NetBSD/sys/dev/sbus/be.c

1746 lines
41 KiB
C

/* $NetBSD: be.c,v 1.44 2004/10/30 18:10:06 thorpej Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1998 Theo de Raadt and Jason L. Wright.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: be.c,v 1.44 2004/10/30 18:10:06 thorpej Exp $");
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_ccitt.h"
#include "opt_llc.h"
#include "opt_ns.h"
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/malloc.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/autoconf.h>
#include <dev/sbus/sbusvar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/sbus/qecreg.h>
#include <dev/sbus/qecvar.h>
#include <dev/sbus/bereg.h>
struct be_softc {
struct device sc_dev;
struct sbusdev sc_sd; /* sbus device */
bus_space_tag_t sc_bustag; /* bus & DMA tags */
bus_dma_tag_t sc_dmatag;
bus_dmamap_t sc_dmamap;
struct ethercom sc_ethercom;
/*struct ifmedia sc_ifmedia; -* interface media */
struct mii_data sc_mii; /* MII media control */
#define sc_media sc_mii.mii_media/* shorthand */
int sc_phys[2]; /* MII instance -> phy */
struct callout sc_tick_ch;
/*
* Some `mii_softc' items we need to emulate MII operation
* for our internal transceiver.
*/
int sc_mii_inst; /* instance of internal phy */
int sc_mii_active; /* currently active medium */
int sc_mii_ticks; /* tick counter */
int sc_mii_flags; /* phy status flags */
#define MIIF_HAVELINK 0x04000000
int sc_intphy_curspeed; /* Established link speed */
struct qec_softc *sc_qec; /* QEC parent */
bus_space_handle_t sc_qr; /* QEC registers */
bus_space_handle_t sc_br; /* BE registers */
bus_space_handle_t sc_cr; /* channel registers */
bus_space_handle_t sc_tr; /* transceiver registers */
u_int sc_rev;
int sc_channel; /* channel number */
int sc_burst;
struct qec_ring sc_rb; /* Packet Ring Buffer */
/* MAC address */
u_int8_t sc_enaddr[6];
#ifdef BEDEBUG
int sc_debug;
#endif
};
int bematch __P((struct device *, struct cfdata *, void *));
void beattach __P((struct device *, struct device *, void *));
void beinit __P((struct be_softc *));
void bestart __P((struct ifnet *));
void bestop __P((struct be_softc *));
void bewatchdog __P((struct ifnet *));
int beioctl __P((struct ifnet *, u_long, caddr_t));
void bereset __P((struct be_softc *));
int beintr __P((void *));
int berint __P((struct be_softc *));
int betint __P((struct be_softc *));
int beqint __P((struct be_softc *, u_int32_t));
int beeint __P((struct be_softc *, u_int32_t));
static void be_read __P((struct be_softc *, int, int));
static int be_put __P((struct be_softc *, int, struct mbuf *));
static struct mbuf *be_get __P((struct be_softc *, int, int));
void be_pal_gate __P((struct be_softc *, int));
/* ifmedia callbacks */
void be_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
int be_ifmedia_upd __P((struct ifnet *));
void be_mcreset __P((struct be_softc *));
/* MII methods & callbacks */
static int be_mii_readreg __P((struct device *, int, int));
static void be_mii_writereg __P((struct device *, int, int, int));
static void be_mii_statchg __P((struct device *));
/* MII helpers */
static void be_mii_sync __P((struct be_softc *));
static void be_mii_sendbits __P((struct be_softc *, int, u_int32_t, int));
static int be_mii_reset __P((struct be_softc *, int));
static int be_tcvr_read_bit __P((struct be_softc *, int));
static void be_tcvr_write_bit __P((struct be_softc *, int, int));
void be_tick __P((void *));
void be_intphy_auto __P((struct be_softc *));
void be_intphy_status __P((struct be_softc *));
int be_intphy_service __P((struct be_softc *, struct mii_data *, int));
CFATTACH_DECL(be, sizeof(struct be_softc),
bematch, beattach, NULL, NULL);
int
bematch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct sbus_attach_args *sa = aux;
return (strcmp(cf->cf_name, sa->sa_name) == 0);
}
void
beattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct sbus_attach_args *sa = aux;
struct qec_softc *qec = (struct qec_softc *)parent;
struct be_softc *sc = (struct be_softc *)self;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data *mii = &sc->sc_mii;
struct mii_softc *child;
int node = sa->sa_node;
bus_dma_tag_t dmatag = sa->sa_dmatag;
bus_dma_segment_t seg;
bus_size_t size;
int instance;
int rseg, error;
u_int32_t v;
if (sa->sa_nreg < 3) {
printf("%s: only %d register sets\n",
self->dv_xname, sa->sa_nreg);
return;
}
if (bus_space_map(sa->sa_bustag,
(bus_addr_t)BUS_ADDR(
sa->sa_reg[0].oa_space,
sa->sa_reg[0].oa_base),
(bus_size_t)sa->sa_reg[0].oa_size,
0, &sc->sc_cr) != 0) {
printf("beattach: cannot map registers\n");
return;
}
if (bus_space_map(sa->sa_bustag,
(bus_addr_t)BUS_ADDR(
sa->sa_reg[1].oa_space,
sa->sa_reg[1].oa_base),
(bus_size_t)sa->sa_reg[1].oa_size,
0, &sc->sc_br) != 0) {
printf("beattach: cannot map registers\n");
return;
}
if (bus_space_map(sa->sa_bustag,
(bus_addr_t)BUS_ADDR(
sa->sa_reg[2].oa_space,
sa->sa_reg[2].oa_base),
(bus_size_t)sa->sa_reg[2].oa_size,
0, &sc->sc_tr) != 0) {
printf("beattach: cannot map registers\n");
return;
}
sc->sc_bustag = sa->sa_bustag;
sc->sc_qec = qec;
sc->sc_qr = qec->sc_regs;
sc->sc_rev = prom_getpropint(node, "board-version", -1);
printf(" rev %x", sc->sc_rev);
bestop(sc);
sc->sc_channel = prom_getpropint(node, "channel#", -1);
if (sc->sc_channel == -1)
sc->sc_channel = 0;
sc->sc_burst = prom_getpropint(node, "burst-sizes", -1);
if (sc->sc_burst == -1)
sc->sc_burst = qec->sc_burst;
/* Clamp at parent's burst sizes */
sc->sc_burst &= qec->sc_burst;
/* Establish interrupt handler */
if (sa->sa_nintr)
(void)bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_NET,
beintr, sc);
prom_getether(node, sc->sc_enaddr);
printf(" address %s\n", ether_sprintf(sc->sc_enaddr));
/*
* Allocate descriptor ring and buffers.
*/
/* for now, allocate as many bufs as there are ring descriptors */
sc->sc_rb.rb_ntbuf = QEC_XD_RING_MAXSIZE;
sc->sc_rb.rb_nrbuf = QEC_XD_RING_MAXSIZE;
size = QEC_XD_RING_MAXSIZE * sizeof(struct qec_xd) +
QEC_XD_RING_MAXSIZE * sizeof(struct qec_xd) +
sc->sc_rb.rb_ntbuf * BE_PKT_BUF_SZ +
sc->sc_rb.rb_nrbuf * BE_PKT_BUF_SZ;
/* Get a DMA handle */
if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
printf("%s: DMA map create error %d\n", self->dv_xname, error);
return;
}
/* Allocate DMA buffer */
if ((error = bus_dmamem_alloc(sa->sa_dmatag, size, 0, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
printf("%s: DMA buffer alloc error %d\n",
self->dv_xname, error);
return;
}
/* Map DMA memory in CPU addressable space */
if ((error = bus_dmamem_map(sa->sa_dmatag, &seg, rseg, size,
&sc->sc_rb.rb_membase,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: DMA buffer map error %d\n",
self->dv_xname, error);
bus_dmamem_free(sa->sa_dmatag, &seg, rseg);
return;
}
/* Load the buffer */
if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
sc->sc_rb.rb_membase, size, NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: DMA buffer map load error %d\n",
self->dv_xname, error);
bus_dmamem_unmap(dmatag, sc->sc_rb.rb_membase, size);
bus_dmamem_free(dmatag, &seg, rseg);
return;
}
sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
/*
* Initialize our media structures and MII info.
*/
mii->mii_ifp = ifp;
mii->mii_readreg = be_mii_readreg;
mii->mii_writereg = be_mii_writereg;
mii->mii_statchg = be_mii_statchg;
ifmedia_init(&mii->mii_media, 0, be_ifmedia_upd, be_ifmedia_sts);
callout_init(&sc->sc_tick_ch);
/*
* Initialize transceiver and determine which PHY connection to use.
*/
be_mii_sync(sc);
v = bus_space_read_4(sc->sc_bustag, sc->sc_tr, BE_TRI_MGMTPAL);
instance = 0;
if ((v & MGMT_PAL_EXT_MDIO) != 0) {
mii_attach(&sc->sc_dev, mii, 0xffffffff, BE_PHY_EXTERNAL,
MII_OFFSET_ANY, 0);
child = LIST_FIRST(&mii->mii_phys);
if (child == NULL) {
/* No PHY attached */
ifmedia_add(&sc->sc_media,
IFM_MAKEWORD(IFM_ETHER,IFM_NONE,0,instance),
0, NULL);
ifmedia_set(&sc->sc_media,
IFM_MAKEWORD(IFM_ETHER,IFM_NONE,0,instance));
} else {
/*
* Note: we support just one PHY on the external
* MII connector.
*/
#ifdef DIAGNOSTIC
if (LIST_NEXT(child, mii_list) != NULL) {
printf("%s: spurious MII device %s attached\n",
sc->sc_dev.dv_xname,
child->mii_dev.dv_xname);
}
#endif
if (child->mii_phy != BE_PHY_EXTERNAL ||
child->mii_inst > 0) {
printf("%s: cannot accomodate MII device %s"
" at phy %d, instance %d\n",
sc->sc_dev.dv_xname,
child->mii_dev.dv_xname,
child->mii_phy, child->mii_inst);
} else {
sc->sc_phys[instance] = child->mii_phy;
}
/*
* XXX - we can really do the following ONLY if the
* phy indeed has the auto negotiation capability!!
*/
ifmedia_set(&sc->sc_media,
IFM_MAKEWORD(IFM_ETHER,IFM_AUTO,0,instance));
/* Mark our current media setting */
be_pal_gate(sc, BE_PHY_EXTERNAL);
instance++;
}
}
if ((v & MGMT_PAL_INT_MDIO) != 0) {
/*
* The be internal phy looks vaguely like MII hardware,
* but not enough to be able to use the MII device
* layer. Hence, we have to take care of media selection
* ourselves.
*/
sc->sc_mii_inst = instance;
sc->sc_phys[instance] = BE_PHY_INTERNAL;
/* Use `ifm_data' to store BMCR bits */
ifmedia_add(&sc->sc_media,
IFM_MAKEWORD(IFM_ETHER,IFM_10_T,0,instance),
0, NULL);
ifmedia_add(&sc->sc_media,
IFM_MAKEWORD(IFM_ETHER,IFM_100_TX,0,instance),
BMCR_S100, NULL);
ifmedia_add(&sc->sc_media,
IFM_MAKEWORD(IFM_ETHER,IFM_AUTO,0,instance),
0, NULL);
printf("on-board transceiver at %s: 10baseT, 100baseTX, auto\n",
self->dv_xname);
be_mii_reset(sc, BE_PHY_INTERNAL);
/* Only set default medium here if there's no external PHY */
if (instance == 0) {
be_pal_gate(sc, BE_PHY_INTERNAL);
ifmedia_set(&sc->sc_media,
IFM_MAKEWORD(IFM_ETHER,IFM_AUTO,0,instance));
} else
be_mii_writereg((void *)sc,
BE_PHY_INTERNAL, MII_BMCR, BMCR_ISO);
}
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = bestart;
ifp->if_ioctl = beioctl;
ifp->if_watchdog = bewatchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
IFQ_SET_READY(&ifp->if_snd);
/* claim 802.1q capability */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
}
/*
* Routine to copy from mbuf chain to transmit buffer in
* network buffer memory.
*/
static __inline__ int
be_put(sc, idx, m)
struct be_softc *sc;
int idx;
struct mbuf *m;
{
struct mbuf *n;
int len, tlen = 0, boff = 0;
caddr_t bp;
bp = sc->sc_rb.rb_txbuf + (idx % sc->sc_rb.rb_ntbuf) * BE_PKT_BUF_SZ;
for (; m; m = n) {
len = m->m_len;
if (len == 0) {
MFREE(m, n);
continue;
}
bcopy(mtod(m, caddr_t), bp+boff, len);
boff += len;
tlen += len;
MFREE(m, n);
}
return (tlen);
}
/*
* Pull data off an interface.
* Len is the length of data, with local net header stripped.
* We copy the data into mbufs. When full cluster sized units are present,
* we copy into clusters.
*/
static __inline__ struct mbuf *
be_get(sc, idx, totlen)
struct be_softc *sc;
int idx, totlen;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
struct mbuf *top, **mp;
int len, pad, boff = 0;
caddr_t bp;
bp = sc->sc_rb.rb_rxbuf + (idx % sc->sc_rb.rb_nrbuf) * BE_PKT_BUF_SZ;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (NULL);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
m->m_data += pad;
len = MHLEN - pad;
top = NULL;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
m_freem(top);
return (NULL);
}
len = MLEN;
}
if (top && totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
bcopy(bp + boff, mtod(m, caddr_t), len);
boff += len;
totlen -= len;
*mp = m;
mp = &m->m_next;
}
return (top);
}
/*
* Pass a packet to the higher levels.
*/
static __inline__ void
be_read(sc, idx, len)
struct be_softc *sc;
int idx, len;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
if (len <= sizeof(struct ether_header) ||
len > ETHER_MAX_LEN + ETHERCAP_VLAN_MTU) {
#ifdef BEDEBUG
if (sc->sc_debug)
printf("%s: invalid packet size %d; dropping\n",
ifp->if_xname, len);
#endif
ifp->if_ierrors++;
return;
}
/*
* Pull packet off interface.
*/
m = be_get(sc, idx, len);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* Pass the packet up. */
(*ifp->if_input)(ifp, m);
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splnet _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
bestart(ifp)
struct ifnet *ifp;
{
struct be_softc *sc = (struct be_softc *)ifp->if_softc;
struct qec_xd *txd = sc->sc_rb.rb_txd;
struct mbuf *m;
unsigned int bix, len;
unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
bix = sc->sc_rb.rb_tdhead;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == 0)
break;
#if NBPFILTER > 0
/*
* If BPF is listening on this interface, let it see the
* packet before we commit it to the wire.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/*
* Copy the mbuf chain into the transmit buffer.
*/
len = be_put(sc, bix, m);
/*
* Initialize transmit registers and start transmission
*/
txd[bix].xd_flags = QEC_XD_OWN | QEC_XD_SOP | QEC_XD_EOP |
(len & QEC_XD_LENGTH);
bus_space_write_4(sc->sc_bustag, sc->sc_cr, BE_CRI_CTRL,
BE_CR_CTRL_TWAKEUP);
if (++bix == QEC_XD_RING_MAXSIZE)
bix = 0;
if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
sc->sc_rb.rb_tdhead = bix;
}
void
bestop(sc)
struct be_softc *sc;
{
int n;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t br = sc->sc_br;
callout_stop(&sc->sc_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
(void)be_intphy_service(sc, &sc->sc_mii, MII_DOWN);
/* Stop the transmitter */
bus_space_write_4(t, br, BE_BRI_TXCFG, 0);
for (n = 32; n > 0; n--) {
if (bus_space_read_4(t, br, BE_BRI_TXCFG) == 0)
break;
DELAY(20);
}
/* Stop the receiver */
bus_space_write_4(t, br, BE_BRI_RXCFG, 0);
for (n = 32; n > 0; n--) {
if (bus_space_read_4(t, br, BE_BRI_RXCFG) == 0)
break;
DELAY(20);
}
}
/*
* Reset interface.
*/
void
bereset(sc)
struct be_softc *sc;
{
int s;
s = splnet();
bestop(sc);
if ((sc->sc_ethercom.ec_if.if_flags & IFF_UP) != 0)
beinit(sc);
splx(s);
}
void
bewatchdog(ifp)
struct ifnet *ifp;
{
struct be_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_ethercom.ec_if.if_oerrors;
bereset(sc);
}
int
beintr(v)
void *v;
{
struct be_softc *sc = (struct be_softc *)v;
bus_space_tag_t t = sc->sc_bustag;
u_int32_t whyq, whyb, whyc;
int r = 0;
/* Read QEC status, channel status and BE status */
whyq = bus_space_read_4(t, sc->sc_qr, QEC_QRI_STAT);
whyc = bus_space_read_4(t, sc->sc_cr, BE_CRI_STAT);
whyb = bus_space_read_4(t, sc->sc_br, BE_BRI_STAT);
if (whyq & QEC_STAT_BM)
r |= beeint(sc, whyb);
if (whyq & QEC_STAT_ER)
r |= beqint(sc, whyc);
if (whyq & QEC_STAT_TX && whyc & BE_CR_STAT_TXIRQ)
r |= betint(sc);
if (whyq & QEC_STAT_RX && whyc & BE_CR_STAT_RXIRQ)
r |= berint(sc);
return (r);
}
/*
* QEC Interrupt.
*/
int
beqint(sc, why)
struct be_softc *sc;
u_int32_t why;
{
int r = 0, rst = 0;
if (why & BE_CR_STAT_TXIRQ)
r |= 1;
if (why & BE_CR_STAT_RXIRQ)
r |= 1;
if (why & BE_CR_STAT_BERROR) {
r |= 1;
rst = 1;
printf("%s: bigmac error\n", sc->sc_dev.dv_xname);
}
if (why & BE_CR_STAT_TXDERR) {
r |= 1;
rst = 1;
printf("%s: bogus tx descriptor\n", sc->sc_dev.dv_xname);
}
if (why & (BE_CR_STAT_TXLERR | BE_CR_STAT_TXPERR | BE_CR_STAT_TXSERR)) {
r |= 1;
rst = 1;
printf("%s: tx DMA error ( ", sc->sc_dev.dv_xname);
if (why & BE_CR_STAT_TXLERR)
printf("Late ");
if (why & BE_CR_STAT_TXPERR)
printf("Parity ");
if (why & BE_CR_STAT_TXSERR)
printf("Generic ");
printf(")\n");
}
if (why & BE_CR_STAT_RXDROP) {
r |= 1;
rst = 1;
printf("%s: out of rx descriptors\n", sc->sc_dev.dv_xname);
}
if (why & BE_CR_STAT_RXSMALL) {
r |= 1;
rst = 1;
printf("%s: rx descriptor too small\n", sc->sc_dev.dv_xname);
}
if (why & (BE_CR_STAT_RXLERR | BE_CR_STAT_RXPERR | BE_CR_STAT_RXSERR)) {
r |= 1;
rst = 1;
printf("%s: rx DMA error ( ", sc->sc_dev.dv_xname);
if (why & BE_CR_STAT_RXLERR)
printf("Late ");
if (why & BE_CR_STAT_RXPERR)
printf("Parity ");
if (why & BE_CR_STAT_RXSERR)
printf("Generic ");
printf(")\n");
}
if (!r) {
rst = 1;
printf("%s: unexpected error interrupt %08x\n",
sc->sc_dev.dv_xname, why);
}
if (rst) {
printf("%s: resetting\n", sc->sc_dev.dv_xname);
bereset(sc);
}
return (r);
}
/*
* Error interrupt.
*/
int
beeint(sc, why)
struct be_softc *sc;
u_int32_t why;
{
int r = 0, rst = 0;
if (why & BE_BR_STAT_RFIFOVF) {
r |= 1;
rst = 1;
printf("%s: receive fifo overrun\n", sc->sc_dev.dv_xname);
}
if (why & BE_BR_STAT_TFIFO_UND) {
r |= 1;
rst = 1;
printf("%s: transmit fifo underrun\n", sc->sc_dev.dv_xname);
}
if (why & BE_BR_STAT_MAXPKTERR) {
r |= 1;
rst = 1;
printf("%s: max packet size error\n", sc->sc_dev.dv_xname);
}
if (!r) {
rst = 1;
printf("%s: unexpected error interrupt %08x\n",
sc->sc_dev.dv_xname, why);
}
if (rst) {
printf("%s: resetting\n", sc->sc_dev.dv_xname);
bereset(sc);
}
return (r);
}
/*
* Transmit interrupt.
*/
int
betint(sc)
struct be_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t br = sc->sc_br;
unsigned int bix, txflags;
/*
* Unload collision counters
*/
ifp->if_collisions +=
bus_space_read_4(t, br, BE_BRI_NCCNT) +
bus_space_read_4(t, br, BE_BRI_FCCNT) +
bus_space_read_4(t, br, BE_BRI_EXCNT) +
bus_space_read_4(t, br, BE_BRI_LTCNT);
/*
* the clear the hardware counters
*/
bus_space_write_4(t, br, BE_BRI_NCCNT, 0);
bus_space_write_4(t, br, BE_BRI_FCCNT, 0);
bus_space_write_4(t, br, BE_BRI_EXCNT, 0);
bus_space_write_4(t, br, BE_BRI_LTCNT, 0);
bix = sc->sc_rb.rb_tdtail;
for (;;) {
if (sc->sc_rb.rb_td_nbusy <= 0)
break;
txflags = sc->sc_rb.rb_txd[bix].xd_flags;
if (txflags & QEC_XD_OWN)
break;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_opackets++;
if (++bix == QEC_XD_RING_MAXSIZE)
bix = 0;
--sc->sc_rb.rb_td_nbusy;
}
sc->sc_rb.rb_tdtail = bix;
bestart(ifp);
if (sc->sc_rb.rb_td_nbusy == 0)
ifp->if_timer = 0;
return (1);
}
/*
* Receive interrupt.
*/
int
berint(sc)
struct be_softc *sc;
{
struct qec_xd *xd = sc->sc_rb.rb_rxd;
unsigned int bix, len;
unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
bix = sc->sc_rb.rb_rdtail;
/*
* Process all buffers with valid data.
*/
for (;;) {
len = xd[bix].xd_flags;
if (len & QEC_XD_OWN)
break;
len &= QEC_XD_LENGTH;
be_read(sc, bix, len);
/* ... */
xd[(bix+nrbuf) % QEC_XD_RING_MAXSIZE].xd_flags =
QEC_XD_OWN | (BE_PKT_BUF_SZ & QEC_XD_LENGTH);
if (++bix == QEC_XD_RING_MAXSIZE)
bix = 0;
}
sc->sc_rb.rb_rdtail = bix;
return (1);
}
int
beioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct be_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
beinit(sc);
arp_ifinit(ifp, ifa);
break;
#endif /* INET */
#ifdef NS
case AF_NS:
{
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
sizeof(sc->sc_enaddr));
/* Set new address. */
beinit(sc);
break;
}
#endif /* NS */
default:
beinit(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
bestop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
beinit(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
bestop(sc);
beinit(sc);
}
#ifdef BEDEBUG
if (ifp->if_flags & IFF_DEBUG)
sc->sc_debug = 1;
else
sc->sc_debug = 0;
#endif
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom):
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
if (ifp->if_flags & IFF_RUNNING)
be_mcreset(sc);
error = 0;
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
void
beinit(sc)
struct be_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t br = sc->sc_br;
bus_space_handle_t cr = sc->sc_cr;
struct qec_softc *qec = sc->sc_qec;
u_int32_t v;
u_int32_t qecaddr;
u_int8_t *ea;
int s;
s = splnet();
qec_meminit(&sc->sc_rb, BE_PKT_BUF_SZ);
bestop(sc);
ea = sc->sc_enaddr;
bus_space_write_4(t, br, BE_BRI_MACADDR0, (ea[0] << 8) | ea[1]);
bus_space_write_4(t, br, BE_BRI_MACADDR1, (ea[2] << 8) | ea[3]);
bus_space_write_4(t, br, BE_BRI_MACADDR2, (ea[4] << 8) | ea[5]);
/* Clear hash table */
bus_space_write_4(t, br, BE_BRI_HASHTAB0, 0);
bus_space_write_4(t, br, BE_BRI_HASHTAB1, 0);
bus_space_write_4(t, br, BE_BRI_HASHTAB2, 0);
bus_space_write_4(t, br, BE_BRI_HASHTAB3, 0);
/* Re-initialize RX configuration */
v = BE_BR_RXCFG_FIFO;
bus_space_write_4(t, br, BE_BRI_RXCFG, v);
be_mcreset(sc);
bus_space_write_4(t, br, BE_BRI_RANDSEED, 0xbd);
bus_space_write_4(t, br, BE_BRI_XIFCFG,
BE_BR_XCFG_ODENABLE | BE_BR_XCFG_RESV);
bus_space_write_4(t, br, BE_BRI_JSIZE, 4);
/*
* Turn off counter expiration interrupts as well as
* 'gotframe' and 'sentframe'
*/
bus_space_write_4(t, br, BE_BRI_IMASK,
BE_BR_IMASK_GOTFRAME |
BE_BR_IMASK_RCNTEXP |
BE_BR_IMASK_ACNTEXP |
BE_BR_IMASK_CCNTEXP |
BE_BR_IMASK_LCNTEXP |
BE_BR_IMASK_CVCNTEXP |
BE_BR_IMASK_SENTFRAME |
BE_BR_IMASK_NCNTEXP |
BE_BR_IMASK_ECNTEXP |
BE_BR_IMASK_LCCNTEXP |
BE_BR_IMASK_FCNTEXP |
BE_BR_IMASK_DTIMEXP);
/* Channel registers: */
bus_space_write_4(t, cr, BE_CRI_RXDS, (u_int32_t)sc->sc_rb.rb_rxddma);
bus_space_write_4(t, cr, BE_CRI_TXDS, (u_int32_t)sc->sc_rb.rb_txddma);
qecaddr = sc->sc_channel * qec->sc_msize;
bus_space_write_4(t, cr, BE_CRI_RXWBUF, qecaddr);
bus_space_write_4(t, cr, BE_CRI_RXRBUF, qecaddr);
bus_space_write_4(t, cr, BE_CRI_TXWBUF, qecaddr + qec->sc_rsize);
bus_space_write_4(t, cr, BE_CRI_TXRBUF, qecaddr + qec->sc_rsize);
bus_space_write_4(t, cr, BE_CRI_RIMASK, 0);
bus_space_write_4(t, cr, BE_CRI_TIMASK, 0);
bus_space_write_4(t, cr, BE_CRI_QMASK, 0);
bus_space_write_4(t, cr, BE_CRI_BMASK, 0);
bus_space_write_4(t, cr, BE_CRI_CCNT, 0);
/* Set max packet length */
v = ETHER_MAX_LEN;
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
v += ETHER_VLAN_ENCAP_LEN;
bus_space_write_4(t, br, BE_BRI_RXMAX, v);
bus_space_write_4(t, br, BE_BRI_TXMAX, v);
/* Enable transmitter */
bus_space_write_4(t, br, BE_BRI_TXCFG,
BE_BR_TXCFG_FIFO | BE_BR_TXCFG_ENABLE);
/* Enable receiver */
v = bus_space_read_4(t, br, BE_BRI_RXCFG);
v |= BE_BR_RXCFG_FIFO | BE_BR_RXCFG_ENABLE;
bus_space_write_4(t, br, BE_BRI_RXCFG, v);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
be_ifmedia_upd(ifp);
callout_reset(&sc->sc_tick_ch, hz, be_tick, sc);
splx(s);
}
void
be_mcreset(sc)
struct be_softc *sc;
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t br = sc->sc_br;
u_int32_t crc;
u_int16_t hash[4];
u_int8_t octet;
u_int32_t v;
int i, j;
struct ether_multi *enm;
struct ether_multistep step;
if (ifp->if_flags & IFF_PROMISC) {
v = bus_space_read_4(t, br, BE_BRI_RXCFG);
v |= BE_BR_RXCFG_PMISC;
bus_space_write_4(t, br, BE_BRI_RXCFG, v);
return;
}
if (ifp->if_flags & IFF_ALLMULTI) {
hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
goto chipit;
}
hash[3] = hash[2] = hash[1] = hash[0] = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast
* addresses. For now, just accept all
* multicasts, rather than trying to set only
* those filter bits needed to match the range.
* (At this time, the only use of address
* ranges is for IP multicast routing, for
* which the range is big enough to require
* all bits set.)
*/
hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
crc = 0xffffffff;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
octet = enm->enm_addrlo[i];
for (j = 0; j < 8; j++) {
if ((crc & 1) ^ (octet & 1)) {
crc >>= 1;
crc ^= MC_POLY_LE;
}
else
crc >>= 1;
octet >>= 1;
}
}
crc >>= 26;
hash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
chipit:
/* Enable the hash filter */
bus_space_write_4(t, br, BE_BRI_HASHTAB0, hash[0]);
bus_space_write_4(t, br, BE_BRI_HASHTAB1, hash[1]);
bus_space_write_4(t, br, BE_BRI_HASHTAB2, hash[2]);
bus_space_write_4(t, br, BE_BRI_HASHTAB3, hash[3]);
v = bus_space_read_4(t, br, BE_BRI_RXCFG);
v &= ~BE_BR_RXCFG_PMISC;
v |= BE_BR_RXCFG_HENABLE;
bus_space_write_4(t, br, BE_BRI_RXCFG, v);
}
/*
* Set the tcvr to an idle state
*/
void
be_mii_sync(sc)
struct be_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t tr = sc->sc_tr;
int n = 32;
while (n--) {
bus_space_write_4(t, tr, BE_TRI_MGMTPAL,
MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO |
MGMT_PAL_OENAB);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
bus_space_write_4(t, tr, BE_TRI_MGMTPAL,
MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO |
MGMT_PAL_OENAB | MGMT_PAL_DCLOCK);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
}
}
void
be_pal_gate(sc, phy)
struct be_softc *sc;
int phy;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t tr = sc->sc_tr;
u_int32_t v;
be_mii_sync(sc);
v = ~(TCVR_PAL_EXTLBACK | TCVR_PAL_MSENSE | TCVR_PAL_LTENABLE);
if (phy == BE_PHY_INTERNAL)
v &= ~TCVR_PAL_SERIAL;
bus_space_write_4(t, tr, BE_TRI_TCVRPAL, v);
(void)bus_space_read_4(t, tr, BE_TRI_TCVRPAL);
}
static int
be_tcvr_read_bit(sc, phy)
struct be_softc *sc;
int phy;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t tr = sc->sc_tr;
int ret;
if (phy == BE_PHY_INTERNAL) {
bus_space_write_4(t, tr, BE_TRI_MGMTPAL, MGMT_PAL_EXT_MDIO);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
bus_space_write_4(t, tr, BE_TRI_MGMTPAL,
MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
ret = (bus_space_read_4(t, tr, BE_TRI_MGMTPAL) &
MGMT_PAL_INT_MDIO) >> MGMT_PAL_INT_MDIO_SHIFT;
} else {
bus_space_write_4(t, tr, BE_TRI_MGMTPAL, MGMT_PAL_INT_MDIO);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
ret = (bus_space_read_4(t, tr, BE_TRI_MGMTPAL) &
MGMT_PAL_EXT_MDIO) >> MGMT_PAL_EXT_MDIO_SHIFT;
bus_space_write_4(t, tr, BE_TRI_MGMTPAL,
MGMT_PAL_INT_MDIO | MGMT_PAL_DCLOCK);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
}
return (ret);
}
static void
be_tcvr_write_bit(sc, phy, bit)
struct be_softc *sc;
int phy;
int bit;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t tr = sc->sc_tr;
u_int32_t v;
if (phy == BE_PHY_INTERNAL) {
v = ((bit & 1) << MGMT_PAL_INT_MDIO_SHIFT) |
MGMT_PAL_OENAB | MGMT_PAL_EXT_MDIO;
} else {
v = ((bit & 1) << MGMT_PAL_EXT_MDIO_SHIFT)
| MGMT_PAL_OENAB | MGMT_PAL_INT_MDIO;
}
bus_space_write_4(t, tr, BE_TRI_MGMTPAL, v);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
bus_space_write_4(t, tr, BE_TRI_MGMTPAL, v | MGMT_PAL_DCLOCK);
(void)bus_space_read_4(t, tr, BE_TRI_MGMTPAL);
}
static void
be_mii_sendbits(sc, phy, data, nbits)
struct be_softc *sc;
int phy;
u_int32_t data;
int nbits;
{
int i;
for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
be_tcvr_write_bit(sc, phy, (data & i) != 0);
}
}
static int
be_mii_readreg(self, phy, reg)
struct device *self;
int phy, reg;
{
struct be_softc *sc = (struct be_softc *)self;
int val = 0, i;
/*
* Read the PHY register by manually driving the MII control lines.
*/
be_mii_sync(sc);
be_mii_sendbits(sc, phy, MII_COMMAND_START, 2);
be_mii_sendbits(sc, phy, MII_COMMAND_READ, 2);
be_mii_sendbits(sc, phy, phy, 5);
be_mii_sendbits(sc, phy, reg, 5);
(void) be_tcvr_read_bit(sc, phy);
(void) be_tcvr_read_bit(sc, phy);
for (i = 15; i >= 0; i--)
val |= (be_tcvr_read_bit(sc, phy) << i);
(void) be_tcvr_read_bit(sc, phy);
(void) be_tcvr_read_bit(sc, phy);
(void) be_tcvr_read_bit(sc, phy);
return (val);
}
void
be_mii_writereg(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct be_softc *sc = (struct be_softc *)self;
int i;
/*
* Write the PHY register by manually driving the MII control lines.
*/
be_mii_sync(sc);
be_mii_sendbits(sc, phy, MII_COMMAND_START, 2);
be_mii_sendbits(sc, phy, MII_COMMAND_WRITE, 2);
be_mii_sendbits(sc, phy, phy, 5);
be_mii_sendbits(sc, phy, reg, 5);
be_tcvr_write_bit(sc, phy, 1);
be_tcvr_write_bit(sc, phy, 0);
for (i = 15; i >= 0; i--)
be_tcvr_write_bit(sc, phy, (val >> i) & 1);
}
int
be_mii_reset(sc, phy)
struct be_softc *sc;
int phy;
{
int n;
be_mii_writereg((struct device *)sc, phy, MII_BMCR,
BMCR_LOOP | BMCR_PDOWN | BMCR_ISO);
be_mii_writereg((struct device *)sc, phy, MII_BMCR, BMCR_RESET);
for (n = 16; n >= 0; n--) {
int bmcr = be_mii_readreg((struct device *)sc, phy, MII_BMCR);
if ((bmcr & BMCR_RESET) == 0)
break;
DELAY(20);
}
if (n == 0) {
printf("%s: bmcr reset failed\n", sc->sc_dev.dv_xname);
return (EIO);
}
return (0);
}
void
be_tick(arg)
void *arg;
{
struct be_softc *sc = arg;
int s = splnet();
mii_tick(&sc->sc_mii);
(void)be_intphy_service(sc, &sc->sc_mii, MII_TICK);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, be_tick, sc);
}
void
be_mii_statchg(self)
struct device *self;
{
struct be_softc *sc = (struct be_softc *)self;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t br = sc->sc_br;
u_int instance;
u_int32_t v;
instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
#ifdef DIAGNOSTIC
if (instance > 1)
panic("be_mii_statchg: instance %d out of range", instance);
#endif
/* Update duplex mode in TX configuration */
v = bus_space_read_4(t, br, BE_BRI_TXCFG);
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
v |= BE_BR_TXCFG_FULLDPLX;
else
v &= ~BE_BR_TXCFG_FULLDPLX;
bus_space_write_4(t, br, BE_BRI_TXCFG, v);
/* Change to appropriate gate in transceiver PAL */
be_pal_gate(sc, sc->sc_phys[instance]);
}
/*
* Get current media settings.
*/
void
be_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct be_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
(void)be_intphy_service(sc, &sc->sc_mii, MII_POLLSTAT);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
return;
}
/*
* Set media options.
*/
int
be_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct be_softc *sc = ifp->if_softc;
int error;
if ((error = mii_mediachg(&sc->sc_mii)) != 0)
return (error);
return (be_intphy_service(sc, &sc->sc_mii, MII_MEDIACHG));
}
/*
* Service routine for our pseudo-MII internal transceiver.
*/
int
be_intphy_service(sc, mii, cmd)
struct be_softc *sc;
struct mii_data *mii;
int cmd;
{
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
int bmcr, bmsr;
int error;
switch (cmd) {
case MII_POLLSTAT:
/*
* If we're not polling our PHY instance, just return.
*/
if (IFM_INST(ife->ifm_media) != sc->sc_mii_inst)
return (0);
break;
case MII_MEDIACHG:
/*
* If the media indicates a different PHY instance,
* isolate ourselves.
*/
if (IFM_INST(ife->ifm_media) != sc->sc_mii_inst) {
bmcr = be_mii_readreg((void *)sc,
BE_PHY_INTERNAL, MII_BMCR);
be_mii_writereg((void *)sc,
BE_PHY_INTERNAL, MII_BMCR, bmcr | BMCR_ISO);
sc->sc_mii_flags &= ~MIIF_HAVELINK;
sc->sc_intphy_curspeed = 0;
return (0);
}
if ((error = be_mii_reset(sc, BE_PHY_INTERNAL)) != 0)
return (error);
bmcr = be_mii_readreg((void *)sc, BE_PHY_INTERNAL, MII_BMCR);
/*
* Select the new mode and take out of isolation
*/
if (IFM_SUBTYPE(ife->ifm_media) == IFM_100_TX)
bmcr |= BMCR_S100;
else if (IFM_SUBTYPE(ife->ifm_media) == IFM_10_T)
bmcr &= ~BMCR_S100;
else if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
if ((sc->sc_mii_flags & MIIF_HAVELINK) != 0) {
bmcr &= ~BMCR_S100;
bmcr |= sc->sc_intphy_curspeed;
} else {
/* Keep isolated until link is up */
bmcr |= BMCR_ISO;
sc->sc_mii_flags |= MIIF_DOINGAUTO;
}
}
if ((IFM_OPTIONS(ife->ifm_media) & IFM_FDX) != 0)
bmcr |= BMCR_FDX;
else
bmcr &= ~BMCR_FDX;
be_mii_writereg((void *)sc, BE_PHY_INTERNAL, MII_BMCR, bmcr);
break;
case MII_TICK:
/*
* If we're not currently selected, just return.
*/
if (IFM_INST(ife->ifm_media) != sc->sc_mii_inst)
return (0);
/* Only used for automatic media selection */
if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
return (0);
/* Is the interface even up? */
if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
return (0);
/*
* Check link status; if we don't have a link, try another
* speed. We can't detect duplex mode, so half-duplex is
* what we have to settle for.
*/
/* Read twice in case the register is latched */
bmsr = be_mii_readreg((void *)sc, BE_PHY_INTERNAL, MII_BMSR) |
be_mii_readreg((void *)sc, BE_PHY_INTERNAL, MII_BMSR);
if ((bmsr & BMSR_LINK) != 0) {
/* We have a carrier */
bmcr = be_mii_readreg((void *)sc,
BE_PHY_INTERNAL, MII_BMCR);
if ((sc->sc_mii_flags & MIIF_DOINGAUTO) != 0) {
bmcr = be_mii_readreg((void *)sc,
BE_PHY_INTERNAL, MII_BMCR);
sc->sc_mii_flags |= MIIF_HAVELINK;
sc->sc_intphy_curspeed = (bmcr & BMCR_S100);
sc->sc_mii_flags &= ~MIIF_DOINGAUTO;
bmcr &= ~BMCR_ISO;
be_mii_writereg((void *)sc,
BE_PHY_INTERNAL, MII_BMCR, bmcr);
printf("%s: link up at %s Mbps\n",
sc->sc_dev.dv_xname,
(bmcr & BMCR_S100) ? "100" : "10");
}
return (0);
}
if ((sc->sc_mii_flags & MIIF_DOINGAUTO) == 0) {
sc->sc_mii_flags |= MIIF_DOINGAUTO;
sc->sc_mii_flags &= ~MIIF_HAVELINK;
sc->sc_intphy_curspeed = 0;
printf("%s: link down\n", sc->sc_dev.dv_xname);
}
/* Only retry autonegotiation every 5 seconds. */
if (++sc->sc_mii_ticks < 5)
return(0);
sc->sc_mii_ticks = 0;
bmcr = be_mii_readreg((void *)sc, BE_PHY_INTERNAL, MII_BMCR);
/* Just flip the fast speed bit */
bmcr ^= BMCR_S100;
be_mii_writereg((void *)sc, BE_PHY_INTERNAL, MII_BMCR, bmcr);
break;
case MII_DOWN:
/* Isolate this phy */
bmcr = be_mii_readreg((void *)sc, BE_PHY_INTERNAL, MII_BMCR);
be_mii_writereg((void *)sc,
BE_PHY_INTERNAL, MII_BMCR, bmcr | BMCR_ISO);
return (0);
}
/* Update the media status. */
be_intphy_status(sc);
/* Callback if something changed. */
if (sc->sc_mii_active != mii->mii_media_active || cmd == MII_MEDIACHG) {
(*mii->mii_statchg)((struct device *)sc);
sc->sc_mii_active = mii->mii_media_active;
}
return (0);
}
/*
* Determine status of internal transceiver
*/
void
be_intphy_status(sc)
struct be_softc *sc;
{
struct mii_data *mii = &sc->sc_mii;
int media_active, media_status;
int bmcr, bmsr;
media_status = IFM_AVALID;
media_active = 0;
/*
* Internal transceiver; do the work here.
*/
bmcr = be_mii_readreg((struct device *)sc, BE_PHY_INTERNAL, MII_BMCR);
switch (bmcr & (BMCR_S100 | BMCR_FDX)) {
case (BMCR_S100 | BMCR_FDX):
media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
break;
case BMCR_S100:
media_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
break;
case BMCR_FDX:
media_active = IFM_ETHER | IFM_10_T | IFM_FDX;
break;
case 0:
media_active = IFM_ETHER | IFM_10_T | IFM_HDX;
break;
}
/* Read twice in case the register is latched */
bmsr = be_mii_readreg((struct device *)sc, BE_PHY_INTERNAL, MII_BMSR)|
be_mii_readreg((struct device *)sc, BE_PHY_INTERNAL, MII_BMSR);
if (bmsr & BMSR_LINK)
media_status |= IFM_ACTIVE;
mii->mii_media_status = media_status;
mii->mii_media_active = media_active;
}