
* The buffer must be locked, thus, no I/O completion operations can occur
* while we are manipulating its associated dependencies.
*/
static void
softdep_disk_io_initiation(bp)
struct buf *bp; /* structure describing disk write to occur */
{
struct worklist *wk, *nextwk;
struct indirdep *indirdep;
struct inodedep *inodedep;
/*
* We only care about write operations. There should never
* be dependencies for reads.
*/
if (bp->b_flags & B_READ)
panic("softdep_disk_io_initiation: read");
/*
* Do any necessary pre-I/O processing.
*/
for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
nextwk = LIST_NEXT(wk, wk_list);
switch (wk->wk_type) {
case D_PAGEDEP:
initiate_write_filepage(WK_PAGEDEP(wk), bp);
continue;
case D_INODEDEP:
inodedep = WK_INODEDEP(wk);
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
initiate_write_inodeblock_ufs1(inodedep, bp);
else
initiate_write_inodeblock_ufs2(inodedep, bp);
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (indirdep->ir_state & GOINGAWAY)
panic("disk_io_initiation: indirdep gone");
/*
* If there are no remaining dependencies, this
* will be writing the real pointers, so the
* dependency can be freed.
*/
if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
brelse(indirdep->ir_savebp);
softdep_trackbufs(-1, false);
/* inline expand WORKLIST_REMOVE(wk); */
wk->wk_state &= ~ONWORKLIST;
LIST_REMOVE(wk, wk_list);
WORKITEM_FREE(indirdep, D_INDIRDEP);
continue;
}
/*
* Replace up-to-date version with safe version.
*/
ACQUIRE_LOCK(&lk);
indirdep->ir_state &= ~ATTACHED;
indirdep->ir_state |= UNDONE;
indirdep->ir_saveddata = bp->b_data;
bp->b_data = indirdep->ir_savebp->b_data;
FREE_LOCK(&lk);
continue;
case D_MKDIR:
case D_BMSAFEMAP:
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
continue;
default:
panic("handle_disk_io_initiation: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
}
/*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in a directory. The buffer must be locked,
* thus, no I/O completion operations can occur while we are
* manipulating its associated dependencies.
*/
static void
initiate_write_filepage(pagedep, bp)
struct pagedep *pagedep;
struct buf *bp;
{
struct diradd *dap;
struct direct *ep;
int i;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(VFSTOUFS(pagedep->pd_mnt)->um_fs);
#endif
if (pagedep->pd_state & IOSTARTED) {
/*
* This can only happen if there is a driver that does not
* understand chaining. Here biodone will reissue the call
* to strategy for the incomplete buffers.
*/
printf("initiate_write_filepage: already started\n");
return;
}
pagedep->pd_state |= IOSTARTED;
ACQUIRE_LOCK(&lk);
for (i = 0; i < DAHASHSZ; i++) {
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
dap = LIST_NEXT(dap, da_pdlist)) {
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
if (ufs_rw32(ep->d_ino, needswap) != dap->da_newinum)
panic("%s: dir inum %d != new %llu",
"initiate_write_filepage",
ufs_rw32(ep->d_ino, needswap),
(unsigned long long)dap->da_newinum);
if (dap->da_state & DIRCHG)
ep->d_ino =
ufs_rw32(dap->da_previous->dm_oldinum,
needswap);
else
ep->d_ino = 0;
dap->da_state &= ~ATTACHED;
dap->da_state |= UNDONE;
}
}
FREE_LOCK(&lk);
}
/*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in an inodeblock. The buffer must be
* locked, thus, no I/O completion operations can occur while we
* are manipulating its associated dependencies.
*/
static void
initiate_write_inodeblock_ufs1(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* The inode block */
{
struct allocdirect *adp, *lastadp;
struct ufs1_dinode *dp;
struct fs *fs = inodedep->id_fs;
#ifdef DIAGNOSTIC
daddr_t prevlbn = -1;
#endif
int i, deplist;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
if (inodedep->id_state & IOSTARTED)
panic("initiate_write_inodeblock: already started");
inodedep->id_state |= IOSTARTED;
dp = (struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, inodedep->id_ino);
/*
* If the bitmap is not yet written, then the allocated
* inode cannot be written to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
if (inodedep->id_savedino1 != NULL)
panic("initiate_write_inodeblock: already doing I/O");
inodedep->id_savedino1 = inodedep_allocdino(inodedep, bp,
sizeof(struct ufs1_dinode));
*inodedep->id_savedino1 = *dp;
bzero((void *)dp, sizeof(struct ufs1_dinode));
return;
}
dp->di_size = ufs_rw64(dp->di_size, needswap);
/*
* If no dependencies, then there is nothing to roll back.
*/
inodedep->id_savedsize = dp->di_size;
if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
return;
/*
* Set the dependencies to busy.
*/
ACQUIRE_LOCK(&lk);
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef DIAGNOSTIC
if (deplist != 0 && prevlbn >= adp->ad_lbn)
panic("softdep_write_inodeblock: lbn order");
prevlbn = adp->ad_lbn;
if (adp->ad_lbn < NDADDR &&
ufs_rw32(dp->di_db[adp->ad_lbn], needswap) !=
adp->ad_newblkno)
panic("%s: direct pointer #%d mismatch %d != %" PRId64,
"softdep_write_inodeblock", (int)adp->ad_lbn,
ufs_rw32(dp->di_db[adp->ad_lbn], needswap),
adp->ad_newblkno);
if (adp->ad_lbn >= NDADDR &&
ufs_rw32(dp->di_ib[adp->ad_lbn - NDADDR], needswap) !=
adp->ad_newblkno)
panic("%s: indirect pointer #%d mismatch %d != %" PRId64,
"softdep_write_inodeblock",
(int)(adp->ad_lbn - NDADDR),
ufs_rw32(dp->di_ib[adp->ad_lbn - NDADDR], needswap),
adp->ad_newblkno);
deplist |= 1 << adp->ad_lbn;
if ((adp->ad_state & ATTACHED) == 0)
panic("softdep_write_inodeblock: Unknown state 0x%x",
adp->ad_state);
#endif /* DIAGNOSTIC */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_lbn >= NDADDR)
break;
dp->di_db[adp->ad_lbn] = ufs_rw32((u_int32_t)adp->ad_oldblkno,
needswap);
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
#ifdef DIAGNOSTIC
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
panic("softdep_write_inodeblock: lost dep1");
#endif /* DIAGNOSTIC */
dp->di_db[i] = 0;
}
for (i = 0; i < NIADDR; i++) {
#ifdef DIAGNOSTIC
if (dp->di_ib[i] != 0 &&
(deplist & ((1 << NDADDR) << i)) == 0)
panic("softdep_write_inodeblock: lost dep2");
#endif /* DIAGNOSTIC */
dp->di_ib[i] = 0;
}
dp->di_size = ufs_rw64(dp->di_size, needswap);
FREE_LOCK(&lk);
return;
}
/*
* If we have zero'ed out the last allocated block of the file,
* roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
for (i = lastadp->ad_lbn; i >= 0; i--)
if (dp->di_db[i] != 0)
break;
dp->di_size = (i + 1) * fs->fs_bsize;
}
dp->di_size = ufs_rw64(dp->di_size, needswap);
/*
* The only dependencies are for indirect blocks.
*
* The file size for indirect block additions is not guaranteed.
* Such a guarantee would be non-trivial to achieve. The conventional
* synchronous write implementation also does not make this guarantee.
* Fsck should catch and fix discrepancies. Arguably, the file size
* can be over-estimated without destroying integrity when the file
* moves into the indirect blocks (i.e., is large). If we want to
* postpone fsck, we are stuck with this argument.
*/
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
dp->di_ib[adp->ad_lbn - NDADDR] = 0;
FREE_LOCK(&lk);
}
static void
initiate_write_inodeblock_ufs2(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* The inode block */
{
struct allocdirect *adp, *lastadp;
struct ufs2_dinode *dp;
struct fs *fs = inodedep->id_fs;
#ifdef DIAGNOSTIC
daddr_t prevlbn = -1;
#endif
int deplist, i;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
if (inodedep->id_state & IOSTARTED)
panic("initiate_write_inodeblock_ufs2: already started");
inodedep->id_state |= IOSTARTED;
fs = inodedep->id_fs;
dp = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, inodedep->id_ino);
/*
* If the bitmap is not yet written, then the allocated
* inode cannot be written to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
if (inodedep->id_savedino2 != NULL)
panic("initiate_write_inodeblock_ufs2: I/O underway");
inodedep->id_savedino2 = inodedep_allocdino(inodedep, bp,
sizeof(struct ufs2_dinode));
*inodedep->id_savedino2 = *dp;
bzero((void *)dp, sizeof(struct ufs2_dinode));
return;
}
dp->di_size = ufs_rw64(dp->di_size, needswap);
/*
* If no dependencies, then there is nothing to roll back.
*/
inodedep->id_savedsize = dp->di_size;
if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
return;
ACQUIRE_LOCK(&lk);
#ifdef notyet
inodedep->id_savedextsize = dp->di_extsize;
if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL &&
TAILQ_FIRST(&inodedep->id_extupdt) == NULL)
return;
/*
* Set the ext data dependencies to busy.
*/
ACQUIRE_LOCK(&lk);
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef DIAGNOSTIC
if (deplist != 0 && prevlbn >= adp->ad_lbn) {
FREE_LOCK(&lk);
panic("softdep_write_inodeblock: lbn order");
}
prevlbn = adp->ad_lbn;
if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) {
FREE_LOCK(&lk);
panic("%s: direct pointer #%jd mismatch %jd != %jd",
"softdep_write_inodeblock",
(intmax_t)adp->ad_lbn,
(intmax_t)dp->di_extb[adp->ad_lbn],
(intmax_t)adp->ad_newblkno);
}
deplist |= 1 << adp->ad_lbn;
if ((adp->ad_state & ATTACHED) == 0) {
FREE_LOCK(&lk);
panic("softdep_write_inodeblock: Unknown state 0x%x",
adp->ad_state);
}
#endif /* DIAGNOSTIC */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the ext
* data which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
#ifdef DIAGNOSTIC
if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) {
FREE_LOCK(&lk);
panic("softdep_write_inodeblock: lost dep1");
}
#endif /* DIAGNOSTIC */
dp->di_extb[i] = 0;
}
lastadp = NULL;
break;
}
/*
* If we have zero'ed out the last allocated block of the ext
* data, roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
for (i = lastadp->ad_lbn; i >= 0; i--)
if (dp->di_extb[i] != 0)
break;
dp->di_extsize = (i + 1) * fs->fs_bsize;
}
#endif /* notyet */
/*
* Set the file data dependencies to busy.
*/
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef DIAGNOSTIC
if (deplist != 0 && prevlbn >= adp->ad_lbn) {
FREE_LOCK(&lk);
panic("softdep_write_inodeblock: lbn order");
}
prevlbn = adp->ad_lbn;
if (adp->ad_lbn < NDADDR &&
ufs_rw64(dp->di_db[adp->ad_lbn], needswap) !=
adp->ad_newblkno) {
FREE_LOCK(&lk);
panic("%s: direct pointer #%" PRId64 " mismatch %"
PRId64 " != %" PRId64,
"softdep_write_inodeblock",
adp->ad_lbn,
ufs_rw64(dp->di_db[adp->ad_lbn], needswap),
adp->ad_newblkno);
}
if (adp->ad_lbn >= NDADDR &&
ufs_rw64(dp->di_ib[adp->ad_lbn - NDADDR], needswap) !=
adp->ad_newblkno) {
FREE_LOCK(&lk);
panic("%s: indirect pointer #%" PRId64 " mismatch %"
PRId64 " != %" PRId64,
"softdep_write_inodeblock",
adp->ad_lbn - NDADDR,
ufs_rw64(dp->di_ib[adp->ad_lbn - NDADDR], needswap),
adp->ad_newblkno);
}
deplist |= 1 << adp->ad_lbn;
if ((adp->ad_state & ATTACHED) == 0) {
FREE_LOCK(&lk);
panic("softdep_write_inodeblock: Unknown state 0x%x",
adp->ad_state);
}
#endif /* DIAGNOSTIC */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_lbn >= NDADDR)
break;
dp->di_db[adp->ad_lbn] = ufs_rw64(adp->ad_oldblkno, needswap);
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
#ifdef DIAGNOSTIC
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
FREE_LOCK(&lk);
panic("softdep_write_inodeblock: lost dep2");
}
#endif /* DIAGNOSTIC */
dp->di_db[i] = 0;
}
for (i = 0; i < NIADDR; i++) {
#ifdef DIAGNOSTIC
if (dp->di_ib[i] != 0 &&
(deplist & ((1 << NDADDR) << i)) == 0) {
FREE_LOCK(&lk);
panic("softdep_write_inodeblock: lost dep3");
}
#endif /* DIAGNOSTIC */
dp->di_ib[i] = 0;
}
dp->di_size = ufs_rw64(dp->di_size, needswap);
FREE_LOCK(&lk);
return;
}
/*
* If we have zero'ed out the last allocated block of the file,
* roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
for (i = lastadp->ad_lbn; i >= 0; i--)
if (dp->di_db[i] != 0)
break;
dp->di_size = (i + 1) * fs->fs_bsize;
}
dp->di_size = ufs_rw64(dp->di_size, needswap);
/*
* The only dependencies are for indirect blocks.
*
* The file size for indirect block additions is not guaranteed.
* Such a guarantee would be non-trivial to achieve. The conventional
* synchronous write implementation also does not make this guarantee.
* Fsck should catch and fix discrepancies. Arguably, the file size
* can be over-estimated without destroying integrity when the file
* moves into the indirect blocks (i.e., is large). If we want to
* postpone fsck, we are stuck with this argument.
*/
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
dp->di_ib[adp->ad_lbn - NDADDR] = 0;
FREE_LOCK(&lk);
}
/*
* This routine is called during the completion interrupt
* service routine for a disk write (from the procedure called
* by the device driver to inform the file system caches of
* a request completion). It should be called early in this
* procedure, before the block is made available to other
* processes or other routines are called.
*/
static void
softdep_disk_write_complete(bp)
struct buf *bp; /* describes the completed disk write */
{
struct worklist *wk;
struct workhead reattach;
struct newblk *newblk;
struct allocindir *aip;
struct allocdirect *adp;
struct indirdep *indirdep;
struct inodedep *inodedep;
struct bmsafemap *bmsafemap;
/*
* If an error occurred while doing the write, then the data
* has not hit the disk and the dependencies cannot be unrolled.
*/
if ((bp->b_flags & B_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
return;
#ifdef DEBUG
if (lk.lkt_held != -1)
panic("softdep_disk_write_complete: lock is held");
lk.lkt_held = -2;
#endif
LIST_INIT(&reattach);
while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_PAGEDEP:
if (handle_written_filepage(WK_PAGEDEP(wk), bp))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_INODEDEP:
if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_BMSAFEMAP:
bmsafemap = WK_BMSAFEMAP(wk);
while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
newblk->nb_state |= DEPCOMPLETE;
newblk->nb_bmsafemap = NULL;
LIST_REMOVE(newblk, nb_deps);
}
while ((adp =
LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
adp->ad_state |= DEPCOMPLETE;
adp->ad_buf = NULL;
LIST_REMOVE(adp, ad_deps);
handle_allocdirect_partdone(adp);
}
while ((aip =
LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
aip->ai_state |= DEPCOMPLETE;
aip->ai_buf = NULL;
LIST_REMOVE(aip, ai_deps);
handle_allocindir_partdone(aip);
}
while ((inodedep =
LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
inodedep->id_state |= DEPCOMPLETE;
LIST_REMOVE(inodedep, id_deps);
inodedep->id_buf = NULL;
}
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
continue;
case D_ALLOCDIRECT:
adp = WK_ALLOCDIRECT(wk);
adp->ad_state |= COMPLETE;
handle_allocdirect_partdone(adp);
continue;
case D_ALLOCINDIR:
aip = WK_ALLOCINDIR(wk);
aip->ai_state |= COMPLETE;
handle_allocindir_partdone(aip);
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (indirdep->ir_state & GOINGAWAY)
panic("disk_write_complete: indirdep gone");
bp->b_data = indirdep->ir_saveddata;
indirdep->ir_saveddata = 0;
indirdep->ir_state &= ~UNDONE;
indirdep->ir_state |= ATTACHED;
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
handle_allocindir_partdone(aip);
if (aip == LIST_FIRST(&indirdep->ir_donehd))
panic("disk_write_complete: not gone");
}
WORKLIST_INSERT(&reattach, wk);
if ((bp->b_flags & B_DELWRI) == 0)
stat_indir_blk_ptrs++;
bdirty(bp);
continue;
default:
panic("handle_disk_write_complete: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
/*
* Reattach any requests that must be redone.
*/
while ((wk = LIST_FIRST(&reattach)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&bp->b_dep, wk);
}
#ifdef DEBUG
if (lk.lkt_held != -2)
panic("softdep_disk_write_complete: lock lost");
lk.lkt_held = -1;
#endif
}
/*
* Called from within softdep_disk_write_complete above. Note that
* this routine is always called from interrupt level with further
* splbio interrupts blocked.
*/
static void
handle_allocdirect_partdone(adp)
struct allocdirect *adp; /* the completed allocdirect */
{
struct allocdirect *listadp;
struct inodedep *inodedep;
long bsize;
int delayx;
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
if (adp->ad_buf != NULL)
panic("handle_allocdirect_partdone: dangling dep");
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem. Thus, we cannot free any
* allocdirects after one whose ad_oldblkno claims a fragment as
* these blocks must be rolled back to zero before writing the inode.
* We check the currently active set of allocdirects in id_inoupdt.
*/
inodedep = adp->ad_inodedep;
bsize = inodedep->id_fs->fs_bsize;
for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp;
listadp = TAILQ_NEXT(listadp, ad_next)) {
/* found our block */
if (listadp == adp)
break;
/* continue if ad_oldlbn is not a fragment */
if (listadp->ad_oldsize == 0 ||
listadp->ad_oldsize == bsize)
continue;
/* hit a fragment */
return;
}
/*
* If we have reached the end of the current list without
* finding the just finished dependency, then it must be
* on the future dependency list. Future dependencies cannot
* be freed until they are moved to the current list.
*/
if (listadp == NULL) {
#ifdef DEBUG
for (listadp = TAILQ_FIRST(&inodedep->id_newinoupdt); listadp;
listadp = TAILQ_NEXT(listadp, ad_next))
/* found our block */
if (listadp == adp)
break;
if (listadp == NULL)
panic("handle_allocdirect_partdone: lost dep");
#endif /* DEBUG */
return;
}
/*
* If we have found the just finished dependency, then free
* it along with anything that follows it that is complete.
* If the inode still has a bitmap dependency, then it has
* never been written to disk, hence the on-disk inode cannot
* reference the old fragment so we can free it without delay.
*/
delayx = (inodedep->id_state & DEPCOMPLETE);
for (; adp; adp = listadp) {
listadp = TAILQ_NEXT(adp, ad_next);
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
free_allocdirect(&inodedep->id_inoupdt, adp, delayx);
}
}
/*
* Called from within softdep_disk_write_complete above. Note that
* this routine is always called from interrupt level with further
* splbio interrupts blocked.
*/
static void
handle_allocindir_partdone(aip)
struct allocindir *aip; /* the completed allocindir */
{
struct indirdep *indirdep;
if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
if (aip->ai_buf != NULL)
panic("handle_allocindir_partdone: dangling dependency");
indirdep = aip->ai_indirdep;
if (indirdep->ir_state & UNDONE) {
LIST_REMOVE(aip, ai_next);
LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
return;
}
if (indirdep->ir_state & UFS1FMT)
((int32_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
aip->ai_newblkno;
else
((int64_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
aip->ai_newblkno;
LIST_REMOVE(aip, ai_next);
if (aip->ai_freefrag != NULL)
add_to_worklist(&aip->ai_freefrag->ff_list);
WORKITEM_FREE(aip, D_ALLOCINDIR);
}
/*
* Called from within softdep_disk_write_complete above to restore
* in-memory inode block contents to their most up-to-date state. Note
* that this routine is always called from interrupt level with further
* splbio interrupts blocked.
*/
static int
handle_written_inodeblock(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* buffer containing the inode block */
{
struct worklist *wk, *filefree;
struct allocdirect *adp, *nextadp;
struct ufs1_dinode *dp1 = NULL;
struct ufs2_dinode *dp2 = NULL;
int hadchanges, fstype;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(inodedep->id_fs);
#endif
if ((inodedep->id_state & IOSTARTED) == 0)
panic("handle_written_inodeblock: not started");
inodedep->id_state &= ~IOSTARTED;
inodedep->id_state |= COMPLETE;
if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
fstype = UFS1;
dp1 = (struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
} else {
fstype = UFS2;
dp2 = (struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
}
/*
* If we had to rollback the inode allocation because of
* bitmaps being incomplete, then simply restore it.
* Keep the block dirty so that it will not be reclaimed until
* all associated dependencies have been cleared and the
* corresponding updates written to disk.
*/
if (inodedep->id_savedino1 != NULL) {
if (fstype == UFS1)
*dp1 = *inodedep->id_savedino1;
else
*dp2 = *inodedep->id_savedino2;
inodedep_freedino(inodedep);
if ((bp->b_flags & B_DELWRI) == 0)
stat_inode_bitmap++;
bdirty(bp);
return (1);
}
/*
* Roll forward anything that had to be rolled back before
* the inode could be updated.
*/
hadchanges = 0;
for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
nextadp = TAILQ_NEXT(adp, ad_next);
if (adp->ad_state & ATTACHED)
panic("handle_written_inodeblock: new entry");
if (fstype == UFS1) {
if (adp->ad_lbn < NDADDR) {
if (ufs_rw32(dp1->di_db[adp->ad_lbn], needswap)
!= adp->ad_oldblkno)
panic("%s: %s #%d mismatch %d != %" PRId64,
"handle_written_inodeblock",
"direct pointer", (int)adp->ad_lbn,
ufs_rw32(dp1->di_db[adp->ad_lbn],
needswap),
adp->ad_oldblkno);
dp1->di_db[adp->ad_lbn] =
ufs_rw32((u_int32_t)adp->ad_newblkno,
needswap);
} else {
if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0)
panic("%s: %s #%d allocated as %d",
"handle_written_inodeblock",
"indirect pointer",
(int)(adp->ad_lbn - NDADDR),
ufs_rw32(dp1->di_ib[adp->ad_lbn
- NDADDR],
needswap));
dp1->di_ib[adp->ad_lbn - NDADDR] =
ufs_rw32((u_int32_t)adp->ad_newblkno,
needswap);
}
} else {
if (adp->ad_lbn < NDADDR) {
if (ufs_rw64(dp2->di_db[adp->ad_lbn], needswap)
!= adp->ad_oldblkno)
panic("%s: %s #%" PRId64 " mismatch %"
PRId64 " != %" PRId64,
"handle_written_inodeblock",
"direct pointer", adp->ad_lbn,
ufs_rw64(dp2->di_db[adp->ad_lbn],
needswap),
adp->ad_oldblkno);
dp2->di_db[adp->ad_lbn] =
ufs_rw64(adp->ad_newblkno, needswap);
} else {
if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0)
panic("%s: %s #%" PRId64
" allocated as %" PRId64,
"handle_written_inodeblock",
"indirect pointer",
(adp->ad_lbn - NDADDR),
ufs_rw64(dp2->di_ib[adp->ad_lbn - NDADDR],
needswap));
dp2->di_ib[adp->ad_lbn - NDADDR] =
ufs_rw64(adp->ad_newblkno, needswap);
}
}
adp->ad_state &= ~UNDONE;
adp->ad_state |= ATTACHED;
hadchanges = 1;
}
if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
stat_direct_blk_ptrs++;
/*
* Reset the file size to its most up-to-date value.
*/
if (inodedep->id_savedsize == -1)
panic("handle_written_inodeblock: bad size");
if (fstype == UFS1) {
if (dp1->di_size != ufs_rw64(inodedep->id_savedsize, needswap)){
dp1->di_size = ufs_rw64(inodedep->id_savedsize,
needswap);
hadchanges = 1;
}
} else {
if (dp2->di_size != ufs_rw64(inodedep->id_savedsize, needswap)){
dp2->di_size = ufs_rw64(inodedep->id_savedsize,
needswap);
hadchanges = 1;
}
}
inodedep->id_savedsize = -1;
/*
* If there were any rollbacks in the inode block, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (hadchanges) {
bdirty(bp);
}
/*
* Process any allocdirects that completed during the update.
*/
if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
handle_allocdirect_partdone(adp);
/*
* Process deallocations that were held pending until the
* inode had been written to disk. Freeing of the inode
* is delayed until after all blocks have been freed to
* avoid creation of new <vfsid, inum, lbn> triples
* before the old ones have been deleted.
*/
filefree = NULL;
while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_FREEFILE:
/*
* We defer adding filefree to the worklist until
* all other additions have been made to ensure
* that it will be done after all the old blocks
* have been freed.
*/
if (filefree != NULL)
panic("handle_written_inodeblock: filefree");
filefree = wk;
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
continue;
case D_DIRADD:
diradd_inode_written(WK_DIRADD(wk), inodedep);
continue;
case D_FREEBLKS:
case D_FREEFRAG:
case D_DIRREM:
add_to_worklist(wk);
continue;
case D_NEWDIRBLK:
free_newdirblk(WK_NEWDIRBLK(wk));
continue;
default:
panic("handle_written_inodeblock: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
if (filefree != NULL) {
if (free_inodedep(inodedep) == 0)
panic("handle_written_inodeblock: live inodedep");
add_to_worklist(filefree);
return (0);
}
/*
* If no outstanding dependencies, free it.
*/
if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
return (0);
return (hadchanges);
}
/*
* Process a diradd entry after its dependent inode has been written.
* This routine must be called with splbio interrupts blocked.
*/
static void
diradd_inode_written(dap, inodedep)
struct diradd *dap;
struct inodedep *inodedep;
{
struct pagedep *pagedep;
dap->da_state |= COMPLETE;
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
}
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
}
/*
* Handle the completion of a mkdir dependency.
*/
static void
handle_written_mkdir(mkdir, type)
struct mkdir *mkdir;
int type;
{
struct diradd *dap;
struct pagedep *pagedep;
if (mkdir->md_state != type)
panic("handle_written_mkdir: bad type");
dap = mkdir->md_diradd;
dap->da_state &= ~type;
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
dap->da_state |= DEPCOMPLETE;
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
}
LIST_REMOVE(mkdir, md_mkdirs);
WORKITEM_FREE(mkdir, D_MKDIR);
}
/*
* Called from within softdep_disk_write_complete above.
* A write operation was just completed. Removed inodes can
* now be freed and associated block pointers may be committed.
* Note that this routine is always called from interrupt level
* with further splbio interrupts blocked.
*/
static int
handle_written_filepage(pagedep, bp)
struct pagedep *pagedep;
struct buf *bp; /* buffer containing the written page */
{
struct dirrem *dirrem;
struct diradd *dap, *nextdap;
struct direct *ep;
int i, chgs;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(VFSTOUFS(pagedep->pd_mnt)->um_fs);
#endif
if ((pagedep->pd_state & IOSTARTED) == 0)
panic("handle_written_filepage: not started");
pagedep->pd_state &= ~IOSTARTED;
/*
* Process any directory removals that have been committed.
*/
while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
/*
* Free any directory additions that have been committed.
* If it is a newly allocated block, we have to wait until
* the on-disk directory inode claims the new block.
*/
if ((pagedep->pd_state & NEWBLOCK) == 0)
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) {
free_diradd(dap);
}
/*
* Uncommitted directory entries must be restored.
*/
for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
dap = nextdap) {
nextdap = LIST_NEXT(dap, da_pdlist);
if (dap->da_state & ATTACHED)
panic("handle_written_filepage: attached");
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
ep->d_ino = ufs_rw32(dap->da_newinum, needswap);
dap->da_state &= ~UNDONE;
dap->da_state |= ATTACHED;
chgs = 1;
/*
* If the inode referenced by the directory has
* been written out, then the dependency can be
* moved to the pending list.
*/
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
da_pdlist);
}
}
}
/*
* If there were any rollbacks in the directory, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (chgs) {
if ((bp->b_flags & B_DELWRI) == 0)
stat_dir_entry++;
bdirty(bp);
return (1);
}
/*
* If we are not waiting for a new directory block to be
* claimed by its inode, then the pagedep will be freed.
* Otherwise it will remain to track any new entries on
* the page in case they are fsync'ed.
*/
if ((pagedep->pd_state & NEWBLOCK) == 0) {
LIST_REMOVE(pagedep, pd_hash);
WORKITEM_FREE(pagedep, D_PAGEDEP);
}
return (0);
}
/*
* Writing back in-core inode structures.
*
* The file system only accesses an inode's contents when it occupies an
* "in-core" inode structure. These "in-core" structures are separate from
* the page frames used to cache inode blocks. Only the latter are
* transferred to/from the disk. So, when the updated contents of the
* "in-core" inode structure are copied to the corresponding in-memory inode
* block, the dependencies are also transferred. The following procedure is
* called when copying a dirty "in-core" inode to a cached inode block.
*/
/*
* Called when an inode is loaded from disk. If the effective link count
* differed from the actual link count when it was last flushed, then we
* need to ensure that the correct effective link count is put back.
*/
void
softdep_load_inodeblock(ip)
struct inode *ip; /* the "in_core" copy of the inode */
{
struct inodedep *inodedep;
/*
* Check for alternate nlink count.
*/
ip->i_ffs_effnlink = ip->i_nlink;
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(&lk);
return;
}
ip->i_ffs_effnlink -= inodedep->id_nlinkdelta;
if (inodedep->id_state & SPACECOUNTED)
ip->i_flag |= IN_SPACECOUNTED;
FREE_LOCK(&lk);
}
/*
* This routine is called just before the "in-core" inode
* information is to be copied to the in-memory inode block.
* Recall that an inode block contains several inodes. If
* the force flag is set, then the dependencies will be
* cleared so that the update can always be made. Note that
* the buffer is locked when this routine is called, so we
* will never be in the middle of writing the inode block
* to disk.
*/
void
softdep_update_inodeblock(ip, bp, waitfor)
struct inode *ip; /* the "in_core" copy of the inode */
struct buf *bp; /* the buffer containing the inode block */
int waitfor; /* nonzero => update must be allowed */
{
struct inodedep *inodedep;
struct worklist *wk;
int error, gotit;
/*
* If the effective link count is not equal to the actual link
* count, then we must track the difference in an inodedep while
* the inode is (potentially) tossed out of the cache. Otherwise,
* if there is no existing inodedep, then there are no dependencies
* to track.
*/
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
if (ip->i_ffs_effnlink != ip->i_nlink)
panic("softdep_update_inodeblock: bad link count");
FREE_LOCK(&lk);
return;
}
if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_ffs_effnlink)
panic("softdep_update_inodeblock: bad delta");
/*
* Changes have been initiated. Anything depending on these
* changes cannot occur until this inode has been written.
*/
inodedep->id_state &= ~COMPLETE;
if ((inodedep->id_state & ONWORKLIST) == 0) {
WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
}
/*
* Any new dependencies associated with the incore inode must
* now be moved to the list associated with the buffer holding
* the in-memory copy of the inode. Once merged process any
* allocdirects that are completed by the merger.
*/
merge_inode_lists(inodedep);
if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
/*
* Now that the inode has been pushed into the buffer, the
* operations dependent on the inode being written to disk
* can be moved to the id_bufwait so that they will be
* processed when the buffer I/O completes.
*/
while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&inodedep->id_bufwait, wk);
}
/*
* Newly allocated inodes cannot be written until the bitmap
* that allocates them have been written (indicated by
* DEPCOMPLETE being set in id_state). If we are doing a
* forced sync (e.g., an fsync on a file), we force the bitmap
* to be written so that the update can be done.
*/
if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
FREE_LOCK(&lk);
return;
}
gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
FREE_LOCK(&lk);
if (gotit && (error = VOP_BWRITE(inodedep->id_buf)) != 0)
softdep_error("softdep_update_inodeblock: bwrite", error);
if ((inodedep->id_state & DEPCOMPLETE) == 0)
panic("softdep_update_inodeblock: update failed");
}
/*
* Merge the new inode dependency list (id_newinoupdt) into the old
* inode dependency list (id_inoupdt). This routine must be called
* with splbio interrupts blocked.
*/
static void
merge_inode_lists(inodedep)
struct inodedep *inodedep;
{
struct allocdirect *listadp, *newadp;
listadp = TAILQ_FIRST(&inodedep->id_inoupdt);
newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
while (listadp && newadp) {
if (listadp->ad_lbn < newadp->ad_lbn) {
listadp = TAILQ_NEXT(listadp, ad_next);
continue;
}
TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
if (listadp->ad_lbn == newadp->ad_lbn) {
allocdirect_merge(&inodedep->id_inoupdt, newadp,
listadp);
listadp = newadp;
}
newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
}
while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
}
}
/*
* If we are doing an fsync, then we must ensure that any directory
* entries for the inode have been written after the inode gets to disk.
*/
static int
softdep_fsync(vp, f)
struct vnode *vp; /* the "in_core" copy of the inode */
int f; /* Flags */
{
struct diradd *dap;
struct inodedep *inodedep;
struct pagedep *pagedep;
struct worklist *wk;
struct mount *mnt;
struct vnode *pvp;
struct inode *ip;
struct buf *bp;
struct fs *fs;
struct lwp *lp = curlwp; /* XXX */
int error, flushparent;
ino_t parentino;
daddr_t lbn;
int l;
ip = VTOI(vp);
fs = ip->i_fs;
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(&lk);
return (0);
}
if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
LIST_FIRST(&inodedep->id_bufwait) != NULL ||
TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL)
panic("softdep_fsync: pending ops");
for (error = 0, flushparent = 0; ; ) {
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
break;
if (wk->wk_type != D_DIRADD)
panic("softdep_fsync: Unexpected type %s",
TYPENAME(wk->wk_type));
dap = WK_DIRADD(wk);
/*
* Flush our parent if this directory entry has a MKDIR_PARENT
* dependency or is contained in a newly allocated block.
*/
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
mnt = pagedep->pd_mnt;
parentino = pagedep->pd_ino;
lbn = pagedep->pd_lbn;
if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
panic("softdep_fsync: dirty");
if ((dap->da_state & MKDIR_PARENT) ||
(pagedep->pd_state & NEWBLOCK))
flushparent = 1;
else
flushparent = 0;
/*
* If we are being fsync'ed as part of vgone'ing this vnode,
* then we will not be able to release and recover the
* vnode below, so we just have to give up on writing its
* directory entry out. It will eventually be written, just
* not now, but then the user was not asking to have it
* written, so we are not breaking any promises.
*/
if (vp->v_flag & VXLOCK)
break;
/*
* We prevent deadlock by always fetching inodes from the
* root, moving down the directory tree. Thus, when fetching
* our parent directory, we must unlock ourselves before
* requesting the lock on our parent. See the comment in
* ufs_lookup for details on possible races.
*/
FREE_LOCK(&lk);
VOP_UNLOCK(vp, 0);
error = VFS_VGET(mnt, parentino, &pvp);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (error != 0)
return (error);
/*
* All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
* that are contained in direct blocks will be resolved by
* doing a ffs_update. Pagedeps contained in indirect blocks
* may require a complete sync'ing of the directory. So, we
* try the cheap and fast ffs_update first, and if that fails,
* then we do the slower VOP_FSYNC of the directory.
*/
if (flushparent) {
VTOI(pvp)->i_flag |= IN_MODIFIED;
error = ffs_update(pvp, NULL, NULL, UPDATE_WAIT);
if (error) {
vput(pvp);
return (error);
}
if ((pagedep->pd_state & NEWBLOCK) &&
(error = VOP_FSYNC(pvp, lp->l_cred,
FSYNC_WAIT, 0, 0, lp))) {
vput(pvp);
return (error);
}
}
/*
* Flush directory page containing the inode's name.
*/
error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn),
lp->l_cred, &bp);
if (error == 0)
error = VOP_BWRITE(bp);
vput(pvp);
if (error != 0)
return (error);
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
break;
}
FREE_LOCK(&lk);
if (f & FSYNC_CACHE) {
/*
* If requested, make sure all of these changes don't
* linger in disk caches
*/
l = 0;
VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
lp->l_cred, lp);
}
return (0);
}
/*
* Flush all the dirty bitmaps associated with the block device
* before flushing the rest of the dirty blocks so as to reduce
* the number of dependencies that will have to be rolled back.
*/
void
softdep_fsync_mountdev(vp)
struct vnode *vp;
{
struct buf *bp, *nbp;
struct worklist *wk;
if (vp->v_type != VBLK)
panic("softdep_fsync_mountdev: vnode not VBLK");
ACQUIRE_LOCK(&lk);
simple_lock(&bqueue_slock);
for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
nbp = bp->b_vnbufs.le_next;
simple_lock(&bp->b_interlock);
/*
* If it is already scheduled, skip to the next buffer.
*/
if (bp->b_flags & B_BUSY) {
simple_unlock(&bp->b_interlock);
continue;
}
if ((bp->b_flags & B_DELWRI) == 0)
panic("softdep_fsync_mountdev: not dirty");
/*
* We are only interested in bitmaps with outstanding
* dependencies.
*/
if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
wk->wk_type != D_BMSAFEMAP) {
simple_unlock(&bp->b_interlock);
continue;
}
bremfree(bp);
simple_unlock(&bqueue_slock);
bp->b_flags |= B_BUSY;
simple_unlock(&bp->b_interlock);
FREE_LOCK(&lk);
(void) bawrite(bp);
ACQUIRE_LOCK(&lk);
simple_lock(&bqueue_slock);
/*
* Since we may have slept during the I/O, we need
* to start from a known point.
*/
nbp = vp->v_dirtyblkhd.lh_first;
}
simple_unlock(&bqueue_slock);
drain_output(vp, 1);
FREE_LOCK(&lk);
}
/*
* This routine is called when we are trying to synchronously flush a
* file. This routine must eliminate any filesystem metadata dependencies
* so that the syncing routine can succeed by pushing the dirty blocks
* associated with the file. If any I/O errors occur, they are returned.
*/
int
softdep_sync_metadata(v)
void *v;
{
struct vop_fsync_args /* {
struct vnode *a_vp;
kauth_cred_t a_cred;
int a_waitfor;
off_t a_offlo;
off_t a_offhi;
struct lwp *a_l;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inodedep *inodedep;
struct pagedep *pagedep;
struct allocdirect *adp;
struct allocindir *aip;
struct buf *bp, *nbp;
struct worklist *wk;
int i, error, waitfor, must_sync;
/*
* Check whether this vnode is involved in a filesystem
* that is doing soft dependency processing.
*/
if (vp->v_type != VBLK) {
if (!DOINGSOFTDEP(vp))
return (0);
} else
if (vp->v_specmountpoint == NULL ||
(vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0)
return (0);
/*
* Ensure that any direct block dependencies have been cleared.
*/
ACQUIRE_LOCK(&lk);
error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number);
if (error) {
FREE_LOCK(&lk);
return (error);
}
/*
* For most files, the only metadata dependencies are the
* cylinder group maps that allocate their inode or blocks.
* The block allocation dependencies can be found by traversing
* the dependency lists for any buffers that remain on their
* dirty buffer list. The inode allocation dependency will
* be resolved when the inode is updated with MNT_WAIT.
* This work is done in two passes. The first pass grabs most
* of the buffers and begins asynchronously writing them. The
* only way to wait for these asynchronous writes is to sleep
* on the filesystem vnode which may stay busy for a long time
* if the filesystem is active. So, instead, we make a second
* pass over the dependencies blocking on each write. In the
* usual case we will be blocking against a write that we
* initiated, so when it is done the dependency will have been
* resolved. Thus the second pass is expected to end quickly.
*/
waitfor = MNT_NOWAIT;
top:
if (getdirtybuf(&vp->v_dirtyblkhd.lh_first, MNT_WAIT) == 0)
goto clean;
bp = vp->v_dirtyblkhd.lh_first;
loop:
/*
* As we hold the buffer locked, none of its dependencies
* will disappear.
*/
must_sync = 0;
for (wk = LIST_FIRST(&bp->b_dep); wk;
wk = LIST_NEXT(wk, wk_list)) {
switch (wk->wk_type) {
case D_ALLOCDIRECT:
KASSERT(vp->v_type != VREG || bp->b_lblkno < 0);
adp = WK_ALLOCDIRECT(wk);
if (adp->ad_state & DEPCOMPLETE)
break;
nbp = adp->ad_buf;
if (getdirtybuf(&nbp, waitfor) == 0)
break;
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(nbp);
} else if ((error = VOP_BWRITE(nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
case D_ALLOCINDIR:
aip = WK_ALLOCINDIR(wk);
if (aip->ai_state & DEPCOMPLETE)
break;
nbp = aip->ai_buf;
if (getdirtybuf(&nbp, waitfor) == 0)
break;
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(nbp);
} else if ((error = VOP_BWRITE(nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
case D_INDIRDEP:
restart:
for (aip = LIST_FIRST(&WK_INDIRDEP(wk)->ir_deplisthd);
aip; aip = LIST_NEXT(aip, ai_next)) {
if (aip->ai_state & DEPCOMPLETE)
continue;
nbp = aip->ai_buf;
if (getdirtybuf(&nbp, MNT_WAIT) == 0)
goto restart;
FREE_LOCK(&lk);
if ((error = VOP_BWRITE(nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
goto restart;
}
break;
case D_INODEDEP:
if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
WK_INODEDEP(wk)->id_ino)) != 0) {
FREE_LOCK(&lk);
bawrite(bp);
return (error);
}
break;
case D_PAGEDEP:
/*
* We are trying to sync a directory that may
* have dependencies on both its own metadata
* and/or dependencies on the inodes of any
* recently allocated files. We walk its diradd
* lists pushing out the associated inode.
*/
pagedep = WK_PAGEDEP(wk);
for (i = 0; i < DAHASHSZ; i++) {
if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
continue;
error = flush_pagedep_deps(vp, pagedep->pd_mnt,
&pagedep->pd_diraddhd[i]);
if (error) {
FREE_LOCK(&lk);
bawrite(bp);
return (error);
}
}
break;
case D_MKDIR:
/*
* This case should never happen if the vnode has
* been properly sync'ed. However, if this function
* is used at a place where the vnode has not yet
* been sync'ed, this dependency can show up. So,
* rather than panic, just flush it.
*/
nbp = WK_MKDIR(wk)->md_buf;
if (getdirtybuf(&nbp, waitfor) == 0)
break;
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(nbp);
} else if ((error = VOP_BWRITE(nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
case D_BMSAFEMAP:
/*
* If the vnode is a block device associated with a
* file system it may have new I/O requests posted for
* it even if the vnode is locked. For other vnodes
* this case should never happen if the vnode has
* been properly sync'ed. As this dependency can show
* up we have to deal with it.
* For a BMSAFEMAP dependency its sm_buf points to the
* buffer holding it so all we can do is to note this
* condition so bp gets written synchronously if
* waitfor is not MNT_NOWAIT.
*/
nbp = WK_BMSAFEMAP(wk)->sm_buf;
KASSERT(nbp == bp);
#ifdef DIAGNOSTIC
if (vp->v_type != VBLK)
vprint("softdep_sync_metadata: bmsafemap", vp);
#endif
if (waitfor != MNT_NOWAIT)
must_sync = 1;
break;
default:
panic("softdep_sync_metadata: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
(void) getdirtybuf(&bp->b_vnbufs.le_next, MNT_WAIT);
nbp = bp->b_vnbufs.le_next;
FREE_LOCK(&lk);
if (must_sync) {
if ((error = VOP_BWRITE(bp)) != 0)
return error;
} else
bawrite(bp);
ACQUIRE_LOCK(&lk);
if (nbp != NULL) {
bp = nbp;
goto loop;
}
/*
* We must wait for any I/O in progress to finish so that
* all potential buffers on the dirty list will be visible.
* Once they are all there, proceed with the second pass
* which will wait for the I/O as per above.
*/
drain_output(vp, 1);
/*
* The brief unlock is to allow any pent up dependency
* processing to be done.
*/
if (waitfor == MNT_NOWAIT) {
waitfor = MNT_WAIT;
FREE_LOCK(&lk);
ACQUIRE_LOCK(&lk);
goto top;
}
/*
* If we have managed to get rid of all the dirty buffers,
* then we are done. For certain directories and block
* devices, we may need to do further work.
*/
if (vp->v_dirtyblkhd.lh_first != NULL) {
FREE_LOCK(&lk);
/*
* If we are trying to sync a block device, some of its buffers
* may contain metadata that cannot be written until the
* contents of some partially written files have been written
* to disk. The only easy way to accomplish this is to sync the
* entire filesystem (luckily this happens rarely).
*/
if (vp->v_type == VBLK && vp->v_specmountpoint &&
!VOP_ISLOCKED(vp) &&
(error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT,
ap->a_cred, ap->a_l)) != 0)
return (error);
ACQUIRE_LOCK(&lk);
}
clean:
/*
* If there is still an inodedep, we know that the inode has pending
* modifications, and we must force it to be flushed to disk. We do
* this by explicitly setting IN_MODIFIED so that ffs_update() will
* see it.
*/
if (inodedep_lookup(VTOI(vp)->i_fs, VTOI(vp)->i_number, 0, &inodedep))
VTOI(vp)->i_flag |= IN_MODIFIED;
FREE_LOCK(&lk);
return (0);
}
/*
* Flush the dependencies associated with an inodedep.
* Called with splbio blocked.
*/
static int
flush_inodedep_deps(fs, ino)
struct fs *fs;
ino_t ino;
{
struct inodedep *inodedep;
struct allocdirect *adp;
int error, waitfor;
struct buf *bp;
struct vnode *vp;
vp = softdep_lookupvp(fs, ino);
/*
* This work is done in two passes. The first pass grabs most
* of the buffers and begins asynchronously writing them. The
* only way to wait for these asynchronous writes is to sleep
* on the filesystem vnode which may stay busy for a long time
* if the filesystem is active. So, instead, we make a second
* pass over the dependencies blocking on each write. In the
* usual case we will be blocking against a write that we
* initiated, so when it is done the dependency will have been
* resolved. Thus the second pass is expected to end quickly.
* We give a brief window at the top of the loop to allow
* any pending I/O to complete.
*/
for (waitfor = MNT_NOWAIT; ; ) {
FREE_LOCK(&lk);
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
return (0);
/*
* When file data was in the buffer cache,
* softdep_sync_metadata() would start i/o on
* file data buffers itself. But now that
* we're using the page cache to hold file data,
* we need something else to trigger those flushes.
* let's just do it here.
*/
if (vp != NULL) {
FREE_LOCK(&lk);
simple_lock(&vp->v_interlock);
error = VOP_PUTPAGES(vp, 0, 0,
PGO_ALLPAGES | PGO_CLEANIT |
(waitfor == MNT_NOWAIT ? 0: PGO_SYNCIO));
if (waitfor == MNT_WAIT) {
drain_output(vp, 0);
}
ACQUIRE_LOCK(&lk);
if (error) {
return error;
}
if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) {
return (0);
}
} else {
/*
* The inode has been reclaimed. Be sure no
* dependencies to flush pages remain.
*/
KASSERT(TAILQ_EMPTY(&inodedep->id_inoupdt));
KASSERT(TAILQ_EMPTY(&inodedep->id_newinoupdt));
}
for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_state & DEPCOMPLETE)
continue;
bp = adp->ad_buf;
if (getdirtybuf(&bp, waitfor) == 0) {
if (waitfor == MNT_NOWAIT)
continue;
break;
}
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(bp);
} else if ((error = VOP_BWRITE(bp)) != 0) {
ACQUIRE_LOCK(&lk);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
}
if (adp != NULL)
continue;
for (adp = TAILQ_FIRST(&inodedep->id_newinoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_state & DEPCOMPLETE)
continue;
bp = adp->ad_buf;
if (getdirtybuf(&bp, waitfor) == 0) {
if (waitfor == MNT_NOWAIT)
continue;
break;
}
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(bp);
} else if ((error = VOP_BWRITE(bp)) != 0) {
ACQUIRE_LOCK(&lk);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
}
if (adp != NULL)
continue;
/*
* If pass2, we are done, otherwise do pass 2.
*/
if (waitfor == MNT_WAIT)
break;
waitfor = MNT_WAIT;
}
/*
* Try freeing inodedep in case all dependencies have been removed.
*/
if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
(void) free_inodedep(inodedep);
return (0);
}
/*
* Eliminate a pagedep dependency by flushing out all its diradd dependencies.
* Called with splbio blocked.
*/
static int
flush_pagedep_deps(pvp, mp, diraddhdp)
struct vnode *pvp;
struct mount *mp;
struct diraddhd *diraddhdp;
{
struct lwp *l = curlwp; /* XXX */
struct inodedep *inodedep;
struct ufsmount *ump;
struct diradd *dap;
struct vnode *vp;
int gotit, error = 0;
struct buf *bp;
ino_t inum;
u_int ipflag;
ump = VFSTOUFS(mp);
while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
/*
* Flush ourselves if this directory entry
* has a MKDIR_PARENT dependency.
*/
if (dap->da_state & MKDIR_PARENT) {
FREE_LOCK(&lk);
VTOI(pvp)->i_flag |= IN_MODIFIED;
error = ffs_update(pvp, NULL, NULL, UPDATE_WAIT);
if (error)
break;
ACQUIRE_LOCK(&lk);
/*
* If that cleared dependencies, go on to next.
*/
if (dap != LIST_FIRST(diraddhdp))
continue;
if (dap->da_state & MKDIR_PARENT)
panic("flush_pagedep_deps: MKDIR_PARENT");
}
/*
* A newly allocated directory must have its "." and
* ".." entries written out before its name can be
* committed in its parent. We do not want or need
* the full semantics of a synchronous VOP_FSYNC as
* that may end up here again, once for each directory
* level in the filesystem. Instead, we push the blocks
* and wait for them to clear. We have to fsync twice
* because the first call may choose to defer blocks
* that still have dependencies, but deferral will
* happen at most once.
*/
inum = dap->da_newinum;
if (dap->da_state & MKDIR_BODY) {
FREE_LOCK(&lk);
ipflag = vn_setrecurse(pvp); /* XXX */
if ((error = VFS_VGET(mp, inum, &vp)) != 0)
break;
if ((error = VOP_FSYNC(vp, l->l_cred,
0, 0, 0, l)) ||
(error = VOP_FSYNC(vp, l->l_cred,
0, 0, 0, l))) {
vput(vp);
break;
}
drain_output(vp, 0);
vput(vp);
vn_restorerecurse(pvp, ipflag);
ACQUIRE_LOCK(&lk);
/*
* If that cleared dependencies, go on to next.
*/
if (dap != LIST_FIRST(diraddhdp))
continue;
if (dap->da_state & MKDIR_BODY)
panic("flush_pagedep_deps: MKDIR_BODY");
}
/*
* Flush the inode on which the directory entry depends.
* Having accounted for MKDIR_PARENT and MKDIR_BODY above,
* the only remaining dependency is that the updated inode
* count must get pushed to disk. The inode has already
* been pushed into its inode buffer (via ffs_update) at
* the time of the reference count change. So we need only
* locate that buffer, ensure that there will be no rollback
* caused by a bitmap dependency, then write the inode buffer.
*/
if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0)
panic("flush_pagedep_deps: lost inode");
/*
* If the inode still has bitmap dependencies,
* push them to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
FREE_LOCK(&lk);
if (gotit &&
(error = VOP_BWRITE(inodedep->id_buf)) != 0)
break;
ACQUIRE_LOCK(&lk);
if (dap != LIST_FIRST(diraddhdp))
continue;
}
/*
* If the inode is still sitting in a buffer waiting
* to be written, push it to disk.
*/
FREE_LOCK(&lk);
if ((error = bread(ump->um_devvp,
fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
(int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0)
break;
if ((error = VOP_BWRITE(bp)) != 0)
break;
ACQUIRE_LOCK(&lk);
/*
* If we have failed to get rid of all the dependencies
* then something is seriously wrong.
*/
if (dap == LIST_FIRST(diraddhdp))
panic("flush_pagedep_deps: flush failed");
}
if (error)
ACQUIRE_LOCK(&lk);
return (error);
}
/*
* A large burst of file addition or deletion activity can drive the
* memory load excessively high. Therefore we deliberately slow things
* down and speed up the I/O processing if we find ourselves with too
* many dependencies in progress.
*/
static int
request_cleanup(resource, islocked)
int resource;
int islocked;
{
struct proc *p = CURPROC;
int s;
/*
* We never hold up the filesystem syncer process.
*/
if (p == filesys_syncer)
return (0);
/*
* If we are resource constrained on inode dependencies, try
* flushing some dirty inodes. Otherwise, we are constrained
* by file deletions, so try accelerating flushes of directories
* with removal dependencies. We would like to do the cleanup
* here, but we probably hold an inode locked at this point and
* that might deadlock against one that we try to clean. So,
* the best that we can do is request the syncer daemon to do
* the cleanup for us.
*/
switch (resource) {
case FLUSH_INODES:
stat_ino_limit_push += 1;
req_clear_inodedeps = 1;
break;
case FLUSH_REMOVE:
stat_blk_limit_push += 1;
req_clear_remove = 1;
break;
default:
panic("request_cleanup: unknown type");
}
/*
* Hopefully the syncer daemon will catch up and awaken us.
* We wait at most tickdelay before proceeding in any case.
*/
if (islocked == 0)
ACQUIRE_LOCK(&lk);
if (proc_waiting++ == 0)
callout_reset(&pause_timer_ch,
tickdelay > 2 ? tickdelay : 2, pause_timer, NULL);
s = FREE_LOCK_INTERLOCKED(&lk);
(void) tsleep((void *)&proc_waiting, PPAUSE, "softupdate", 0);
ACQUIRE_LOCK_INTERLOCKED(&lk, s);
if (--proc_waiting)
callout_reset(&pause_timer_ch,
tickdelay > 2 ? tickdelay : 2, pause_timer, NULL);
else {
callout_stop(&pause_timer_ch);
#if 0
switch (resource) {
case FLUSH_INODES:
stat_ino_limit_hit += 1;
break;
case FLUSH_REMOVE:
stat_blk_limit_hit += 1;
break;
}
#endif
}
if (islocked == 0)
FREE_LOCK(&lk);
return (1);
}
/*
* Awaken processes pausing in request_cleanup and clear proc_waiting
* to indicate that there is no longer a timer running.
*/
void
pause_timer(void *arg)
{
/* XXX was wakeup_one(), but makes no difference in uniprocessor */
wakeup(&proc_waiting);
}
/*
* Flush out a directory with at least one removal dependency in an effort to
* reduce the number of dirrem, freefile and freeblks dependency structures.
*/
static void
clear_remove(l)
struct lwp *l;
{
struct pagedep_hashhead *pagedephd;
struct pagedep *pagedep;
static int next = 0;
struct mount *mp;
struct vnode *vp;
int error, cnt;
ino_t ino;
ACQUIRE_LOCK(&lk);
for (cnt = 0; cnt < pagedep_hash; cnt++) {
pagedephd = &pagedep_hashtbl[next++];
if (next >= pagedep_hash)
next = 0;
LIST_FOREACH(pagedep, pagedephd, pd_hash) {
if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
continue;
mp = pagedep->pd_mnt;
ino = pagedep->pd_ino;
FREE_LOCK(&lk);
if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
softdep_error("clear_remove: vget", error);
return;
}
if ((error = VOP_FSYNC(vp, l->l_cred, 0, 0, 0, l)))
softdep_error("clear_remove: fsync", error);
drain_output(vp, 0);
vput(vp);
return;
}
}
FREE_LOCK(&lk);
}
/*
* Clear out a block of dirty inodes in an effort to reduce
* the number of inodedep dependency structures.
*/
static void
clear_inodedeps(l)
struct lwp *l;
{
struct inodedep_hashhead *inodedephd;
struct inodedep *inodedep;
static int next = 0;
struct mount *mp;
struct vnode *vp;
struct fs *fs;
int error, cnt;
ino_t firstino, lastino, ino;
ACQUIRE_LOCK(&lk);
/*
* Pick a random inode dependency to be cleared.
* We will then gather up all the inodes in its block
* that have dependencies and flush them out.
*/
for (cnt = 0; cnt < inodedep_hash; cnt++) {
inodedephd = &inodedep_hashtbl[next++];
if (next >= inodedep_hash)
next = 0;
if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
break;
}
/*
* Ugly code to find mount point given pointer to superblock.
*/
fs = inodedep->id_fs;
CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
break;
}
/*
* Find the last inode in the block with dependencies.
*/
firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
break;
/*
* Asynchronously push all but the last inode with dependencies.
* Synchronously push the last inode with dependencies to ensure
* that the inode block gets written to free up the inodedeps.
*/
for (ino = firstino; ino <= lastino; ino++) {
if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
continue;
FREE_LOCK(&lk);
if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
softdep_error("clear_inodedeps: vget", error);
return;
}
if (ino == lastino) {
if ((error = VOP_FSYNC(vp, l->l_cred, FSYNC_WAIT,
0, 0, l)))
softdep_error("clear_inodedeps: fsync1", error);
} else {
if ((error = VOP_FSYNC(vp, l->l_cred, 0, 0, 0, l)))
softdep_error("clear_inodedeps: fsync2", error);
drain_output(vp, 0);
}
vput(vp);
ACQUIRE_LOCK(&lk);
}
FREE_LOCK(&lk);
}
/*
* Function to determine if the buffer has outstanding dependencies
* that will cause a roll-back if the buffer is written. If wantcount
* is set, return number of dependencies, otherwise just yes or no.
*/
static int
softdep_count_dependencies(bp, wantcount)
struct buf *bp;
int wantcount;
{
struct worklist *wk;
struct inodedep *inodedep;
struct indirdep *indirdep;
struct allocindir *aip;
struct pagedep *pagedep;
struct diradd *dap;
int i, retval;
retval = 0;
ACQUIRE_LOCK(&lk);
for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list)) {
switch (wk->wk_type) {
case D_INODEDEP:
inodedep = WK_INODEDEP(wk);
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
/* bitmap allocation dependency */
retval += 1;
if (!wantcount)
goto out;
}
if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
/* direct block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
for (aip = LIST_FIRST(&indirdep->ir_deplisthd);
aip; aip = LIST_NEXT(aip, ai_next)) {
/* indirect block pointer dependency */
retval += 1;
if (!wantcount)
goto out;
}
continue;
case D_PAGEDEP:
pagedep = WK_PAGEDEP(wk);
for (i = 0; i < DAHASHSZ; i++) {
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]);
dap; dap = LIST_NEXT(dap, da_pdlist)) {
/* directory entry dependency */
retval += 1;
if (!wantcount)
goto out;
}
}
continue;
case D_BMSAFEMAP:
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
case D_MKDIR:
/* never a dependency on these blocks */
continue;
default:
panic("softdep_check_for_rollback: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
out:
FREE_LOCK(&lk);
return retval;
}
/*
* Acquire exclusive access to a buffer.
* Must be called with splbio blocked.
* Return 1 if buffer was acquired.
*/
static int
getdirtybuf(bpp, waitfor)
struct buf **bpp;
int waitfor;
{
struct buf *bp;
again:
for (;;) {
int s;
if ((bp = *bpp) == NULL)
return (0);
simple_lock(&bp->b_interlock);
if ((bp->b_flags & B_BUSY) == 0)
break;
if (waitfor != MNT_WAIT) {
simple_unlock(&bp->b_interlock);
return (0);
}
bp->b_flags |= B_WANTED;
s = FREE_LOCK_INTERLOCKED(&lk);
(void) ltsleep(bp, (PRIBIO + 1) | PNORELOCK, "softgetdbuf", 0,
&bp->b_interlock);
ACQUIRE_LOCK_INTERLOCKED(&lk, s);
}
LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
if ((bp->b_flags & B_DELWRI) == 0) {
simple_unlock(&bp->b_interlock);
return (0);
}
if (!simple_lock_try(&bqueue_slock)) {
simple_unlock(&bp->b_interlock);
goto again;
}
#if 1
bp->b_flags |= B_BUSY;
bremfree(bp);
#else
bp->b_flags |= B_BUSY | B_VFLUSH;
#endif
simple_unlock(&bqueue_slock);
simple_unlock(&bp->b_interlock);
return (1);
}
/*
* Wait for pending output on a vnode to complete.
* Must be called with vnode locked.
*/
static void
drain_output(vp, islocked)
struct vnode *vp;
int islocked;
{
if (!islocked)
ACQUIRE_LOCK(&lk);
simple_lock(&global_v_numoutput_slock);
while (vp->v_numoutput) {
int s;
vp->v_flag |= VBWAIT;
s = FREE_LOCK_INTERLOCKED(&lk);
ltsleep((void *)&vp->v_numoutput, PRIBIO + 1, "drainvp", 0,
&global_v_numoutput_slock);
ACQUIRE_LOCK_INTERLOCKED(&lk, s);
}
simple_unlock(&global_v_numoutput_slock);
if (!islocked)
FREE_LOCK(&lk);
}
/*
* Called whenever a buffer that is being invalidated or reallocated
* contains dependencies. This should only happen if an I/O error has
* occurred. The routine is called with the buffer locked.
*/
static void
softdep_deallocate_dependencies(bp)
struct buf *bp;
{
if ((bp->b_flags & B_ERROR) == 0)
panic("softdep_deallocate_dependencies: dangling deps");
softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
panic("softdep_deallocate_dependencies: unrecovered I/O error");
}
/*
* Function to handle asynchronous write errors in the filesystem.
*/
void
softdep_error(func, error)
const char *func;
int error;
{
/* XXX should do something better! */
printf("%s: got error %d while accessing filesystem\n", func, error);
}
/*
* Allocate a buffer on which to attach a dependency.
*/
static struct buf *
softdep_setup_pagecache(ip, lbn, size)
struct inode *ip;
daddr_t lbn;
long size;
{
struct vnode *vp = ITOV(ip);
struct buf *bp;
UVMHIST_FUNC("softdep_setup_pagecache"); UVMHIST_CALLED(ubchist);
/*
* Enter pagecache dependency buf in hash.
* Always reset b_resid to be the full amount of data in the block
* since the caller has the corresponding pages locked and dirty.
*
* Note that we are using b_resid as a bitmap, so that
* we can track which pages are written. As pages can be re-dirtied
* and re-written in the mean time, byte-count is not suffice for
* our purpose.
*/
bp = softdep_lookup_pcbp(vp, lbn);
if (bp == NULL) {
bp = pool_get(&sdpcpool, PR_WAITOK);
bp->b_vp = vp;
bp->b_lblkno = lbn;
LIST_INIT(&bp->b_dep);
LIST_INSERT_HEAD(&pcbphashhead[PCBPHASH(vp, lbn)], bp, b_hash);
LIST_INSERT_HEAD(&ip->i_pcbufhd, bp, b_vnbufs);
}
bp->b_bcount = size;
KASSERT(size <= PAGE_SIZE * sizeof(bp->b_resid) * CHAR_BIT);
bp->b_resid = PCBP_BITMAP(0, size);
UVMHIST_LOG(ubchist, "vp = %p, lbn = %ld, "
"bp = %p, bcount = %ld", vp, lbn, bp, size);
UVMHIST_LOG(ubchist, "b_resid = %ld",
bp->b_resid, 0, 0, 0);
return bp;
}
/*
* softdep_collect_pagecache() and softdep_free_pagecache()
* are used to remove page cache dependency buffers when
* a file is being truncated to 0.
*/
static void
softdep_collect_pagecache(ip)
struct inode *ip;
{
struct buf *bp;
LIST_FOREACH(bp, &ip->i_pcbufhd, b_vnbufs) {
LIST_REMOVE(bp, b_hash);
}
}
static void
softdep_free_pagecache(ip)
struct inode *ip;
{
struct buf *bp, *nextbp;
for (bp = LIST_FIRST(&ip->i_pcbufhd); bp != NULL; bp = nextbp) {
nextbp = LIST_NEXT(bp, b_vnbufs);
LIST_REMOVE(bp, b_vnbufs);
KASSERT(LIST_FIRST(&bp->b_dep) == NULL);
pool_put(&sdpcpool, bp);
}
}
static struct vnode *
softdep_lookupvp(fs, ino)
struct fs *fs;
ino_t ino;
{
struct mount *mp;
extern struct vfsops ffs_vfsops;
CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
if (mp->mnt_op == &ffs_vfsops &&
VFSTOUFS(mp)->um_fs == fs) {
return (ufs_ihashlookup(VFSTOUFS(mp)->um_dev, ino));
}
}
return (NULL);
}
static void
softdep_trackbufs(int delta, bool throttle)
{
if (delta < 0) {
if (softdep_lockedbufs < nbuf >> 2) {
wakeup(&softdep_lockedbufs);
}
KASSERT(softdep_lockedbufs >= -delta);
softdep_lockedbufs += delta;
return;
}
while (throttle && softdep_lockedbufs >= nbuf >> 2) {
speedup_syncer();
tsleep(&softdep_lockedbufs, PRIBIO, "softdbufs", 0);
}
softdep_lockedbufs += delta;
}
static struct buf *
softdep_lookup_pcbp(vp, lbn)
struct vnode *vp;
daddr_t lbn;
{
struct buf *bp;
LIST_FOREACH(bp, &pcbphashhead[PCBPHASH(vp, lbn)], b_hash) {
if (bp->b_vp == vp && bp->b_lblkno == lbn) {
break;
}
}
return bp;
}
/*
* Do softdep i/o completion processing for page cache writes.
*/
void
softdep_pageiodone(bp)
struct buf *bp;
#ifdef UVMHIST
{
struct vnode *vp = bp->b_vp;
if (DOINGSOFTDEP(vp))
softdep_pageiodone1(bp);
}
void
softdep_pageiodone1(bp)
struct buf *bp;
#endif
{
int npages = bp->b_bufsize >> PAGE_SHIFT;
struct vnode *vp = bp->b_vp;
struct vm_page *pg;
struct buf *pcbp = NULL;
struct allocdirect *adp;
struct allocindir *aip;
struct worklist *wk;
daddr_t lbn;
voff_t off;
int iosize = bp->b_bcount;
int size, asize, bshift, bsize;
int i;
UVMHIST_FUNC("softdep_pageiodone"); UVMHIST_CALLED(ubchist);
KASSERT(!(bp->b_flags & B_READ));
bshift = vp->v_mount->mnt_fs_bshift;
bsize = 1 << bshift;
asize = MIN(PAGE_SIZE, bsize);
ACQUIRE_LOCK(&lk);
for (i = 0; i < npages; i++) {
pg = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
if (pg == NULL) {
panic("%s: no page", __func__);
}
for (off = pg->offset;
off < pg->offset + PAGE_SIZE;
off += bsize) {
int pgmask;
size = MIN(asize, iosize);
iosize -= size;
lbn = off >> bshift;
if (pcbp == NULL || pcbp->b_lblkno != lbn) {
pcbp = softdep_lookup_pcbp(vp, lbn);
}
if (pcbp == NULL) {
continue;
}
UVMHIST_LOG(ubchist,
"bcount %ld resid %ld vp %p lbn %ld",
pcbp ? pcbp->b_bcount : -1,
pcbp ? pcbp->b_resid : -1, vp, lbn);
UVMHIST_LOG(ubchist,
"pcbp %p iosize %ld, size %d, asize %d",
pcbp, iosize, size, asize);
pgmask = PCBP_BITMAP(off & (bsize - 1), size);
if ((~pcbp->b_resid & pgmask) != 0) {
UVMHIST_LOG(ubchist,
"multiple write resid %lx, pgmask %lx",
pcbp->b_resid, pgmask, 0, 0);
}
pcbp->b_resid &= ~pgmask;
if (pcbp->b_resid != 0) {
continue;
}
/*
* We've completed all the i/o for this block.
* mark the dep complete.
*/
KASSERT(LIST_FIRST(&pcbp->b_dep) != NULL);
while ((wk = LIST_FIRST(&pcbp->b_dep))) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_ALLOCDIRECT:
adp = WK_ALLOCDIRECT(wk);
adp->ad_state |= COMPLETE;
handle_allocdirect_partdone(adp);
break;
case D_ALLOCINDIR:
aip = WK_ALLOCINDIR(wk);
aip->ai_state |= COMPLETE;
handle_allocindir_partdone(aip);
break;
default:
panic("softdep_pageiodone: "
"bad type %d, pcbp %p wk %p",
wk->wk_type, pcbp, wk);
}
}
LIST_REMOVE(pcbp, b_hash);
LIST_REMOVE(pcbp, b_vnbufs);
pool_put(&sdpcpool, pcbp);
pcbp = NULL;
}
}
FREE_LOCK(&lk);
}