NetBSD/sys/arch/arm/arm32/pmap.c

3523 lines
88 KiB
C

/* $NetBSD: pmap.c,v 1.18 2001/08/11 14:47:56 chris Exp $ */
/*
* Copyright (c) 2001 Richard Earnshaw
* Copyright (c) 2001 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
*
* RiscBSD kernel project
*
* pmap.c
*
* Machine dependant vm stuff
*
* Created : 20/09/94
*/
/*
* Performance improvements, UVM changes, overhauls and part-rewrites
* were contributed by Neil A. Carson <neil@causality.com>.
*/
/*
* The dram block info is currently referenced from the bootconfig.
* This should be placed in a separate structure.
*/
/*
* Special compilation symbols
* PMAP_DEBUG - Build in pmap_debug_level code
*/
/* Include header files */
#include "opt_pmap_debug.h"
#include "opt_ddb.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/user.h>
#include <sys/pool.h>
#include <sys/cdefs.h>
#include <uvm/uvm.h>
#include <machine/bootconfig.h>
#include <machine/bus.h>
#include <machine/pmap.h>
#include <machine/pcb.h>
#include <machine/param.h>
#include <machine/katelib.h>
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.18 2001/08/11 14:47:56 chris Exp $");
#ifdef PMAP_DEBUG
#define PDEBUG(_lev_,_stat_) \
if (pmap_debug_level >= (_lev_)) \
((_stat_))
int pmap_debug_level = -2;
/*
* for switching to potentially finer grained debugging
*/
#define PDB_FOLLOW 0x0001
#define PDB_INIT 0x0002
#define PDB_ENTER 0x0004
#define PDB_REMOVE 0x0008
#define PDB_CREATE 0x0010
#define PDB_PTPAGE 0x0020
#define PDB_ASN 0x0040
#define PDB_BITS 0x0080
#define PDB_COLLECT 0x0100
#define PDB_PROTECT 0x0200
#define PDB_BOOTSTRAP 0x1000
#define PDB_PARANOIA 0x2000
#define PDB_WIRING 0x4000
#define PDB_PVDUMP 0x8000
int debugmap = 0;
int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
#define NPDEBUG(_lev_,_stat_) \
if (pmapdebug & (_lev_)) \
((_stat_))
#else /* PMAP_DEBUG */
#define PDEBUG(_lev_,_stat_) /* Nothing */
#define PDEBUG(_lev_,_stat_) /* Nothing */
#endif /* PMAP_DEBUG */
struct pmap kernel_pmap_store;
/*
* pool that pmap structures are allocated from
*/
struct pool pmap_pmap_pool;
pagehook_t page_hook0;
pagehook_t page_hook1;
char *memhook;
pt_entry_t msgbufpte;
extern caddr_t msgbufaddr;
boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
/*
* locking data structures
*/
static struct lock pmap_main_lock;
static struct simplelock pvalloc_lock;
#ifdef LOCKDEBUG
#define PMAP_MAP_TO_HEAD_LOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
#define PMAP_MAP_TO_HEAD_UNLOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
#define PMAP_HEAD_TO_MAP_LOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
#define PMAP_HEAD_TO_MAP_UNLOCK() \
(void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
#else
#define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
#define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
#define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
#define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
#endif /* LOCKDEBUG */
/*
* pv_page management structures: locked by pvalloc_lock
*/
TAILQ_HEAD(pv_pagelist, pv_page);
static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
static int pv_nfpvents; /* # of free pv entries */
static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
static vaddr_t pv_cachedva; /* cached VA for later use */
#define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
#define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
/* high water mark */
/*
* local prototypes
*/
static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
#define ALLOCPV_NEED 0 /* need PV now */
#define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
#define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
static void pmap_enter_pv __P((struct pv_head *,
struct pv_entry *, struct pmap *,
vaddr_t, struct vm_page *, int));
static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
static void pmap_free_pv_doit __P((struct pv_entry *));
static void pmap_free_pvpage __P((void));
static boolean_t pmap_is_curpmap __P((struct pmap *));
static struct pv_entry *pmap_remove_pv __P((struct pv_head *, struct pmap *,
vaddr_t));
#define PMAP_REMOVE_ALL 0 /* remove all mappings */
#define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
vsize_t npages;
static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t, boolean_t));
static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t, boolean_t));
extern paddr_t physical_start;
extern paddr_t physical_freestart;
extern paddr_t physical_end;
extern paddr_t physical_freeend;
extern unsigned int free_pages;
extern int max_processes;
vaddr_t virtual_start;
vaddr_t virtual_end;
vaddr_t avail_start;
vaddr_t avail_end;
extern pv_addr_t systempage;
#define ALLOC_PAGE_HOOK(x, s) \
x.va = virtual_start; \
x.pte = (pt_entry_t *)pmap_pte(pmap_kernel(), virtual_start); \
virtual_start += s;
/* Variables used by the L1 page table queue code */
SIMPLEQ_HEAD(l1pt_queue, l1pt);
struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
int l1pt_static_queue_count; /* items in the static l1 queue */
int l1pt_static_create_count; /* static l1 items created */
struct l1pt_queue l1pt_queue; /* head of our l1 queue */
int l1pt_queue_count; /* items in the l1 queue */
int l1pt_create_count; /* stat - L1's create count */
int l1pt_reuse_count; /* stat - L1's reused count */
/* Local function prototypes (not used outside this file) */
pt_entry_t *pmap_pte __P((struct pmap *pmap, vaddr_t va));
void map_pagetable __P((vaddr_t pagetable, vaddr_t va,
paddr_t pa, unsigned int flags));
void pmap_copy_on_write __P((paddr_t pa));
void pmap_pinit __P((struct pmap *));
void pmap_freepagedir __P((struct pmap *));
/* Other function prototypes */
extern void bzero_page __P((vaddr_t));
extern void bcopy_page __P((vaddr_t, vaddr_t));
struct l1pt *pmap_alloc_l1pt __P((void));
static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
vaddr_t l2pa, boolean_t));
static pt_entry_t *pmap_map_ptes __P((struct pmap *));
static void pmap_unmap_ptes __P((struct pmap *));
void pmap_vac_me_harder __P((struct pmap *, struct pv_head *,
pt_entry_t *, boolean_t));
/*
* real definition of pv_entry.
*/
struct pv_entry {
struct pv_entry *pv_next; /* next pv_entry */
struct pmap *pv_pmap; /* pmap where mapping lies */
vaddr_t pv_va; /* virtual address for mapping */
int pv_flags; /* flags */
struct vm_page *pv_ptp; /* vm_page for the ptp */
};
/*
* pv_entrys are dynamically allocated in chunks from a single page.
* we keep track of how many pv_entrys are in use for each page and
* we can free pv_entry pages if needed. there is one lock for the
* entire allocation system.
*/
struct pv_page_info {
TAILQ_ENTRY(pv_page) pvpi_list;
struct pv_entry *pvpi_pvfree;
int pvpi_nfree;
};
/*
* number of pv_entry's in a pv_page
* (note: won't work on systems where NPBG isn't a constant)
*/
#define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
sizeof(struct pv_entry))
/*
* a pv_page: where pv_entrys are allocated from
*/
struct pv_page {
struct pv_page_info pvinfo;
struct pv_entry pvents[PVE_PER_PVPAGE];
};
#ifdef MYCROFT_HACK
int mycroft_hack = 0;
#endif
/* Function to set the debug level of the pmap code */
#ifdef PMAP_DEBUG
void
pmap_debug(level)
int level;
{
pmap_debug_level = level;
printf("pmap_debug: level=%d\n", pmap_debug_level);
}
#endif /* PMAP_DEBUG */
__inline boolean_t
pmap_is_curpmap(struct pmap *pmap)
{
if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
|| (pmap == pmap_kernel()))
return (TRUE);
return (FALSE);
}
#include "isadma.h"
#if NISADMA > 0
/*
* Used to protect memory for ISA DMA bounce buffers. If, when loading
* pages into the system, memory intersects with any of these ranges,
* the intersecting memory will be loaded into a lower-priority free list.
*/
bus_dma_segment_t *pmap_isa_dma_ranges;
int pmap_isa_dma_nranges;
boolean_t pmap_isa_dma_range_intersect __P((paddr_t, psize_t,
paddr_t *, psize_t *));
/*
* Check if a memory range intersects with an ISA DMA range, and
* return the page-rounded intersection if it does. The intersection
* will be placed on a lower-priority free list.
*/
boolean_t
pmap_isa_dma_range_intersect(pa, size, pap, sizep)
paddr_t pa;
psize_t size;
paddr_t *pap;
psize_t *sizep;
{
bus_dma_segment_t *ds;
int i;
if (pmap_isa_dma_ranges == NULL)
return (FALSE);
for (i = 0, ds = pmap_isa_dma_ranges;
i < pmap_isa_dma_nranges; i++, ds++) {
if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
/*
* Beginning of region intersects with this range.
*/
*pap = trunc_page(pa);
*sizep = round_page(min(pa + size,
ds->ds_addr + ds->ds_len) - pa);
return (TRUE);
}
if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
/*
* End of region intersects with this range.
*/
*pap = trunc_page(ds->ds_addr);
*sizep = round_page(min((pa + size) - ds->ds_addr,
ds->ds_len));
return (TRUE);
}
}
/*
* No intersection found.
*/
return (FALSE);
}
#endif /* NISADMA > 0 */
/*
* p v _ e n t r y f u n c t i o n s
*/
/*
* pv_entry allocation functions:
* the main pv_entry allocation functions are:
* pmap_alloc_pv: allocate a pv_entry structure
* pmap_free_pv: free one pv_entry
* pmap_free_pvs: free a list of pv_entrys
*
* the rest are helper functions
*/
/*
* pmap_alloc_pv: inline function to allocate a pv_entry structure
* => we lock pvalloc_lock
* => if we fail, we call out to pmap_alloc_pvpage
* => 3 modes:
* ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
* ALLOCPV_TRY = we want a pv_entry, but not enough to steal
* ALLOCPV_NONEED = we are trying to grow our free list, don't really need
* one now
*
* "try" is for optional functions like pmap_copy().
*/
__inline static struct pv_entry *
pmap_alloc_pv(pmap, mode)
struct pmap *pmap;
int mode;
{
struct pv_page *pvpage;
struct pv_entry *pv;
simple_lock(&pvalloc_lock);
if (pv_freepages.tqh_first != NULL) {
pvpage = pv_freepages.tqh_first;
pvpage->pvinfo.pvpi_nfree--;
if (pvpage->pvinfo.pvpi_nfree == 0) {
/* nothing left in this one? */
TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
}
pv = pvpage->pvinfo.pvpi_pvfree;
#ifdef DIAGNOSTIC
if (pv == NULL)
panic("pmap_alloc_pv: pvpi_nfree off");
#endif
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
pv_nfpvents--; /* took one from pool */
} else {
pv = NULL; /* need more of them */
}
/*
* if below low water mark or we didn't get a pv_entry we try and
* create more pv_entrys ...
*/
if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
if (pv == NULL)
pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
mode : ALLOCPV_NEED);
else
(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
}
simple_unlock(&pvalloc_lock);
return(pv);
}
/*
* pmap_alloc_pvpage: maybe allocate a new pvpage
*
* if need_entry is false: try and allocate a new pv_page
* if need_entry is true: try and allocate a new pv_page and return a
* new pv_entry from it. if we are unable to allocate a pv_page
* we make a last ditch effort to steal a pv_page from some other
* mapping. if that fails, we panic...
*
* => we assume that the caller holds pvalloc_lock
*/
static struct pv_entry *
pmap_alloc_pvpage(pmap, mode)
struct pmap *pmap;
int mode;
{
struct vm_page *pg;
struct pv_page *pvpage;
struct pv_entry *pv;
int s;
/*
* if we need_entry and we've got unused pv_pages, allocate from there
*/
if (mode != ALLOCPV_NONEED && pv_unusedpgs.tqh_first != NULL) {
/* move it to pv_freepages list */
pvpage = pv_unusedpgs.tqh_first;
TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
/* allocate a pv_entry */
pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
pv = pvpage->pvinfo.pvpi_pvfree;
#ifdef DIAGNOSTIC
if (pv == NULL)
panic("pmap_alloc_pvpage: pvpi_nfree off");
#endif
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
pv_nfpvents--; /* took one from pool */
return(pv);
}
/*
* see if we've got a cached unmapped VA that we can map a page in.
* if not, try to allocate one.
*/
s = splvm(); /* must protect kmem_map/kmem_object with splvm! */
if (pv_cachedva == 0) {
pv_cachedva = uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object,
PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
if (pv_cachedva == 0) {
splx(s);
return (NULL);
}
}
/*
* we have a VA, now let's try and allocate a page in the object
* note: we are still holding splvm to protect kmem_object
*/
if (!simple_lock_try(&uvmexp.kmem_object->vmobjlock)) {
splx(s);
return (NULL);
}
pg = uvm_pagealloc(uvmexp.kmem_object, pv_cachedva -
vm_map_min(kernel_map),
NULL, UVM_PGA_USERESERVE);
if (pg)
pg->flags &= ~PG_BUSY; /* never busy */
simple_unlock(&uvmexp.kmem_object->vmobjlock);
splx(s);
/* splvm now dropped */
if (pg == NULL)
return (NULL);
/*
* add a mapping for our new pv_page and free its entrys (save one!)
*
* NOTE: If we are allocating a PV page for the kernel pmap, the
* pmap is already locked! (...but entering the mapping is safe...)
*/
pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
pmap_update();
pvpage = (struct pv_page *) pv_cachedva;
pv_cachedva = 0;
return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
}
/*
* pmap_add_pvpage: add a pv_page's pv_entrys to the free list
*
* => caller must hold pvalloc_lock
* => if need_entry is true, we allocate and return one pv_entry
*/
static struct pv_entry *
pmap_add_pvpage(pvp, need_entry)
struct pv_page *pvp;
boolean_t need_entry;
{
int tofree, lcv;
/* do we need to return one? */
tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
pvp->pvinfo.pvpi_pvfree = NULL;
pvp->pvinfo.pvpi_nfree = tofree;
for (lcv = 0 ; lcv < tofree ; lcv++) {
pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
}
if (need_entry)
TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
else
TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
pv_nfpvents += tofree;
return((need_entry) ? &pvp->pvents[lcv] : NULL);
}
/*
* pmap_free_pv_doit: actually free a pv_entry
*
* => do not call this directly! instead use either
* 1. pmap_free_pv ==> free a single pv_entry
* 2. pmap_free_pvs => free a list of pv_entrys
* => we must be holding pvalloc_lock
*/
__inline static void
pmap_free_pv_doit(pv)
struct pv_entry *pv;
{
struct pv_page *pvp;
pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
pv_nfpvents++;
pvp->pvinfo.pvpi_nfree++;
/* nfree == 1 => fully allocated page just became partly allocated */
if (pvp->pvinfo.pvpi_nfree == 1) {
TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
}
/* free it */
pv->pv_next = pvp->pvinfo.pvpi_pvfree;
pvp->pvinfo.pvpi_pvfree = pv;
/*
* are all pv_page's pv_entry's free? move it to unused queue.
*/
if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
}
}
/*
* pmap_free_pv: free a single pv_entry
*
* => we gain the pvalloc_lock
*/
__inline static void
pmap_free_pv(pmap, pv)
struct pmap *pmap;
struct pv_entry *pv;
{
simple_lock(&pvalloc_lock);
pmap_free_pv_doit(pv);
/*
* Can't free the PV page if the PV entries were associated with
* the kernel pmap; the pmap is already locked.
*/
if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
pmap != pmap_kernel())
pmap_free_pvpage();
simple_unlock(&pvalloc_lock);
}
/*
* pmap_free_pvs: free a list of pv_entrys
*
* => we gain the pvalloc_lock
*/
__inline static void
pmap_free_pvs(pmap, pvs)
struct pmap *pmap;
struct pv_entry *pvs;
{
struct pv_entry *nextpv;
simple_lock(&pvalloc_lock);
for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
nextpv = pvs->pv_next;
pmap_free_pv_doit(pvs);
}
/*
* Can't free the PV page if the PV entries were associated with
* the kernel pmap; the pmap is already locked.
*/
if (pv_nfpvents > PVE_HIWAT && pv_unusedpgs.tqh_first != NULL &&
pmap != pmap_kernel())
pmap_free_pvpage();
simple_unlock(&pvalloc_lock);
}
/*
* pmap_free_pvpage: try and free an unused pv_page structure
*
* => assume caller is holding the pvalloc_lock and that
* there is a page on the pv_unusedpgs list
* => if we can't get a lock on the kmem_map we try again later
* => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
* that if we can lock the kmem_map then we are not already
* holding kmem_object's lock.
*/
static void
pmap_free_pvpage()
{
int s;
struct vm_map *map;
struct vm_map_entry *dead_entries;
struct pv_page *pvp;
s = splvm(); /* protect kmem_map */
pvp = pv_unusedpgs.tqh_first;
/*
* note: watch out for pv_initpage which is allocated out of
* kernel_map rather than kmem_map.
*/
if (pvp == pv_initpage)
map = kernel_map;
else
map = kmem_map;
if (vm_map_lock_try(map)) {
/* remove pvp from pv_unusedpgs */
TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
/* unmap the page */
dead_entries = NULL;
uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
&dead_entries);
vm_map_unlock(map);
if (dead_entries != NULL)
uvm_unmap_detach(dead_entries, 0);
pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
}
if (pvp == pv_initpage)
/* no more initpage, we've freed it */
pv_initpage = NULL;
splx(s);
}
/*
* main pv_entry manipulation functions:
* pmap_enter_pv: enter a mapping onto a pv_head list
* pmap_remove_pv: remove a mappiing from a pv_head list
*
* NOTE: pmap_enter_pv expects to lock the pvh itself
* pmap_remove_pv expects te caller to lock the pvh before calling
*/
/*
* pmap_enter_pv: enter a mapping onto a pv_head lst
*
* => caller should hold the proper lock on pmap_main_lock
* => caller should have pmap locked
* => we will gain the lock on the pv_head and allocate the new pv_entry
* => caller should adjust ptp's wire_count before calling
* => caller should not adjust pmap's wire_count
*/
__inline static void
pmap_enter_pv(pvh, pve, pmap, va, ptp, flags)
struct pv_head *pvh;
struct pv_entry *pve; /* preallocated pve for us to use */
struct pmap *pmap;
vaddr_t va;
struct vm_page *ptp; /* PTP in pmap that maps this VA */
int flags;
{
pve->pv_pmap = pmap;
pve->pv_va = va;
pve->pv_ptp = ptp; /* NULL for kernel pmap */
pve->pv_flags = flags;
simple_lock(&pvh->pvh_lock); /* lock pv_head */
pve->pv_next = pvh->pvh_list; /* add to ... */
pvh->pvh_list = pve; /* ... locked list */
simple_unlock(&pvh->pvh_lock); /* unlock, done! */
if (pve->pv_flags & PT_W)
++pmap->pm_stats.wired_count;
}
/*
* pmap_remove_pv: try to remove a mapping from a pv_list
*
* => caller should hold proper lock on pmap_main_lock
* => pmap should be locked
* => caller should hold lock on pv_head [so that attrs can be adjusted]
* => caller should adjust ptp's wire_count and free PTP if needed
* => caller should NOT adjust pmap's wire_count
* => we return the removed pve
*/
__inline static struct pv_entry *
pmap_remove_pv(pvh, pmap, va)
struct pv_head *pvh;
struct pmap *pmap;
vaddr_t va;
{
struct pv_entry *pve, **prevptr;
prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
pve = *prevptr;
while (pve) {
if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
*prevptr = pve->pv_next; /* remove it! */
if (pve->pv_flags & PT_W)
--pmap->pm_stats.wired_count;
break;
}
prevptr = &pve->pv_next; /* previous pointer */
pve = pve->pv_next; /* advance */
}
return(pve); /* return removed pve */
}
/*
*
* pmap_modify_pv: Update pv flags
*
* => caller should hold lock on pv_head [so that attrs can be adjusted]
* => caller should NOT adjust pmap's wire_count
* => we return the old flags
*
* Modify a physical-virtual mapping in the pv table
*/
/*__inline */ u_int
pmap_modify_pv(pmap, va, pvh, bic_mask, eor_mask)
struct pmap *pmap;
vaddr_t va;
struct pv_head *pvh;
u_int bic_mask;
u_int eor_mask;
{
struct pv_entry *npv;
u_int flags, oflags;
/*
* There is at least one VA mapping this page.
*/
for (npv = pvh->pvh_list; npv; npv = npv->pv_next) {
if (pmap == npv->pv_pmap && va == npv->pv_va) {
oflags = npv->pv_flags;
npv->pv_flags = flags =
((oflags & ~bic_mask) ^ eor_mask);
if ((flags ^ oflags) & PT_W) {
if (flags & PT_W)
++pmap->pm_stats.wired_count;
else
--pmap->pm_stats.wired_count;
}
return (oflags);
}
}
return (0);
}
/*
* Map the specified level 2 pagetable into the level 1 page table for
* the given pmap to cover a chunk of virtual address space starting from the
* address specified.
*/
static /*__inline*/ void
pmap_map_in_l1(pmap, va, l2pa, selfref)
struct pmap *pmap;
vaddr_t va, l2pa;
boolean_t selfref;
{
vaddr_t ptva;
/* Calculate the index into the L1 page table. */
ptva = (va >> PDSHIFT) & ~3;
PDEBUG(0, printf("wiring %08lx in to pd%p pte0x%lx va0x%lx\n", l2pa,
pmap->pm_pdir, L1_PTE(l2pa), ptva));
/* Map page table into the L1. */
pmap->pm_pdir[ptva + 0] = L1_PTE(l2pa + 0x000);
pmap->pm_pdir[ptva + 1] = L1_PTE(l2pa + 0x400);
pmap->pm_pdir[ptva + 2] = L1_PTE(l2pa + 0x800);
pmap->pm_pdir[ptva + 3] = L1_PTE(l2pa + 0xc00);
PDEBUG(0, printf("pt self reference %lx in %lx\n",
L2_PTE_NC_NB(l2pa, AP_KRW), pmap->pm_vptpt));
/* Map the page table into the page table area. */
if (selfref) {
*((pt_entry_t *)(pmap->pm_vptpt + ptva)) =
L2_PTE_NC_NB(l2pa, AP_KRW);
}
/* XXX should be a purge */
/* cpu_tlb_flushD();*/
}
#if 0
static /*__inline*/ void
pmap_unmap_in_l1(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
vaddr_t ptva;
/* Calculate the index into the L1 page table. */
ptva = (va >> PDSHIFT) & ~3;
/* Unmap page table from the L1. */
pmap->pm_pdir[ptva + 0] = 0;
pmap->pm_pdir[ptva + 1] = 0;
pmap->pm_pdir[ptva + 2] = 0;
pmap->pm_pdir[ptva + 3] = 0;
/* Unmap the page table from the page table area. */
*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
/* XXX should be a purge */
/* cpu_tlb_flushD();*/
}
#endif
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* For now, VM is already on, we only need to map the
* specified memory.
*/
vaddr_t
pmap_map(va, spa, epa, prot)
vaddr_t va, spa, epa;
int prot;
{
while (spa < epa) {
pmap_enter(pmap_kernel(), va, spa, prot, 0);
va += NBPG;
spa += NBPG;
}
pmap_update();
return(va);
}
/*
* void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
*
* bootstrap the pmap system. This is called from initarm and allows
* the pmap system to initailise any structures it requires.
*
* Currently this sets up the kernel_pmap that is statically allocated
* and also allocated virtual addresses for certain page hooks.
* Currently the only one page hook is allocated that is used
* to zero physical pages of memory.
* It also initialises the start and end address of the kernel data space.
*/
extern paddr_t physical_freestart;
extern paddr_t physical_freeend;
char *boot_head;
void
pmap_bootstrap(kernel_l1pt, kernel_ptpt)
pd_entry_t *kernel_l1pt;
pv_addr_t kernel_ptpt;
{
int loop;
paddr_t start, end;
#if NISADMA > 0
paddr_t istart;
psize_t isize;
#endif
pmap_kernel()->pm_pdir = kernel_l1pt;
pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
simple_lock_init(&pmap_kernel()->pm_lock);
pmap_kernel()->pm_obj.pgops = NULL;
TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
pmap_kernel()->pm_obj.uo_npages = 0;
pmap_kernel()->pm_obj.uo_refs = 1;
/*
* Initialize PAGE_SIZE-dependent variables.
*/
uvm_setpagesize();
npages = 0;
loop = 0;
while (loop < bootconfig.dramblocks) {
start = (paddr_t)bootconfig.dram[loop].address;
end = start + (bootconfig.dram[loop].pages * NBPG);
if (start < physical_freestart)
start = physical_freestart;
if (end > physical_freeend)
end = physical_freeend;
#if 0
printf("%d: %lx -> %lx\n", loop, start, end - 1);
#endif
#if NISADMA > 0
if (pmap_isa_dma_range_intersect(start, end - start,
&istart, &isize)) {
/*
* Place the pages that intersect with the
* ISA DMA range onto the ISA DMA free list.
*/
#if 0
printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
istart + isize - 1);
#endif
uvm_page_physload(atop(istart),
atop(istart + isize), atop(istart),
atop(istart + isize), VM_FREELIST_ISADMA);
npages += atop(istart + isize) - atop(istart);
/*
* Load the pieces that come before
* the intersection into the default
* free list.
*/
if (start < istart) {
#if 0
printf(" BEFORE 0x%lx -> 0x%lx\n",
start, istart - 1);
#endif
uvm_page_physload(atop(start),
atop(istart), atop(start),
atop(istart), VM_FREELIST_DEFAULT);
npages += atop(istart) - atop(start);
}
/*
* Load the pieces that come after
* the intersection into the default
* free list.
*/
if ((istart + isize) < end) {
#if 0
printf(" AFTER 0x%lx -> 0x%lx\n",
(istart + isize), end - 1);
#endif
uvm_page_physload(atop(istart + isize),
atop(end), atop(istart + isize),
atop(end), VM_FREELIST_DEFAULT);
npages += atop(end) - atop(istart + isize);
}
} else {
uvm_page_physload(atop(start), atop(end),
atop(start), atop(end), VM_FREELIST_DEFAULT);
npages += atop(end) - atop(start);
}
#else /* NISADMA > 0 */
uvm_page_physload(atop(start), atop(end),
atop(start), atop(end), VM_FREELIST_DEFAULT);
npages += atop(end) - atop(start);
#endif /* NISADMA > 0 */
++loop;
}
#ifdef MYCROFT_HACK
printf("npages = %ld\n", npages);
#endif
virtual_start = KERNEL_VM_BASE;
virtual_end = virtual_start + KERNEL_VM_SIZE - 1;
ALLOC_PAGE_HOOK(page_hook0, NBPG);
ALLOC_PAGE_HOOK(page_hook1, NBPG);
/*
* The mem special device needs a virtual hook but we don't
* need a pte
*/
memhook = (char *)virtual_start;
virtual_start += NBPG;
msgbufaddr = (caddr_t)virtual_start;
msgbufpte = (pt_entry_t)pmap_pte(pmap_kernel(), virtual_start);
virtual_start += round_page(MSGBUFSIZE);
/*
* init the static-global locks and global lists.
*/
spinlockinit(&pmap_main_lock, "pmaplk", 0);
simple_lock_init(&pvalloc_lock);
TAILQ_INIT(&pv_freepages);
TAILQ_INIT(&pv_unusedpgs);
/*
* compute the number of pages we have and then allocate RAM
* for each pages' pv_head and saved attributes.
*/
{
int npages, lcv;
vsize_t s;
npages = 0;
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
s = (vsize_t) (sizeof(struct pv_head) * npages +
sizeof(char) * npages);
s = round_page(s); /* round up */
boot_head = (char *)uvm_pageboot_alloc(s);
bzero((char *)boot_head, s);
if (boot_head == 0)
panic("pmap_init: unable to allocate pv_heads");
}
/*
* initialize the pmap pool.
*/
pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
cpu_cache_cleanD();
}
/*
* void pmap_init(void)
*
* Initialize the pmap module.
* Called by vm_init() in vm/vm_init.c in order to initialise
* any structures that the pmap system needs to map virtual memory.
*/
extern int physmem;
void
pmap_init()
{
int lcv, i;
#ifdef MYCROFT_HACK
printf("physmem = %d\n", physmem);
#endif
/*
* Set the available memory vars - These do not map to real memory
* addresses and cannot as the physical memory is fragmented.
* They are used by ps for %mem calculations.
* One could argue whether this should be the entire memory or just
* the memory that is useable in a user process.
*/
avail_start = 0;
avail_end = physmem * NBPG;
/* allocate pv_head stuff first */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
vm_physmem[lcv].pmseg.pvhead = (struct pv_head *)boot_head;
boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
(vm_physmem[lcv].end - vm_physmem[lcv].start));
for (i = 0;
i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
simple_lock_init(
&vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
}
}
/* now allocate attrs */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
vm_physmem[lcv].pmseg.attrs = (char *) boot_head;
boot_head = (char *)(vaddr_t)(vm_physmem[lcv].pmseg.attrs +
(vm_physmem[lcv].end - vm_physmem[lcv].start));
}
/*
* now we need to free enough pv_entry structures to allow us to get
* the kmem_map/kmem_object allocated and inited (done after this
* function is finished). to do this we allocate one bootstrap page out
* of kernel_map and use it to provide an initial pool of pv_entry
* structures. we never free this page.
*/
pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
if (pv_initpage == NULL)
panic("pmap_init: pv_initpage");
pv_cachedva = 0; /* a VA we have allocated but not used yet */
pv_nfpvents = 0;
(void) pmap_add_pvpage(pv_initpage, FALSE);
#ifdef MYCROFT_HACK
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
printf("physseg[%d] pvent=%p attrs=%p start=%ld end=%ld\n",
lcv,
vm_physmem[lcv].pmseg.pvent, vm_physmem[lcv].pmseg.attrs,
vm_physmem[lcv].start, vm_physmem[lcv].end);
}
#endif
pmap_initialized = TRUE;
/* Initialise our L1 page table queues and counters */
SIMPLEQ_INIT(&l1pt_static_queue);
l1pt_static_queue_count = 0;
l1pt_static_create_count = 0;
SIMPLEQ_INIT(&l1pt_queue);
l1pt_queue_count = 0;
l1pt_create_count = 0;
l1pt_reuse_count = 0;
}
/*
* pmap_postinit()
*
* This routine is called after the vm and kmem subsystems have been
* initialised. This allows the pmap code to perform any initialisation
* that can only be done one the memory allocation is in place.
*/
void
pmap_postinit()
{
int loop;
struct l1pt *pt;
#ifdef PMAP_STATIC_L1S
for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
#else /* PMAP_STATIC_L1S */
for (loop = 0; loop < max_processes; ++loop) {
#endif /* PMAP_STATIC_L1S */
/* Allocate a L1 page table */
pt = pmap_alloc_l1pt();
if (!pt)
panic("Cannot allocate static L1 page tables\n");
/* Clean it */
bzero((void *)pt->pt_va, PD_SIZE);
pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
/* Add the page table to the queue */
SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
++l1pt_static_queue_count;
++l1pt_static_create_count;
}
}
/*
* Create and return a physical map.
*
* If the size specified for the map is zero, the map is an actual physical
* map, and may be referenced by the hardware.
*
* If the size specified is non-zero, the map will be used in software only,
* and is bounded by that size.
*/
pmap_t
pmap_create()
{
struct pmap *pmap;
/*
* Fetch pmap entry from the pool
*/
pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
/* XXX is this really needed! */
memset(pmap, 0, sizeof(*pmap));
simple_lock_init(&pmap->pm_obj.vmobjlock);
pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
TAILQ_INIT(&pmap->pm_obj.memq);
pmap->pm_obj.uo_npages = 0;
pmap->pm_obj.uo_refs = 1;
pmap->pm_stats.wired_count = 0;
pmap->pm_stats.resident_count = 1;
/* Now init the machine part of the pmap */
pmap_pinit(pmap);
return(pmap);
}
/*
* pmap_alloc_l1pt()
*
* This routine allocates physical and virtual memory for a L1 page table
* and wires it.
* A l1pt structure is returned to describe the allocated page table.
*
* This routine is allowed to fail if the required memory cannot be allocated.
* In this case NULL is returned.
*/
struct l1pt *
pmap_alloc_l1pt(void)
{
paddr_t pa;
vaddr_t va;
struct l1pt *pt;
int error;
struct vm_page *m;
pt_entry_t *ptes;
/* Allocate virtual address space for the L1 page table */
va = uvm_km_valloc(kernel_map, PD_SIZE);
if (va == 0) {
#ifdef DIAGNOSTIC
printf("pmap: Cannot allocate pageable memory for L1\n");
#endif /* DIAGNOSTIC */
return(NULL);
}
/* Allocate memory for the l1pt structure */
pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
/*
* Allocate pages from the VM system.
*/
TAILQ_INIT(&pt->pt_plist);
error = uvm_pglistalloc(PD_SIZE, physical_start, physical_end,
PD_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
if (error) {
#ifdef DIAGNOSTIC
printf("pmap: Cannot allocate physical memory for L1 (%d)\n",
error);
#endif /* DIAGNOSTIC */
/* Release the resources we already have claimed */
free(pt, M_VMPMAP);
uvm_km_free(kernel_map, va, PD_SIZE);
return(NULL);
}
/* Map our physical pages into our virtual space */
pt->pt_va = va;
m = pt->pt_plist.tqh_first;
ptes = pmap_map_ptes(pmap_kernel());
while (m && va < (pt->pt_va + PD_SIZE)) {
pa = VM_PAGE_TO_PHYS(m);
pmap_enter(pmap_kernel(), va, pa,
VM_PROT_READ | VM_PROT_WRITE, PMAP_WIRED);
/* Revoke cacheability and bufferability */
/* XXX should be done better than this */
ptes[arm_byte_to_page(va)] &= ~(PT_C | PT_B);
va += NBPG;
m = m->pageq.tqe_next;
}
pmap_unmap_ptes(pmap_kernel());
pmap_update();
#ifdef DIAGNOSTIC
if (m)
panic("pmap_alloc_l1pt: pglist not empty\n");
#endif /* DIAGNOSTIC */
pt->pt_flags = 0;
return(pt);
}
/*
* Free a L1 page table previously allocated with pmap_alloc_l1pt().
*/
void
pmap_free_l1pt(pt)
struct l1pt *pt;
{
/* Separate the physical memory for the virtual space */
pmap_remove(pmap_kernel(), pt->pt_va, pt->pt_va + PD_SIZE);
pmap_update();
/* Return the physical memory */
uvm_pglistfree(&pt->pt_plist);
/* Free the virtual space */
uvm_km_free(kernel_map, pt->pt_va, PD_SIZE);
/* Free the l1pt structure */
free(pt, M_VMPMAP);
}
/*
* Allocate a page directory.
* This routine will either allocate a new page directory from the pool
* of L1 page tables currently held by the kernel or it will allocate
* a new one via pmap_alloc_l1pt().
* It will then initialise the l1 page table for use.
*/
int
pmap_allocpagedir(pmap)
struct pmap *pmap;
{
paddr_t pa;
struct l1pt *pt;
pt_entry_t *pte;
PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
/* Do we have any spare L1's lying around ? */
if (l1pt_static_queue_count) {
--l1pt_static_queue_count;
pt = l1pt_static_queue.sqh_first;
SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
} else if (l1pt_queue_count) {
--l1pt_queue_count;
pt = l1pt_queue.sqh_first;
SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
++l1pt_reuse_count;
} else {
pt = pmap_alloc_l1pt();
if (!pt)
return(ENOMEM);
++l1pt_create_count;
}
/* Store the pointer to the l1 descriptor in the pmap. */
pmap->pm_l1pt = pt;
/* Get the physical address of the start of the l1 */
pa = VM_PAGE_TO_PHYS(pt->pt_plist.tqh_first);
/* Store the virtual address of the l1 in the pmap. */
pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
/* Clean the L1 if it is dirty */
if (!(pt->pt_flags & PTFLAG_CLEAN))
bzero((void *)pmap->pm_pdir, (PD_SIZE - KERNEL_PD_SIZE));
/* Do we already have the kernel mappings ? */
if (!(pt->pt_flags & PTFLAG_KPT)) {
/* Duplicate the kernel mapping i.e. all mappings 0xf0000000+ */
bcopy((char *)pmap_kernel()->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
(char *)pmap->pm_pdir + (PD_SIZE - KERNEL_PD_SIZE),
KERNEL_PD_SIZE);
pt->pt_flags |= PTFLAG_KPT;
}
/* Allocate a page table to map all the page tables for this pmap */
#ifdef DIAGNOSTIC
if (pmap->pm_vptpt) {
/* XXX What if we have one already ? */
panic("pmap_allocpagedir: have pt already\n");
}
#endif /* DIAGNOSTIC */
pmap->pm_vptpt = uvm_km_zalloc(kernel_map, NBPG);
if (pmap->pm_vptpt == 0) {
pmap_freepagedir(pmap);
return(ENOMEM);
}
(void) pmap_extract(pmap_kernel(), pmap->pm_vptpt, &pmap->pm_pptpt);
pmap->pm_pptpt &= PG_FRAME;
/* Revoke cacheability and bufferability */
/* XXX should be done better than this */
pte = pmap_pte(pmap_kernel(), pmap->pm_vptpt);
*pte = *pte & ~(PT_C | PT_B);
/* Wire in this page table */
pmap_map_in_l1(pmap, PROCESS_PAGE_TBLS_BASE, pmap->pm_pptpt, TRUE);
pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
/*
* Map the kernel page tables for 0xf0000000 +
* into the page table used to map the
* pmap's page tables
*/
bcopy((char *)(PROCESS_PAGE_TBLS_BASE
+ (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2))
+ ((PD_SIZE - KERNEL_PD_SIZE) >> 2)),
(char *)pmap->pm_vptpt + ((PD_SIZE - KERNEL_PD_SIZE) >> 2),
(KERNEL_PD_SIZE >> 2));
return(0);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
void
pmap_pinit(pmap)
struct pmap *pmap;
{
PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
/* Keep looping until we succeed in allocating a page directory */
while (pmap_allocpagedir(pmap) != 0) {
/*
* Ok we failed to allocate a suitable block of memory for an
* L1 page table. This means that either:
* 1. 16KB of virtual address space could not be allocated
* 2. 16KB of physically contiguous memory on a 16KB boundary
* could not be allocated.
*
* Since we cannot fail we will sleep for a while and try
* again.
*/
(void) ltsleep(&lbolt, PVM, "l1ptwait", hz >> 3, NULL);
}
/* Map zero page for the pmap. This will also map the L2 for it */
pmap_enter(pmap, 0x00000000, systempage.pv_pa,
VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
pmap_update();
}
void
pmap_freepagedir(pmap)
struct pmap *pmap;
{
/* Free the memory used for the page table mapping */
if (pmap->pm_vptpt != 0)
uvm_km_free(kernel_map, (vaddr_t)pmap->pm_vptpt, NBPG);
/* junk the L1 page table */
if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
/* Add the page table to the queue */
SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
++l1pt_static_queue_count;
} else if (l1pt_queue_count < 8) {
/* Add the page table to the queue */
SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
++l1pt_queue_count;
} else
pmap_free_l1pt(pmap->pm_l1pt);
}
/*
* Retire the given physical map from service.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_destroy(pmap)
struct pmap *pmap;
{
struct vm_page *page;
int count;
if (pmap == NULL)
return;
PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
/*
* Drop reference count
*/
simple_lock(&pmap->pm_obj.vmobjlock);
count = --pmap->pm_obj.uo_refs;
simple_unlock(&pmap->pm_obj.vmobjlock);
if (count > 0) {
return;
}
/*
* reference count is zero, free pmap resources and then free pmap.
*/
/* Remove the zero page mapping */
pmap_remove(pmap, 0x00000000, 0x00000000 + NBPG);
pmap_update();
/*
* Free any page tables still mapped
* This is only temporay until pmap_enter can count the number
* of mappings made in a page table. Then pmap_remove() can
* reduce the count and free the pagetable when the count
* reaches zero. Note that entries in this list should match the
* contents of the ptpt, however this is faster than walking a 1024
* entries looking for pt's
* taken from i386 pmap.c
*/
while (pmap->pm_obj.memq.tqh_first != NULL) {
page = pmap->pm_obj.memq.tqh_first;
#ifdef DIAGNOSTIC
if (page->flags & PG_BUSY)
panic("pmap_release: busy page table page");
#endif
/* pmap_page_protect? currently no need for it. */
page->wire_count = 0;
uvm_pagefree(page);
}
/* Free the page dir */
pmap_freepagedir(pmap);
/* return the pmap to the pool */
pool_put(&pmap_pmap_pool, pmap);
}
/*
* void pmap_reference(struct pmap *pmap)
*
* Add a reference to the specified pmap.
*/
void
pmap_reference(pmap)
struct pmap *pmap;
{
if (pmap == NULL)
return;
simple_lock(&pmap->pm_lock);
pmap->pm_obj.uo_refs++;
simple_unlock(&pmap->pm_lock);
}
/*
* void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
*
* Return the start and end addresses of the kernel's virtual space.
* These values are setup in pmap_bootstrap and are updated as pages
* are allocated.
*/
void
pmap_virtual_space(start, end)
vaddr_t *start;
vaddr_t *end;
{
*start = virtual_start;
*end = virtual_end;
}
/*
* Activate the address space for the specified process. If the process
* is the current process, load the new MMU context.
*/
void
pmap_activate(p)
struct proc *p;
{
struct pmap *pmap = p->p_vmspace->vm_map.pmap;
struct pcb *pcb = &p->p_addr->u_pcb;
(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
(paddr_t *)&pcb->pcb_pagedir);
PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
if (p == curproc) {
PDEBUG(0, printf("pmap_activate: setting TTB\n"));
setttb((u_int)pcb->pcb_pagedir);
}
#if 0
pmap->pm_pdchanged = FALSE;
#endif
}
/*
* Deactivate the address space of the specified process.
*/
void
pmap_deactivate(p)
struct proc *p;
{
}
/*
* pmap_clean_page()
*
* This is a local function used to work out the best strategy to clean
* a single page referenced by its entry in the PV table. It's used by
* pmap_copy_page, pmap_zero page and maybe some others later on.
*
* Its policy is effectively:
* o If there are no mappings, we don't bother doing anything with the cache.
* o If there is one mapping, we clean just that page.
* o If there are multiple mappings, we clean the entire cache.
*
* So that some functions can be further optimised, it returns 0 if it didn't
* clean the entire cache, or 1 if it did.
*
* XXX One bug in this routine is that if the pv_entry has a single page
* mapped at 0x00000000 a whole cache clean will be performed rather than
* just the 1 page. Since this should not occur in everyday use and if it does
* it will just result in not the most efficient clean for the page.
*/
static int
pmap_clean_page(pv, is_src)
struct pv_entry *pv;
boolean_t is_src;
{
struct pmap *pmap;
struct pv_entry *npv;
int cache_needs_cleaning = 0;
vaddr_t page_to_clean = 0;
if (pv == NULL)
/* nothing mapped in so nothing to flush */
return (0);
/* Since we flush the cache each time we change curproc, we
* only need to flush the page if it is in the current pmap.
*/
if (curproc)
pmap = curproc->p_vmspace->vm_map.pmap;
else
pmap = pmap_kernel();
for (npv = pv; npv; npv = npv->pv_next) {
if (npv->pv_pmap == pmap) {
/* The page is mapped non-cacheable in
* this map. No need to flush the cache.
*/
if (npv->pv_flags & PT_NC) {
#ifdef DIAGNOSTIC
if (cache_needs_cleaning)
panic("pmap_clean_page: "
"cache inconsistency");
#endif
break;
}
#if 0
/* This doesn't work, because pmap_protect
doesn't flush changes on pages that it
has write-protected. */
/* If the page is not writeable and this
is the source, then there is no need
to flush it from the cache. */
else if (is_src && ! (npv->pv_flags & PT_Wr))
continue;
#endif
if (cache_needs_cleaning){
page_to_clean = 0;
break;
}
else
page_to_clean = npv->pv_va;
cache_needs_cleaning = 1;
}
}
if (page_to_clean)
cpu_cache_purgeID_rng(page_to_clean, NBPG);
else if (cache_needs_cleaning) {
cpu_cache_purgeID();
return (1);
}
return (0);
}
/*
* pmap_find_pv()
*
* This is a local function that finds a PV head for a given physical page.
* This is a common op, and this function removes loads of ifdefs in the code.
*/
static __inline struct pv_head *
pmap_find_pvh(phys)
paddr_t phys;
{
int bank, off;
struct pv_head *pvh;
#ifdef DIAGNOSTIC
if (!pmap_initialized)
panic("pmap_find_pv: !pmap_initialized");
#endif
if ((bank = vm_physseg_find(atop(phys), &off)) == -1)
panic("pmap_find_pv: not a real page, phys=%lx\n", phys);
pvh = &vm_physmem[bank].pmseg.pvhead[off];
return (pvh);
}
/*
* pmap_zero_page()
*
* Zero a given physical page by mapping it at a page hook point.
* In doing the zero page op, the page we zero is mapped cachable, as with
* StrongARM accesses to non-cached pages are non-burst making writing
* _any_ bulk data very slow.
*/
void
pmap_zero_page(phys)
paddr_t phys;
{
struct pv_head *pvh;
/* Get an entry for this page, and clean it it. */
PMAP_HEAD_TO_MAP_LOCK();
pvh = pmap_find_pvh(phys);
simple_lock(&pvh->pvh_lock);
pmap_clean_page(pvh->pvh_list, FALSE);
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
cpu_tlb_flushD_SE(page_hook0.va);
bzero_page(page_hook0.va);
cpu_cache_purgeD_rng(page_hook0.va, NBPG);
}
/* pmap_pageidlezero()
*
* The same as above, except that we assume that the page is not
* mapped. This means we never have to flush the cache first. Called
* from the idle loop.
*/
boolean_t
pmap_pageidlezero(phys)
paddr_t phys;
{
int i, *ptr;
boolean_t rv = TRUE;
#ifdef DIAGNOSTIC
struct pv_head *pvh;
pvh = pmap_find_pvh(phys);
if (pvh->pvh_list != NULL)
panic("pmap_pageidlezero: zeroing mapped page\n");
#endif
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*page_hook0.pte = L2_PTE(phys & PG_FRAME, AP_KRW);
cpu_tlb_flushD_SE(page_hook0.va);
for (i = 0, ptr = (int *)page_hook0.va;
i < (NBPG / sizeof(int)); i++) {
if (sched_whichqs != 0) {
/*
* A process has become ready. Abort now,
* so we don't keep it waiting while we
* do slow memory access to finish this
* page.
*/
rv = FALSE;
break;
}
*ptr++ = 0;
}
if (rv)
/*
* if we aborted we'll rezero this page again later so don't
* purge it unless we finished it
*/
cpu_cache_purgeD_rng(page_hook0.va, NBPG);
return (rv);
}
/*
* pmap_copy_page()
*
* Copy one physical page into another, by mapping the pages into
* hook points. The same comment regarding cachability as in
* pmap_zero_page also applies here.
*/
void
pmap_copy_page(src, dest)
paddr_t src;
paddr_t dest;
{
struct pv_head *src_pvh, *dest_pvh;
PMAP_HEAD_TO_MAP_LOCK();
/* Get PV entries for the pages, and clean them if needed. */
src_pvh = pmap_find_pvh(src);
simple_lock(&src_pvh->pvh_lock);
dest_pvh = pmap_find_pvh(dest);
simple_lock(&dest_pvh->pvh_lock);
if (!pmap_clean_page(src_pvh->pvh_list, TRUE))
pmap_clean_page(dest_pvh->pvh_list, FALSE);
simple_unlock(&dest_pvh->pvh_lock);
simple_unlock(&src_pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
/*
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
*page_hook0.pte = L2_PTE(src & PG_FRAME, AP_KRW);
*page_hook1.pte = L2_PTE(dest & PG_FRAME, AP_KRW);
cpu_tlb_flushD_SE(page_hook0.va);
cpu_tlb_flushD_SE(page_hook1.va);
bcopy_page(page_hook0.va, page_hook1.va);
cpu_cache_purgeD_rng(page_hook0.va, NBPG);
cpu_cache_purgeD_rng(page_hook1.va, NBPG);
}
/*
* int pmap_next_phys_page(paddr_t *addr)
*
* Allocate another physical page returning true or false depending
* on whether a page could be allocated.
*/
paddr_t
pmap_next_phys_page(addr)
paddr_t addr;
{
int loop;
if (addr < bootconfig.dram[0].address)
return(bootconfig.dram[0].address);
loop = 0;
while (bootconfig.dram[loop].address != 0
&& addr > (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG))
++loop;
if (bootconfig.dram[loop].address == 0)
return(0);
addr += NBPG;
if (addr >= (bootconfig.dram[loop].address + bootconfig.dram[loop].pages * NBPG)) {
if (bootconfig.dram[loop + 1].address == 0)
return(0);
addr = bootconfig.dram[loop + 1].address;
}
return(addr);
}
#if 0
void
pmap_pte_addref(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
pd_entry_t *pde;
paddr_t pa;
struct vm_page *m;
if (pmap == pmap_kernel())
return;
pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
pa = pmap_pte_pa(pde);
m = PHYS_TO_VM_PAGE(pa);
++m->wire_count;
#ifdef MYCROFT_HACK
printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
pmap, va, pde, pa, m, m->wire_count);
#endif
}
void
pmap_pte_delref(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
pd_entry_t *pde;
paddr_t pa;
struct vm_page *m;
if (pmap == pmap_kernel())
return;
pde = pmap_pde(pmap, va & ~(3 << PDSHIFT));
pa = pmap_pte_pa(pde);
m = PHYS_TO_VM_PAGE(pa);
--m->wire_count;
#ifdef MYCROFT_HACK
printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
pmap, va, pde, pa, m, m->wire_count);
#endif
if (m->wire_count == 0) {
#ifdef MYCROFT_HACK
printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
pmap, va, pde, pa, m);
#endif
pmap_unmap_in_l1(pmap, va);
uvm_pagefree(m);
--pmap->pm_stats.resident_count;
}
}
#else
#define pmap_pte_addref(pmap, va)
#define pmap_pte_delref(pmap, va)
#endif
/*
* Since we have a virtually indexed cache, we may need to inhibit caching if
* there is more than one mapping and at least one of them is writable.
* Since we purge the cache on every context switch, we only need to check for
* other mappings within the same pmap, or kernel_pmap.
* This function is also called when a page is unmapped, to possibly reenable
* caching on any remaining mappings.
*
* Note that the pmap must have it's ptes mapped in, and passed with ptes.
*/
void
pmap_vac_me_harder(struct pmap *pmap, struct pv_head *pvh, pt_entry_t *ptes,
boolean_t clear_cache)
{
struct pv_entry *pv, *npv;
pt_entry_t *pte;
int entries = 0;
int writeable = 0;
int cacheable_entries = 0;
pv = pvh->pvh_list;
KASSERT(ptes != NULL);
/*
* Count mappings and writable mappings in this pmap.
* Keep a pointer to the first one.
*/
for (npv = pv; npv; npv = npv->pv_next) {
/* Count mappings in the same pmap */
if (pmap == npv->pv_pmap) {
if (entries++ == 0)
pv = npv;
/* Cacheable mappings */
if ((npv->pv_flags & PT_NC) == 0)
cacheable_entries++;
/* Writeable mappings */
if (npv->pv_flags & PT_Wr)
++writeable;
}
}
PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
"writeable %d cacheable %d %s\n", pmap, entries, writeable,
cacheable_entries, clear_cache ? "clean" : "no clean"));
/*
* Enable or disable caching as necessary.
* We do a quick check of the first PTE to avoid walking the list if
* we're already in the right state.
*/
if (entries > 1 && writeable) {
if (cacheable_entries == 0)
return;
if (pv->pv_flags & PT_NC) {
#ifdef DIAGNOSTIC
/* We have cacheable entries, but the first one
isn't among them. Something is wrong. */
if (cacheable_entries)
panic("pmap_vac_me_harder: "
"cacheable inconsistent");
#endif
return;
}
pte = &ptes[arm_byte_to_page(pv->pv_va)];
*pte &= ~(PT_C | PT_B);
pv->pv_flags |= PT_NC;
if (clear_cache && cacheable_entries < 4) {
cpu_cache_purgeID_rng(pv->pv_va, NBPG);
cpu_tlb_flushID_SE(pv->pv_va);
}
for (npv = pv->pv_next; npv; npv = npv->pv_next) {
if (pmap == npv->pv_pmap &&
(npv->pv_flags & PT_NC) == 0) {
ptes[arm_byte_to_page(npv->pv_va)] &=
~(PT_C | PT_B);
npv->pv_flags |= PT_NC;
if (clear_cache && cacheable_entries < 4) {
cpu_cache_purgeID_rng(npv->pv_va,
NBPG);
cpu_tlb_flushID_SE(npv->pv_va);
}
}
}
if (clear_cache && cacheable_entries >= 4) {
cpu_cache_purgeID();
cpu_tlb_flushID();
}
} else if (entries > 0) {
if ((pv->pv_flags & PT_NC) == 0)
return;
pte = &ptes[arm_byte_to_page(pv->pv_va)];
*pte |= (PT_C | PT_B);
pv->pv_flags &= ~PT_NC;
for (npv = pv->pv_next; npv; npv = npv->pv_next) {
if (pmap == npv->pv_pmap &&
(npv->pv_flags & PT_NC)) {
ptes[arm_byte_to_page(npv->pv_va)] |=
(PT_C | PT_B);
npv->pv_flags &= ~PT_NC;
}
}
}
}
/*
* pmap_remove()
*
* pmap_remove is responsible for nuking a number of mappings for a range
* of virtual address space in the current pmap. To do this efficiently
* is interesting, because in a number of cases a wide virtual address
* range may be supplied that contains few actual mappings. So, the
* optimisations are:
* 1. Try and skip over hunks of address space for which an L1 entry
* does not exist.
* 2. Build up a list of pages we've hit, up to a maximum, so we can
* maybe do just a partial cache clean. This path of execution is
* complicated by the fact that the cache must be flushed _before_
* the PTE is nuked, being a VAC :-)
* 3. Maybe later fast-case a single page, but I don't think this is
* going to make _that_ much difference overall.
*/
#define PMAP_REMOVE_CLEAN_LIST_SIZE 3
void
pmap_remove(pmap, sva, eva)
struct pmap *pmap;
vaddr_t sva;
vaddr_t eva;
{
int cleanlist_idx = 0;
struct pagelist {
vaddr_t va;
pt_entry_t *pte;
} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
pt_entry_t *pte = 0, *ptes;
paddr_t pa;
int pmap_active;
struct pv_head *pvh;
/* Exit quick if there is no pmap */
if (!pmap)
return;
PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n", pmap, sva, eva));
sva &= PG_FRAME;
eva &= PG_FRAME;
/*
* we lock in the pmap => pv_head direction
*/
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap);
/* Get a page table pointer */
while (sva < eva) {
if (pmap_pde_v(pmap_pde(pmap, sva)))
break;
sva = (sva & PD_MASK) + NBPD;
}
pte = &ptes[arm_byte_to_page(sva)];
/* Note if the pmap is active thus require cache and tlb cleans */
if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
|| (pmap == pmap_kernel()))
pmap_active = 1;
else
pmap_active = 0;
/* Now loop along */
while (sva < eva) {
/* Check if we can move to the next PDE (l1 chunk) */
if (!(sva & PT_MASK))
if (!pmap_pde_v(pmap_pde(pmap, sva))) {
sva += NBPD;
pte += arm_byte_to_page(NBPD);
continue;
}
/* We've found a valid PTE, so this page of PTEs has to go. */
if (pmap_pte_v(pte)) {
int bank, off;
/* Update statistics */
--pmap->pm_stats.resident_count;
/*
* Add this page to our cache remove list, if we can.
* If, however the cache remove list is totally full,
* then do a complete cache invalidation taking note
* to backtrack the PTE table beforehand, and ignore
* the lists in future because there's no longer any
* point in bothering with them (we've paid the
* penalty, so will carry on unhindered). Otherwise,
* when we fall out, we just clean the list.
*/
PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
pa = pmap_pte_pa(pte);
if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
/* Add to the clean list. */
cleanlist[cleanlist_idx].pte = pte;
cleanlist[cleanlist_idx].va = sva;
cleanlist_idx++;
} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
int cnt;
/* Nuke everything if needed. */
if (pmap_active) {
cpu_cache_purgeID();
cpu_tlb_flushID();
}
/*
* Roll back the previous PTE list,
* and zero out the current PTE.
*/
for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
*cleanlist[cnt].pte = 0;
pmap_pte_delref(pmap, cleanlist[cnt].va);
}
*pte = 0;
pmap_pte_delref(pmap, sva);
cleanlist_idx++;
} else {
/*
* We've already nuked the cache and
* TLB, so just carry on regardless,
* and we won't need to do it again
*/
*pte = 0;
pmap_pte_delref(pmap, sva);
}
/*
* Update flags. In a number of circumstances,
* we could cluster a lot of these and do a
* number of sequential pages in one go.
*/
if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
struct pv_entry *pve;
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
pve = pmap_remove_pv(pvh, pmap, sva);
pmap_free_pv(pmap, pve);
pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
simple_unlock(&pvh->pvh_lock);
}
}
sva += NBPG;
pte++;
}
pmap_unmap_ptes(pmap);
/*
* Now, if we've fallen through down to here, chances are that there
* are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
*/
if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
u_int cnt;
for (cnt = 0; cnt < cleanlist_idx; cnt++) {
if (pmap_active) {
cpu_cache_purgeID_rng(cleanlist[cnt].va, NBPG);
*cleanlist[cnt].pte = 0;
cpu_tlb_flushID_SE(cleanlist[cnt].va);
} else
*cleanlist[cnt].pte = 0;
pmap_pte_delref(pmap, cleanlist[cnt].va);
}
}
PMAP_MAP_TO_HEAD_UNLOCK();
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*/
void
pmap_remove_all(pa)
paddr_t pa;
{
struct pv_entry *pv, *npv;
struct pv_head *pvh;
struct pmap *pmap;
pt_entry_t *pte, *ptes;
PDEBUG(0, printf("pmap_remove_all: pa=%lx ", pa));
/* set pv_head => pmap locking */
PMAP_HEAD_TO_MAP_LOCK();
pvh = pmap_find_pvh(pa);
simple_lock(&pvh->pvh_lock);
pv = pvh->pvh_list;
if (pv == NULL)
{
PDEBUG(0, printf("free page\n"));
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
return;
}
pmap_clean_page(pv, FALSE);
while (pv) {
pmap = pv->pv_pmap;
ptes = pmap_map_ptes(pmap);
pte = &ptes[arm_byte_to_page(pv->pv_va)];
PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
pv->pv_va, pv->pv_flags));
#ifdef DEBUG
if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)
|| pmap_pte_pa(pte) != pa)
panic("pmap_remove_all: bad mapping");
#endif /* DEBUG */
/*
* Update statistics
*/
--pmap->pm_stats.resident_count;
/* Wired bit */
if (pv->pv_flags & PT_W)
--pmap->pm_stats.wired_count;
/*
* Invalidate the PTEs.
* XXX: should cluster them up and invalidate as many
* as possible at once.
*/
#ifdef needednotdone
reduce wiring count on page table pages as references drop
#endif
*pte = 0;
pmap_pte_delref(pmap, pv->pv_va);
npv = pv->pv_next;
pmap_free_pv(pmap, pv);
pv = npv;
pmap_unmap_ptes(pmap);
}
pvh->pvh_list = NULL;
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
PDEBUG(0, printf("done\n"));
cpu_tlb_flushID();
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
void
pmap_protect(pmap, sva, eva, prot)
struct pmap *pmap;
vaddr_t sva;
vaddr_t eva;
vm_prot_t prot;
{
pt_entry_t *pte = NULL, *ptes;
int armprot;
int flush = 0;
paddr_t pa;
int bank, off;
struct pv_head *pvh;
PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
pmap, sva, eva, prot));
if (~prot & VM_PROT_READ) {
/* Just remove the mappings. */
pmap_remove(pmap, sva, eva);
return;
}
if (prot & VM_PROT_WRITE) {
/*
* If this is a read->write transition, just ignore it and let
* uvm_fault() take care of it later.
*/
return;
}
sva &= PG_FRAME;
eva &= PG_FRAME;
/* Need to lock map->head */
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap);
/*
* We need to acquire a pointer to a page table page before entering
* the following loop.
*/
while (sva < eva) {
if (pmap_pde_v(pmap_pde(pmap, sva)))
break;
sva = (sva & PD_MASK) + NBPD;
}
pte = &ptes[arm_byte_to_page(sva)];
while (sva < eva) {
/* only check once in a while */
if ((sva & PT_MASK) == 0) {
if (!pmap_pde_v(pmap_pde(pmap, sva))) {
/* We can race ahead here, to the next pde. */
sva += NBPD;
pte += arm_byte_to_page(NBPD);
continue;
}
}
if (!pmap_pte_v(pte))
goto next;
flush = 1;
armprot = 0;
if (sva < VM_MAXUSER_ADDRESS)
armprot |= PT_AP(AP_U);
else if (sva < VM_MAX_ADDRESS)
armprot |= PT_AP(AP_W); /* XXX Ekk what is this ? */
*pte = (*pte & 0xfffff00f) | armprot;
pa = pmap_pte_pa(pte);
/* Get the physical page index */
/* Clear write flag */
if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
(void) pmap_modify_pv(pmap, sva, pvh, PT_Wr, 0);
pmap_vac_me_harder(pmap, pvh, ptes, FALSE);
simple_unlock(&pvh->pvh_lock);
}
next:
sva += NBPG;
pte++;
}
pmap_unmap_ptes(pmap);
PMAP_MAP_TO_HEAD_UNLOCK();
if (flush)
cpu_tlb_flushID();
}
/*
* void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
* int flags)
*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(pmap, va, pa, prot, flags)
struct pmap *pmap;
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
int flags;
{
pt_entry_t *pte, *ptes;
u_int npte;
int bank, off;
paddr_t opa;
int nflags;
boolean_t wired = (flags & PMAP_WIRED) != 0;
struct pv_entry *pve;
struct pv_head *pvh;
int error;
PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
va, pa, pmap, prot, wired));
#ifdef DIAGNOSTIC
/* Valid address ? */
if (va >= (KERNEL_VM_BASE + KERNEL_VM_SIZE))
panic("pmap_enter: too big");
if (pmap != pmap_kernel() && va != 0) {
if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
panic("pmap_enter: kernel page in user map");
} else {
if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
panic("pmap_enter: user page in kernel map");
if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
panic("pmap_enter: entering PT page");
}
#endif
/* get lock */
PMAP_MAP_TO_HEAD_LOCK();
/*
* Get a pointer to the pte for this virtual address. If the
* pte pointer is NULL then we are missing the L2 page table
* so we need to create one.
*/
pte = pmap_pte(pmap, va);
if (!pte) {
struct vm_page *ptp;
/* if failure is allowed then don't try too hard */
ptp = pmap_get_ptp(pmap, va, flags & PMAP_CANFAIL);
if (ptp == NULL) {
if (flags & PMAP_CANFAIL) {
error = ENOMEM;
goto out;
}
panic("pmap_enter: get ptp failed");
}
pte = pmap_pte(pmap, va);
#ifdef DIAGNOSTIC
if (!pte)
panic("pmap_enter: no pte");
#endif
}
nflags = 0;
if (prot & VM_PROT_WRITE)
nflags |= PT_Wr;
if (wired)
nflags |= PT_W;
/* More debugging info */
PDEBUG(5, printf("pmap_enter: pte for V%08lx = V%p (%08x)\n", va, pte,
*pte));
/* Is the pte valid ? If so then this page is already mapped */
if (pmap_pte_v(pte)) {
/* Get the physical address of the current page mapped */
opa = pmap_pte_pa(pte);
#ifdef MYCROFT_HACK
printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx\n", pmap, va, pa, opa);
#endif
/* Are we mapping the same page ? */
if (opa == pa) {
/* All we must be doing is changing the protection */
PDEBUG(0, printf("Case 02 in pmap_enter (V%08lx P%08lx)\n",
va, pa));
/* Has the wiring changed ? */
if ((bank = vm_physseg_find(atop(pa), &off)) != -1) {
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
(void) pmap_modify_pv(pmap, va, pvh,
PT_Wr | PT_W, nflags);
simple_unlock(&pvh->pvh_lock);
} else {
pvh = NULL;
}
} else {
/* We are replacing the page with a new one. */
cpu_cache_purgeID_rng(va, NBPG);
PDEBUG(0, printf("Case 03 in pmap_enter (V%08lx P%08lx P%08lx)\n",
va, pa, opa));
/*
* If it is part of our managed memory then we
* must remove it from the PV list
*/
if ((bank = vm_physseg_find(atop(opa), &off)) != -1) {
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
pve = pmap_remove_pv(pvh, pmap, va);
simple_unlock(&pvh->pvh_lock);
} else {
pve = NULL;
}
goto enter;
}
} else {
opa = 0;
pve = NULL;
pmap_pte_addref(pmap, va);
/* pte is not valid so we must be hooking in a new page */
++pmap->pm_stats.resident_count;
enter:
/*
* Enter on the PV list if part of our managed memory
*/
bank = vm_physseg_find(atop(pa), &off);
if (pmap_initialized && (bank != -1)) {
pvh = &vm_physmem[bank].pmseg.pvhead[off];
if (pve == NULL) {
pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
if (pve == NULL) {
if (flags & PMAP_CANFAIL) {
error = ENOMEM;
goto out;
}
panic("pmap_enter: no pv entries available");
}
}
/* enter_pv locks pvh when adding */
pmap_enter_pv(pvh, pve, pmap, va, NULL, nflags);
} else {
pvh = NULL;
if (pve != NULL)
pmap_free_pv(pmap, pve);
}
}
#ifdef MYCROFT_HACK
if (mycroft_hack)
printf("pmap_enter: pmap=%p va=%lx pa=%lx opa=%lx bank=%d off=%d pv=%p\n", pmap, va, pa, opa, bank, off, pv);
#endif
/* Construct the pte, giving the correct access. */
npte = (pa & PG_FRAME);
/* VA 0 is magic. */
if (pmap != pmap_kernel() && va != 0)
npte |= PT_AP(AP_U);
if (pmap_initialized && bank != -1) {
#ifdef DIAGNOSTIC
if ((flags & VM_PROT_ALL) & ~prot)
panic("pmap_enter: access_type exceeds prot");
#endif
npte |= PT_C | PT_B;
if (flags & VM_PROT_WRITE) {
npte |= L2_SPAGE | PT_AP(AP_W);
vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
} else if (flags & VM_PROT_ALL) {
npte |= L2_SPAGE;
vm_physmem[bank].pmseg.attrs[off] |= PT_H;
} else
npte |= L2_INVAL;
} else {
if (prot & VM_PROT_WRITE)
npte |= L2_SPAGE | PT_AP(AP_W);
else if (prot & VM_PROT_ALL)
npte |= L2_SPAGE;
else
npte |= L2_INVAL;
}
#ifdef MYCROFT_HACK
if (mycroft_hack)
printf("pmap_enter: pmap=%p va=%lx pa=%lx prot=%x wired=%d access_type=%x npte=%08x\n", pmap, va, pa, prot, wired, flags & VM_PROT_ALL, npte);
#endif
*pte = npte;
if (pmap_initialized && bank != -1)
{
boolean_t pmap_active = FALSE;
/* XXX this will change once the whole of pmap_enter uses
* map_ptes
*/
ptes = pmap_map_ptes(pmap);
if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap)
|| (pmap == pmap_kernel()))
pmap_active = TRUE;
simple_lock(&pvh->pvh_lock);
pmap_vac_me_harder(pmap, pvh, ptes, pmap_active);
simple_unlock(&pvh->pvh_lock);
pmap_unmap_ptes(pmap);
}
/* Better flush the TLB ... */
cpu_tlb_flushID_SE(va);
error = 0;
out:
PMAP_MAP_TO_HEAD_UNLOCK();
PDEBUG(5, printf("pmap_enter: pte = V%p %08x\n", pte, *pte));
return error;
}
void
pmap_kenter_pa(va, pa, prot)
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
{
struct pmap *pmap = pmap_kernel();
pt_entry_t *pte;
struct vm_page *pg;
if (!pmap_pde_v(pmap_pde(pmap, va))) {
/*
* For the kernel pmaps it would be better to ensure
* that they are always present, and to grow the
* kernel as required.
*/
/* Allocate a page table */
pg = uvm_pagealloc(&(pmap_kernel()->pm_obj), 0, NULL,
UVM_PGA_USERESERVE | UVM_PGA_ZERO);
if (pg == NULL) {
panic("pmap_kenter_pa: no free pages");
}
pg->flags &= ~PG_BUSY; /* never busy */
/* Wire this page table into the L1. */
pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(pg), TRUE);
}
pte = vtopte(va);
KASSERT(!pmap_pte_v(pte));
*pte = L2_PTE(pa, AP_KRW);
}
void
pmap_kremove(va, len)
vaddr_t va;
vsize_t len;
{
pt_entry_t *pte;
for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
/*
* We assume that we will only be called with small
* regions of memory.
*/
KASSERT(pmap_pde_v(pmap_pde(pmap_kernel(), va)));
pte = vtopte(va);
cpu_cache_purgeID_rng(va, PAGE_SIZE);
*pte = 0;
cpu_tlb_flushID_SE(va);
}
}
/*
* pmap_page_protect:
*
* Lower the permission for all mappings to a given page.
*/
void
pmap_page_protect(pg, prot)
struct vm_page *pg;
vm_prot_t prot;
{
paddr_t pa = VM_PAGE_TO_PHYS(pg);
PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n", pa, prot));
switch(prot) {
case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
case VM_PROT_READ|VM_PROT_WRITE:
return;
case VM_PROT_READ:
case VM_PROT_READ|VM_PROT_EXECUTE:
pmap_copy_on_write(pa);
break;
default:
pmap_remove_all(pa);
break;
}
}
/*
* Routine: pmap_unwire
* Function: Clear the wired attribute for a map/virtual-address
* pair.
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_unwire(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
pt_entry_t *pte;
paddr_t pa;
int bank, off;
struct pv_head *pvh;
/*
* Make sure pmap is valid. -dct
*/
if (pmap == NULL)
return;
/* Get the pte */
pte = pmap_pte(pmap, va);
if (!pte)
return;
/* Extract the physical address of the page */
pa = pmap_pte_pa(pte);
if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
return;
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
/* Update the wired bit in the pv entry for this page. */
(void) pmap_modify_pv(pmap, va, pvh, PT_W, 0);
simple_unlock(&pvh->pvh_lock);
}
/*
* pt_entry_t *pmap_pte(struct pmap *pmap, vaddr_t va)
*
* Return the pointer to a page table entry corresponding to the supplied
* virtual address.
*
* The page directory is first checked to make sure that a page table
* for the address in question exists and if it does a pointer to the
* entry is returned.
*
* The way this works is that that the kernel page tables are mapped
* into the memory map at ALT_PAGE_TBLS_BASE to ALT_PAGE_TBLS_BASE+4MB.
* This allows page tables to be located quickly.
*/
pt_entry_t *
pmap_pte(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
pt_entry_t *ptp;
pt_entry_t *result;
/* The pmap must be valid */
if (!pmap)
return(NULL);
/* Return the address of the pte */
PDEBUG(10, printf("pmap_pte: pmap=%p va=V%08lx pde = V%p (%08X)\n",
pmap, va, pmap_pde(pmap, va), *(pmap_pde(pmap, va))));
/* Do we have a valid pde ? If not we don't have a page table */
if (!pmap_pde_v(pmap_pde(pmap, va))) {
PDEBUG(0, printf("pmap_pte: failed - pde = %p\n",
pmap_pde(pmap, va)));
return(NULL);
}
PDEBUG(10, printf("pmap pagetable = P%08lx current = P%08x\n",
pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
+ (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
(PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)));
/*
* If the pmap is the kernel pmap or the pmap is the active one
* then we can just return a pointer to entry relative to
* PROCESS_PAGE_TBLS_BASE.
* Otherwise we need to map the page tables to an alternative
* address and reference them there.
*/
if (pmap == pmap_kernel() || pmap->pm_pptpt
== (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
+ ((PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) &
~3) + (PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
ptp = (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
} else {
struct proc *p = curproc;
/* If we don't have a valid curproc use proc0 */
/* Perhaps we should just use kernel_pmap instead */
if (p == NULL)
p = &proc0;
#ifdef DIAGNOSTIC
/*
* The pmap should always be valid for the process so
* panic if it is not.
*/
if (!p->p_vmspace || !p->p_vmspace->vm_map.pmap) {
printf("pmap_pte: va=%08lx p=%p vm=%p\n",
va, p, p->p_vmspace);
console_debugger();
}
/*
* The pmap for the current process should be mapped. If it
* is not then we have a problem.
*/
if (p->p_vmspace->vm_map.pmap->pm_pptpt !=
(*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
+ (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
(PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) & PG_FRAME)) {
printf("pmap pagetable = P%08lx current = P%08x ",
pmap->pm_pptpt, (*((pt_entry_t *)(PROCESS_PAGE_TBLS_BASE
+ (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT - 2)) +
(PROCESS_PAGE_TBLS_BASE >> PDSHIFT))) &
PG_FRAME));
printf("pptpt=%lx\n", p->p_vmspace->vm_map.pmap->pm_pptpt);
panic("pmap_pte: current and pmap mismatch\n");
}
#endif
ptp = (pt_entry_t *)ALT_PAGE_TBLS_BASE;
pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
pmap->pm_pptpt, FALSE);
cpu_tlb_flushD();
}
PDEBUG(10, printf("page tables base = %p offset=%lx\n", ptp,
((va >> (PGSHIFT-2)) & ~3)));
result = (pt_entry_t *)((char *)ptp + ((va >> (PGSHIFT-2)) & ~3));
return(result);
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
boolean_t
pmap_extract(pmap, va, pap)
struct pmap *pmap;
vaddr_t va;
paddr_t *pap;
{
pt_entry_t *pte, *ptes;
paddr_t pa;
PDEBUG(5, printf("pmap_extract: pmap=%p, va=V%08lx\n", pmap, va));
/*
* Get the pte for this virtual address.
*/
ptes = pmap_map_ptes(pmap);
pte = &ptes[arm_byte_to_page(va)];
/*
* If there is no pte then there is no page table etc.
* Is the pte valid ? If not then no paged is actually mapped here
*/
if (!pmap_pde_v(pmap_pde(pmap, va)) || !pmap_pte_v(pte)){
pmap_unmap_ptes(pmap);
return (FALSE);
}
/* Return the physical address depending on the PTE type */
/* XXX What about L1 section mappings ? */
if ((*(pte) & L2_MASK) == L2_LPAGE) {
/* Extract the physical address from the pte */
pa = (*(pte)) & ~(L2_LPAGE_SIZE - 1);
PDEBUG(5, printf("pmap_extract: LPAGE pa = P%08lx\n",
(pa | (va & (L2_LPAGE_SIZE - 1)))));
if (pap != NULL)
*pap = pa | (va & (L2_LPAGE_SIZE - 1));
} else {
/* Extract the physical address from the pte */
pa = pmap_pte_pa(pte);
PDEBUG(5, printf("pmap_extract: SPAGE pa = P%08lx\n",
(pa | (va & ~PG_FRAME))));
if (pap != NULL)
*pap = pa | (va & ~PG_FRAME);
}
pmap_unmap_ptes(pmap);
return (TRUE);
}
/*
* Copy the range specified by src_addr/len from the source map to the
* range dst_addr/len in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
struct pmap *dst_pmap;
struct pmap *src_pmap;
vaddr_t dst_addr;
vsize_t len;
vaddr_t src_addr;
{
PDEBUG(0, printf("pmap_copy(%p, %p, %lx, %lx, %lx)\n",
dst_pmap, src_pmap, dst_addr, len, src_addr));
}
#if defined(PMAP_DEBUG)
void
pmap_dump_pvlist(phys, m)
vaddr_t phys;
char *m;
{
struct pv_head *pvh;
struct pv_entry *pv;
int bank, off;
if ((bank = vm_physseg_find(atop(phys), &off)) == -1) {
printf("INVALID PA\n");
return;
}
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
printf("%s %08lx:", m, phys);
if (pvh->pvh_list == NULL) {
printf(" no mappings\n");
return;
}
for (pv = pvh->pvh_list; pv; pv = pv->pv_next)
printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
pv->pv_va, pv->pv_flags);
printf("\n");
simple_unlock(&pvh->pvh_lock);
}
#endif /* PMAP_DEBUG */
boolean_t
pmap_testbit(pa, setbits)
paddr_t pa;
int setbits;
{
int bank, off;
PDEBUG(1, printf("pmap_testbit: pa=%08lx set=%08x\n", pa, setbits));
if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
return(FALSE);
/*
* Check saved info only
*/
if (vm_physmem[bank].pmseg.attrs[off] & setbits) {
PDEBUG(0, printf("pmap_attributes = %02x\n",
vm_physmem[bank].pmseg.attrs[off]));
return(TRUE);
}
return(FALSE);
}
static pt_entry_t *
pmap_map_ptes(struct pmap *pmap)
{
struct proc *p;
/* the kernel's pmap is always accessible */
if (pmap == pmap_kernel()) {
return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE ;
}
if (pmap_is_curpmap(pmap)) {
simple_lock(&pmap->pm_obj.vmobjlock);
return (pt_entry_t *)PROCESS_PAGE_TBLS_BASE;
}
p = curproc;
if (p == NULL)
p = &proc0;
/* need to lock both curpmap and pmap: use ordered locking */
if ((unsigned) pmap < (unsigned) curproc->p_vmspace->vm_map.pmap) {
simple_lock(&pmap->pm_obj.vmobjlock);
simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
} else {
simple_lock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
simple_lock(&pmap->pm_obj.vmobjlock);
}
pmap_map_in_l1(p->p_vmspace->vm_map.pmap, ALT_PAGE_TBLS_BASE,
pmap->pm_pptpt, FALSE);
cpu_tlb_flushD();
return (pt_entry_t *)ALT_PAGE_TBLS_BASE;
}
/*
* pmap_unmap_ptes: unlock the PTE mapping of "pmap"
*/
static void
pmap_unmap_ptes(pmap)
struct pmap *pmap;
{
if (pmap == pmap_kernel()) {
return;
}
if (pmap_is_curpmap(pmap)) {
simple_unlock(&pmap->pm_obj.vmobjlock);
} else {
simple_unlock(&pmap->pm_obj.vmobjlock);
simple_unlock(&curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
}
}
/*
* Modify pte bits for all ptes corresponding to the given physical address.
* We use `maskbits' rather than `clearbits' because we're always passing
* constants and the latter would require an extra inversion at run-time.
*/
void
pmap_clearbit(pa, maskbits)
paddr_t pa;
int maskbits;
{
struct pv_entry *pv;
struct pv_head *pvh;
pt_entry_t *pte;
vaddr_t va;
int bank, off;
PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
pa, maskbits));
if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
return;
PMAP_HEAD_TO_MAP_LOCK();
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
/*
* Clear saved attributes (modify, reference)
*/
vm_physmem[bank].pmseg.attrs[off] &= ~maskbits;
if (pvh->pvh_list == NULL) {
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
return;
}
/*
* Loop over all current mappings setting/clearing as appropos
*/
for (pv = pvh->pvh_list; pv; pv = pv->pv_next) {
va = pv->pv_va;
/*
* XXX don't write protect pager mappings
*/
if (va >= uvm.pager_sva && va < uvm.pager_eva) {
printf("pmap_clearbit: found page VA on pv_list\n");
continue;
}
pv->pv_flags &= ~maskbits;
pte = pmap_pte(pv->pv_pmap, va);
KASSERT(pte != NULL);
if (maskbits & (PT_Wr|PT_M))
*pte &= ~PT_AP(AP_W);
if (maskbits & PT_H)
*pte = (*pte & ~L2_MASK) | L2_INVAL;
}
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
cpu_tlb_flushID();
}
boolean_t
pmap_clear_modify(pg)
struct vm_page *pg;
{
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t rv;
PDEBUG(0, printf("pmap_clear_modify pa=%08lx\n", pa));
rv = pmap_testbit(pa, PT_M);
pmap_clearbit(pa, PT_M);
return rv;
}
boolean_t
pmap_clear_reference(pg)
struct vm_page *pg;
{
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t rv;
PDEBUG(0, printf("pmap_clear_reference pa=%08lx\n", pa));
rv = pmap_testbit(pa, PT_H);
pmap_clearbit(pa, PT_H);
return rv;
}
void
pmap_copy_on_write(pa)
paddr_t pa;
{
PDEBUG(0, printf("pmap_copy_on_write pa=%08lx\n", pa));
pmap_clearbit(pa, PT_Wr);
}
boolean_t
pmap_is_modified(pg)
struct vm_page *pg;
{
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t result;
result = pmap_testbit(pa, PT_M);
PDEBUG(1, printf("pmap_is_modified pa=%08lx %x\n", pa, result));
return (result);
}
boolean_t
pmap_is_referenced(pg)
struct vm_page *pg;
{
paddr_t pa = VM_PAGE_TO_PHYS(pg);
boolean_t result;
result = pmap_testbit(pa, PT_H);
PDEBUG(0, printf("pmap_is_referenced pa=%08lx %x\n", pa, result));
return (result);
}
int
pmap_modified_emulation(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
pt_entry_t *pte;
paddr_t pa;
int bank, off;
struct pv_head *pvh;
u_int flags;
PDEBUG(2, printf("pmap_modified_emulation\n"));
/* Get the pte */
pte = pmap_pte(pmap, va);
if (!pte) {
PDEBUG(2, printf("no pte\n"));
return(0);
}
PDEBUG(1, printf("*pte=%08x\n", *pte));
/* Check for a zero pte */
if (*pte == 0)
return(0);
/* This can happen if user code tries to access kernel memory. */
if ((*pte & PT_AP(AP_W)) != 0)
return (0);
/* Extract the physical address of the page */
pa = pmap_pte_pa(pte);
if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
return(0);
PMAP_HEAD_TO_MAP_LOCK();
/* Get the current flags for this page. */
pvh = &vm_physmem[bank].pmseg.pvhead[off];
/* XXX: needed if we hold head->map lock? */
simple_lock(&pvh->pvh_lock);
flags = pmap_modify_pv(pmap, va, pvh, 0, 0);
PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
/*
* Do the flags say this page is writable ? If not then it is a
* genuine write fault. If yes then the write fault is our fault
* as we did not reflect the write access in the PTE. Now we know
* a write has occurred we can correct this and also set the
* modified bit
*/
if (~flags & PT_Wr) {
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
return(0);
}
PDEBUG(0, printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %p (%08x)\n",
va, pte, *pte));
vm_physmem[bank].pmseg.attrs[off] |= PT_H | PT_M;
*pte = (*pte & ~L2_MASK) | L2_SPAGE | PT_AP(AP_W);
PDEBUG(0, printf("->(%08x)\n", *pte));
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
/* Return, indicating the problem has been dealt with */
cpu_tlb_flushID_SE(va);
return(1);
}
int
pmap_handled_emulation(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
pt_entry_t *pte;
paddr_t pa;
int bank, off;
PDEBUG(2, printf("pmap_handled_emulation\n"));
/* Get the pte */
pte = pmap_pte(pmap, va);
if (!pte) {
PDEBUG(2, printf("no pte\n"));
return(0);
}
PDEBUG(1, printf("*pte=%08x\n", *pte));
/* Check for a zero pte */
if (*pte == 0)
return(0);
/* This can happen if user code tries to access kernel memory. */
if ((*pte & L2_MASK) != L2_INVAL)
return (0);
/* Extract the physical address of the page */
pa = pmap_pte_pa(pte);
if ((bank = vm_physseg_find(atop(pa), &off)) == -1)
return(0);
/*
* Ok we just enable the pte and mark the attibs as handled
*/
PDEBUG(0, printf("pmap_handled_emulation: Got a hit va=%08lx pte = %p (%08x)\n",
va, pte, *pte));
vm_physmem[bank].pmseg.attrs[off] |= PT_H;
*pte = (*pte & ~L2_MASK) | L2_SPAGE;
PDEBUG(0, printf("->(%08x)\n", *pte));
/* Return, indicating the problem has been dealt with */
cpu_tlb_flushID_SE(va);
return(1);
}
/*
* pmap_collect: free resources held by a pmap
*
* => optional function.
* => called when a process is swapped out to free memory.
*/
void
pmap_collect(pmap)
struct pmap *pmap;
{
}
/*
* Routine: pmap_procwr
*
* Function:
* Synchronize caches corresponding to [addr, addr+len) in p.
*
*/
void
pmap_procwr(p, va, len)
struct proc *p;
vaddr_t va;
int len;
{
/* We only need to do anything if it is the current process. */
if (p == curproc)
cpu_cache_syncI_rng(va, len);
}
/*
* PTP functions
*/
/*
* pmap_steal_ptp: Steal a PTP from somewhere else.
*
* This is just a placeholder, for now we never steal.
*/
static struct vm_page *
pmap_steal_ptp(struct pmap *pmap, vaddr_t va)
{
return (NULL);
}
/*
* pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
*
* => pmap should NOT be pmap_kernel()
* => pmap should be locked
*/
static struct vm_page *
pmap_get_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
{
struct vm_page *ptp;
if (pmap_pde_v(pmap_pde(pmap, va))) {
/* valid... check hint (saves us a PA->PG lookup) */
#if 0
if (pmap->pm_ptphint &&
((unsigned)pmap_pde(pmap, va) & PG_FRAME) ==
VM_PAGE_TO_PHYS(pmap->pm_ptphint))
return (pmap->pm_ptphint);
#endif
ptp = uvm_pagelookup(&pmap->pm_obj, va);
#ifdef DIAGNOSTIC
if (ptp == NULL)
panic("pmap_get_ptp: unmanaged user PTP");
#endif
// pmap->pm_ptphint = ptp;
return(ptp);
}
/* allocate a new PTP (updates ptphint) */
return(pmap_alloc_ptp(pmap, va, just_try));
}
/*
* pmap_alloc_ptp: allocate a PTP for a PMAP
*
* => pmap should already be locked by caller
* => we use the ptp's wire_count to count the number of active mappings
* in the PTP (we start it at one to prevent any chance this PTP
* will ever leak onto the active/inactive queues)
*/
/*__inline */ static struct vm_page *
pmap_alloc_ptp(struct pmap *pmap, vaddr_t va, boolean_t just_try)
{
struct vm_page *ptp;
ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
UVM_PGA_USERESERVE|UVM_PGA_ZERO);
if (ptp == NULL) {
if (just_try)
return (NULL);
ptp = pmap_steal_ptp(pmap, va);
if (ptp == NULL)
return (NULL);
/* Stole a page, zero it. */
pmap_zero_page(VM_PAGE_TO_PHYS(ptp));
}
/* got one! */
ptp->flags &= ~PG_BUSY; /* never busy */
ptp->wire_count = 1; /* no mappings yet */
pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
pmap->pm_stats.resident_count++; /* count PTP as resident */
// pmap->pm_ptphint = ptp;
return (ptp);
}
/* End of pmap.c */