3056 lines
78 KiB
C
3056 lines
78 KiB
C
/* $NetBSD: rt2661.c,v 1.44 2021/06/16 00:21:18 riastradh Exp $ */
|
|
/* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
|
|
/* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006
|
|
* Damien Bergamini <damien.bergamini@free.fr>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*-
|
|
* Ralink Technology RT2561, RT2561S and RT2661 chipset driver
|
|
* http://www.ralinktech.com/
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.44 2021/06/16 00:21:18 riastradh Exp $");
|
|
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <machine/endian.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_amrr.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
|
|
#include <dev/ic/rt2661reg.h>
|
|
#include <dev/ic/rt2661var.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/firmload.h>
|
|
|
|
#ifdef RAL_DEBUG
|
|
#define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
|
|
#define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
|
|
int rt2661_debug = 0;
|
|
#else
|
|
#define DPRINTF(x)
|
|
#define DPRINTFN(n, x)
|
|
#endif
|
|
|
|
static int rt2661_alloc_tx_ring(struct rt2661_softc *,
|
|
struct rt2661_tx_ring *, int);
|
|
static void rt2661_reset_tx_ring(struct rt2661_softc *,
|
|
struct rt2661_tx_ring *);
|
|
static void rt2661_free_tx_ring(struct rt2661_softc *,
|
|
struct rt2661_tx_ring *);
|
|
static int rt2661_alloc_rx_ring(struct rt2661_softc *,
|
|
struct rt2661_rx_ring *, int);
|
|
static void rt2661_reset_rx_ring(struct rt2661_softc *,
|
|
struct rt2661_rx_ring *);
|
|
static void rt2661_free_rx_ring(struct rt2661_softc *,
|
|
struct rt2661_rx_ring *);
|
|
static struct ieee80211_node *
|
|
rt2661_node_alloc(struct ieee80211_node_table *);
|
|
static int rt2661_media_change(struct ifnet *);
|
|
static void rt2661_next_scan(void *);
|
|
static void rt2661_iter_func(void *, struct ieee80211_node *);
|
|
static void rt2661_updatestats(void *);
|
|
static void rt2661_newassoc(struct ieee80211_node *, int);
|
|
static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
|
|
int);
|
|
static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
|
|
static void rt2661_tx_intr(struct rt2661_softc *);
|
|
static void rt2661_tx_dma_intr(struct rt2661_softc *,
|
|
struct rt2661_tx_ring *);
|
|
static void rt2661_rx_intr(struct rt2661_softc *);
|
|
static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
|
|
static void rt2661_mcu_wakeup(struct rt2661_softc *);
|
|
static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
|
|
int rt2661_intr(void *);
|
|
static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
|
|
static int rt2661_ack_rate(struct ieee80211com *, int);
|
|
static uint16_t rt2661_txtime(int, int, uint32_t);
|
|
static uint8_t rt2661_plcp_signal(int);
|
|
static void rt2661_setup_tx_desc(struct rt2661_softc *,
|
|
struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
|
|
const bus_dma_segment_t *, int, int);
|
|
static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
|
|
struct ieee80211_node *);
|
|
static struct mbuf *
|
|
rt2661_get_rts(struct rt2661_softc *,
|
|
struct ieee80211_frame *, uint16_t);
|
|
static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
|
|
struct ieee80211_node *, int);
|
|
static void rt2661_start(struct ifnet *);
|
|
static void rt2661_watchdog(struct ifnet *);
|
|
static int rt2661_reset(struct ifnet *);
|
|
static int rt2661_ioctl(struct ifnet *, u_long, void *);
|
|
static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
|
|
static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
|
|
static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
|
|
static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
|
|
static void rt2661_select_antenna(struct rt2661_softc *);
|
|
static void rt2661_enable_mrr(struct rt2661_softc *);
|
|
static void rt2661_set_txpreamble(struct rt2661_softc *);
|
|
static void rt2661_set_basicrates(struct rt2661_softc *,
|
|
const struct ieee80211_rateset *);
|
|
static void rt2661_select_band(struct rt2661_softc *,
|
|
struct ieee80211_channel *);
|
|
static void rt2661_set_chan(struct rt2661_softc *,
|
|
struct ieee80211_channel *);
|
|
static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
|
|
static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
|
|
static void rt2661_update_promisc(struct rt2661_softc *);
|
|
#if 0
|
|
static int rt2661_wme_update(struct ieee80211com *);
|
|
#endif
|
|
|
|
static void rt2661_updateslot(struct ifnet *);
|
|
static void rt2661_set_slottime(struct rt2661_softc *);
|
|
static const char *
|
|
rt2661_get_rf(int);
|
|
static void rt2661_read_eeprom(struct rt2661_softc *);
|
|
static int rt2661_bbp_init(struct rt2661_softc *);
|
|
static int rt2661_init(struct ifnet *);
|
|
static void rt2661_stop(struct ifnet *, int);
|
|
static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
|
|
int);
|
|
static void rt2661_rx_tune(struct rt2661_softc *);
|
|
#ifdef notyet
|
|
static void rt2661_radar_start(struct rt2661_softc *);
|
|
static int rt2661_radar_stop(struct rt2661_softc *);
|
|
#endif
|
|
static int rt2661_prepare_beacon(struct rt2661_softc *);
|
|
static void rt2661_enable_tsf_sync(struct rt2661_softc *);
|
|
static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
|
|
static void rt2661_softintr(void *);
|
|
|
|
static const struct {
|
|
uint32_t reg;
|
|
uint32_t val;
|
|
} rt2661_def_mac[] = {
|
|
RT2661_DEF_MAC
|
|
};
|
|
|
|
static const struct {
|
|
uint8_t reg;
|
|
uint8_t val;
|
|
} rt2661_def_bbp[] = {
|
|
RT2661_DEF_BBP
|
|
};
|
|
|
|
static const struct rfprog {
|
|
uint8_t chan;
|
|
uint32_t r1, r2, r3, r4;
|
|
} rt2661_rf5225_1[] = {
|
|
RT2661_RF5225_1
|
|
}, rt2661_rf5225_2[] = {
|
|
RT2661_RF5225_2
|
|
};
|
|
|
|
int
|
|
rt2661_attach(void *xsc, int id)
|
|
{
|
|
struct rt2661_softc *sc = xsc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
uint32_t val;
|
|
int error, i, ntries;
|
|
|
|
sc->sc_id = id;
|
|
|
|
sc->amrr.amrr_min_success_threshold = 1;
|
|
sc->amrr.amrr_max_success_threshold = 15;
|
|
callout_init(&sc->scan_ch, 0);
|
|
callout_init(&sc->amrr_ch, 0);
|
|
|
|
/* wait for NIC to initialize */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (ntries == 1000) {
|
|
aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
|
|
return EIO;
|
|
}
|
|
|
|
/* retrieve RF rev. no and various other things from EEPROM */
|
|
rt2661_read_eeprom(sc);
|
|
aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
|
|
ether_sprintf(ic->ic_myaddr));
|
|
|
|
aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
|
|
rt2661_get_rf(sc->rf_rev));
|
|
|
|
sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
|
|
if (sc->sc_soft_ih == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "could not establish softint\n");
|
|
goto fail0;
|
|
}
|
|
|
|
/*
|
|
* Allocate Tx and Rx rings.
|
|
*/
|
|
error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
|
|
goto fail1;
|
|
}
|
|
|
|
error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
|
|
goto fail2;
|
|
}
|
|
|
|
error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
|
|
goto fail3;
|
|
}
|
|
|
|
error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
|
|
goto fail4;
|
|
}
|
|
|
|
error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
|
|
goto fail5;
|
|
}
|
|
|
|
error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
|
|
goto fail6;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_init = rt2661_init;
|
|
ifp->if_stop = rt2661_stop;
|
|
ifp->if_ioctl = rt2661_ioctl;
|
|
ifp->if_start = rt2661_start;
|
|
ifp->if_watchdog = rt2661_watchdog;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
|
|
ic->ic_ifp = ifp;
|
|
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
|
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/* set device capabilities */
|
|
ic->ic_caps =
|
|
IEEE80211_C_IBSS | /* IBSS mode supported */
|
|
IEEE80211_C_MONITOR | /* monitor mode supported */
|
|
IEEE80211_C_HOSTAP | /* HostAP mode supported */
|
|
IEEE80211_C_TXPMGT | /* tx power management */
|
|
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
|
|
IEEE80211_C_SHSLOT | /* short slot time supported */
|
|
IEEE80211_C_WPA; /* 802.11i */
|
|
|
|
if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
|
|
/* set supported .11a rates */
|
|
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
|
|
|
|
/* set supported .11a channels */
|
|
for (i = 36; i <= 64; i += 4) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
|
|
}
|
|
for (i = 100; i <= 140; i += 4) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
|
|
}
|
|
for (i = 149; i <= 165; i += 4) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
|
|
}
|
|
}
|
|
|
|
/* set supported .11b and .11g rates */
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
|
|
|
|
/* set supported .11b and .11g channels (1 through 14) */
|
|
for (i = 1; i <= 14; i++) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
|
|
ic->ic_channels[i].ic_flags =
|
|
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
|
|
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
|
|
}
|
|
|
|
if_initialize(ifp);
|
|
ieee80211_ifattach(ic);
|
|
/* Use common softint-based if_input */
|
|
ifp->if_percpuq = if_percpuq_create(ifp);
|
|
if_register(ifp);
|
|
|
|
ic->ic_node_alloc = rt2661_node_alloc;
|
|
ic->ic_newassoc = rt2661_newassoc;
|
|
ic->ic_updateslot = rt2661_updateslot;
|
|
ic->ic_reset = rt2661_reset;
|
|
|
|
/* override state transition machine */
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = rt2661_newstate;
|
|
ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
|
|
|
|
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
|
|
sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
|
|
&sc->sc_drvbpf);
|
|
|
|
sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
|
|
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
|
|
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
|
|
|
|
ieee80211_announce(ic);
|
|
|
|
if (pmf_device_register(sc->sc_dev, NULL, NULL))
|
|
pmf_class_network_register(sc->sc_dev, ifp);
|
|
else
|
|
aprint_error_dev(sc->sc_dev,
|
|
"couldn't establish power handler\n");
|
|
|
|
return 0;
|
|
|
|
fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
|
|
fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
|
|
fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
|
|
fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
|
|
fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
|
|
fail1: softint_disestablish(sc->sc_soft_ih);
|
|
sc->sc_soft_ih = NULL;
|
|
fail0: return ENXIO;
|
|
}
|
|
|
|
int
|
|
rt2661_detach(void *xsc)
|
|
{
|
|
struct rt2661_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
|
|
callout_stop(&sc->scan_ch);
|
|
callout_stop(&sc->amrr_ch);
|
|
|
|
pmf_device_deregister(sc->sc_dev);
|
|
|
|
ieee80211_ifdetach(&sc->sc_ic);
|
|
if_detach(ifp);
|
|
|
|
rt2661_free_tx_ring(sc, &sc->txq[0]);
|
|
rt2661_free_tx_ring(sc, &sc->txq[1]);
|
|
rt2661_free_tx_ring(sc, &sc->txq[2]);
|
|
rt2661_free_tx_ring(sc, &sc->txq[3]);
|
|
rt2661_free_tx_ring(sc, &sc->mgtq);
|
|
rt2661_free_rx_ring(sc, &sc->rxq);
|
|
|
|
if (sc->sc_soft_ih != NULL) {
|
|
softint_disestablish(sc->sc_soft_ih);
|
|
sc->sc_soft_ih = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
|
|
int count)
|
|
{
|
|
int i, nsegs, error;
|
|
|
|
ring->count = count;
|
|
ring->queued = 0;
|
|
ring->cur = ring->next = ring->stat = 0;
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
|
|
count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
|
|
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
|
|
count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
|
|
count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
|
|
ring->physaddr = ring->map->dm_segs->ds_addr;
|
|
|
|
ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
|
|
M_WAITOK | M_ZERO);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&ring->data[i].map);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail: rt2661_free_tx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
|
|
{
|
|
struct rt2661_tx_desc *desc;
|
|
struct rt2661_tx_data *data;
|
|
int i;
|
|
|
|
for (i = 0; i < ring->count; i++) {
|
|
desc = &ring->desc[i];
|
|
data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
|
|
if (data->ni != NULL) {
|
|
ieee80211_free_node(data->ni);
|
|
data->ni = NULL;
|
|
}
|
|
|
|
desc->flags = 0;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
ring->queued = 0;
|
|
ring->cur = ring->next = ring->stat = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
|
|
{
|
|
struct rt2661_tx_data *data;
|
|
int i;
|
|
|
|
if (ring->desc != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
|
|
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, ring->map);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
|
|
ring->count * RT2661_TX_DESC_SIZE);
|
|
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
|
|
}
|
|
|
|
if (ring->data != NULL) {
|
|
for (i = 0; i < ring->count; i++) {
|
|
data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
}
|
|
|
|
if (data->ni != NULL)
|
|
ieee80211_free_node(data->ni);
|
|
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
free(ring->data, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
static int
|
|
rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
|
|
int count)
|
|
{
|
|
struct rt2661_rx_desc *desc;
|
|
struct rt2661_rx_data *data;
|
|
int i, nsegs, error;
|
|
|
|
ring->count = count;
|
|
ring->cur = ring->next = 0;
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
|
|
count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
|
|
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
|
|
count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
|
|
count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
|
|
ring->physaddr = ring->map->dm_segs->ds_addr;
|
|
|
|
ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
|
|
M_WAITOK | M_ZERO);
|
|
|
|
/*
|
|
* Pre-allocate Rx buffers and populate Rx ring.
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
desc = &sc->rxq.desc[i];
|
|
data = &sc->rxq.data[i];
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
|
|
0, BUS_DMA_NOWAIT, &data->map);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
|
|
if (data->m == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
MCLGET(data->m, M_DONTWAIT);
|
|
if (!(data->m->m_flags & M_EXT)) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
|
|
goto fail;
|
|
}
|
|
|
|
desc->physaddr = htole32(data->map->dm_segs->ds_addr);
|
|
desc->flags = htole32(RT2661_RX_BUSY);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return 0;
|
|
|
|
fail: rt2661_free_rx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ring->count; i++)
|
|
ring->desc[i].flags = htole32(RT2661_RX_BUSY);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
ring->cur = ring->next = 0;
|
|
}
|
|
|
|
static void
|
|
rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
|
|
{
|
|
struct rt2661_rx_data *data;
|
|
int i;
|
|
|
|
if (ring->desc != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
|
|
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, ring->map);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
|
|
ring->count * RT2661_RX_DESC_SIZE);
|
|
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
|
|
}
|
|
|
|
if (ring->data != NULL) {
|
|
for (i = 0; i < ring->count; i++) {
|
|
data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
}
|
|
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
free(ring->data, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
static struct ieee80211_node *
|
|
rt2661_node_alloc(struct ieee80211_node_table *nt)
|
|
{
|
|
struct rt2661_node *rn;
|
|
|
|
rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
|
|
M_NOWAIT | M_ZERO);
|
|
|
|
return (rn != NULL) ? &rn->ni : NULL;
|
|
}
|
|
|
|
static int
|
|
rt2661_media_change(struct ifnet *ifp)
|
|
{
|
|
int error;
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error != ENETRESET)
|
|
return error;
|
|
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
|
|
rt2661_init(ifp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called periodically (every 200ms) during scanning to
|
|
* switch from one channel to another.
|
|
*/
|
|
static void
|
|
rt2661_next_scan(void *arg)
|
|
{
|
|
struct rt2661_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s;
|
|
|
|
s = splnet();
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_next_scan(ic);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* This function is called for each neighbor node.
|
|
*/
|
|
static void
|
|
rt2661_iter_func(void *arg, struct ieee80211_node *ni)
|
|
{
|
|
struct rt2661_softc *sc = arg;
|
|
struct rt2661_node *rn = (struct rt2661_node *)ni;
|
|
|
|
ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
|
|
}
|
|
|
|
/*
|
|
* This function is called periodically (every 500ms) in RUN state to update
|
|
* various settings like rate control statistics or Rx sensitivity.
|
|
*/
|
|
static void
|
|
rt2661_updatestats(void *arg)
|
|
{
|
|
struct rt2661_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s;
|
|
|
|
s = splnet();
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
rt2661_iter_func(sc, ic->ic_bss);
|
|
else
|
|
ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
|
|
|
|
/* update rx sensitivity every 1 sec */
|
|
if (++sc->ncalls & 1)
|
|
rt2661_rx_tune(sc);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
|
|
}
|
|
|
|
static void
|
|
rt2661_newassoc(struct ieee80211_node *ni, int isnew)
|
|
{
|
|
struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
|
|
int i;
|
|
|
|
ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
|
|
|
|
/* set rate to some reasonable initial value */
|
|
for (i = ni->ni_rates.rs_nrates - 1;
|
|
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
|
|
i--);
|
|
ni->ni_txrate = i;
|
|
}
|
|
|
|
static int
|
|
rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct rt2661_softc *sc = ic->ic_ifp->if_softc;
|
|
enum ieee80211_state ostate;
|
|
struct ieee80211_node *ni;
|
|
uint32_t tmp;
|
|
|
|
ostate = ic->ic_state;
|
|
callout_stop(&sc->scan_ch);
|
|
|
|
switch (nstate) {
|
|
case IEEE80211_S_INIT:
|
|
callout_stop(&sc->amrr_ch);
|
|
|
|
if (ostate == IEEE80211_S_RUN) {
|
|
/* abort TSF synchronization */
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
|
|
}
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
rt2661_set_chan(sc, ic->ic_curchan);
|
|
callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
|
|
break;
|
|
|
|
case IEEE80211_S_AUTH:
|
|
case IEEE80211_S_ASSOC:
|
|
rt2661_set_chan(sc, ic->ic_curchan);
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
|
rt2661_set_chan(sc, ic->ic_curchan);
|
|
|
|
ni = ic->ic_bss;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
rt2661_set_slottime(sc);
|
|
rt2661_enable_mrr(sc);
|
|
rt2661_set_txpreamble(sc);
|
|
rt2661_set_basicrates(sc, &ni->ni_rates);
|
|
rt2661_set_bssid(sc, ni->ni_bssid);
|
|
}
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_IBSS)
|
|
rt2661_prepare_beacon(sc);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_STA) {
|
|
/* fake a join to init the tx rate */
|
|
rt2661_newassoc(ni, 1);
|
|
}
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
sc->ncalls = 0;
|
|
sc->avg_rssi = -95; /* reset EMA */
|
|
callout_reset(&sc->amrr_ch, hz / 2,
|
|
rt2661_updatestats, sc);
|
|
rt2661_enable_tsf_sync(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return sc->sc_newstate(ic, nstate, arg);
|
|
}
|
|
|
|
/*
|
|
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
|
|
* 93C66).
|
|
*/
|
|
static uint16_t
|
|
rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
|
|
{
|
|
uint32_t tmp;
|
|
uint16_t val;
|
|
int n;
|
|
|
|
/* clock C once before the first command */
|
|
RT2661_EEPROM_CTL(sc, 0);
|
|
|
|
RT2661_EEPROM_CTL(sc, RT2661_S);
|
|
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
|
|
RT2661_EEPROM_CTL(sc, RT2661_S);
|
|
|
|
/* write start bit (1) */
|
|
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
|
|
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
|
|
|
|
/* write READ opcode (10) */
|
|
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
|
|
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
|
|
RT2661_EEPROM_CTL(sc, RT2661_S);
|
|
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
|
|
|
|
/* write address (A5-A0 or A7-A0) */
|
|
n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
|
|
for (; n >= 0; n--) {
|
|
RT2661_EEPROM_CTL(sc, RT2661_S |
|
|
(((addr >> n) & 1) << RT2661_SHIFT_D));
|
|
RT2661_EEPROM_CTL(sc, RT2661_S |
|
|
(((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
|
|
}
|
|
|
|
RT2661_EEPROM_CTL(sc, RT2661_S);
|
|
|
|
/* read data Q15-Q0 */
|
|
val = 0;
|
|
for (n = 15; n >= 0; n--) {
|
|
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
|
|
tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
|
|
val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
|
|
RT2661_EEPROM_CTL(sc, RT2661_S);
|
|
}
|
|
|
|
RT2661_EEPROM_CTL(sc, 0);
|
|
|
|
/* clear Chip Select and clock C */
|
|
RT2661_EEPROM_CTL(sc, RT2661_S);
|
|
RT2661_EEPROM_CTL(sc, 0);
|
|
RT2661_EEPROM_CTL(sc, RT2661_C);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void
|
|
rt2661_tx_intr(struct rt2661_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct rt2661_tx_ring *txq;
|
|
struct rt2661_tx_data *data;
|
|
struct rt2661_node *rn;
|
|
uint32_t val;
|
|
int qid, retrycnt, s;
|
|
|
|
s = splnet();
|
|
|
|
for (;;) {
|
|
val = RAL_READ(sc, RT2661_STA_CSR4);
|
|
if (!(val & RT2661_TX_STAT_VALID))
|
|
break;
|
|
|
|
/* retrieve the queue in which this frame was sent */
|
|
qid = RT2661_TX_QID(val);
|
|
txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
|
|
|
|
/* retrieve rate control algorithm context */
|
|
data = &txq->data[txq->stat];
|
|
rn = (struct rt2661_node *)data->ni;
|
|
|
|
/* if no frame has been sent, ignore */
|
|
if (rn == NULL)
|
|
continue;
|
|
|
|
switch (RT2661_TX_RESULT(val)) {
|
|
case RT2661_TX_SUCCESS:
|
|
retrycnt = RT2661_TX_RETRYCNT(val);
|
|
|
|
DPRINTFN(10, ("data frame sent successfully after "
|
|
"%d retries\n", retrycnt));
|
|
rn->amn.amn_txcnt++;
|
|
if (retrycnt > 0)
|
|
rn->amn.amn_retrycnt++;
|
|
if_statinc(ifp, if_opackets);
|
|
break;
|
|
|
|
case RT2661_TX_RETRY_FAIL:
|
|
DPRINTFN(9, ("sending data frame failed (too much "
|
|
"retries)\n"));
|
|
rn->amn.amn_txcnt++;
|
|
rn->amn.amn_retrycnt++;
|
|
if_statinc(ifp, if_oerrors);
|
|
break;
|
|
|
|
default:
|
|
/* other failure */
|
|
aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
|
|
if_statinc(ifp, if_oerrors);
|
|
}
|
|
|
|
ieee80211_free_node(data->ni);
|
|
data->ni = NULL;
|
|
|
|
DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
|
|
|
|
txq->queued--;
|
|
if (++txq->stat >= txq->count) /* faster than % count */
|
|
txq->stat = 0;
|
|
}
|
|
|
|
sc->sc_tx_timer = 0;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
rt2661_start(ifp); /* in softint */
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
|
|
{
|
|
struct rt2661_tx_desc *desc;
|
|
struct rt2661_tx_data *data;
|
|
|
|
for (;;) {
|
|
desc = &txq->desc[txq->next];
|
|
data = &txq->data[txq->next];
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txq->map,
|
|
txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
|
|
!(le32toh(desc->flags) & RT2661_TX_VALID))
|
|
break;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
/* node reference is released in rt2661_tx_intr() */
|
|
|
|
/* descriptor is no longer valid */
|
|
desc->flags &= ~htole32(RT2661_TX_VALID);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txq->map,
|
|
txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
|
|
|
|
if (++txq->next >= txq->count) /* faster than % count */
|
|
txq->next = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rt2661_rx_intr(struct rt2661_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct rt2661_rx_desc *desc;
|
|
struct rt2661_rx_data *data;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *mnew, *m;
|
|
int error, rssi, s;
|
|
|
|
for (;;) {
|
|
desc = &sc->rxq.desc[sc->rxq.cur];
|
|
data = &sc->rxq.data[sc->rxq.cur];
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
|
|
sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
if (le32toh(desc->flags) & RT2661_RX_BUSY)
|
|
break;
|
|
|
|
if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
|
|
(le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
|
|
/*
|
|
* This should not happen since we did not request
|
|
* to receive those frames when we filled TXRX_CSR0.
|
|
*/
|
|
DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
|
|
le32toh(desc->flags)));
|
|
if_statinc(ifp, if_ierrors);
|
|
goto skip;
|
|
}
|
|
|
|
if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
|
|
if_statinc(ifp, if_ierrors);
|
|
goto skip;
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a new mbuf for this ring element and load it
|
|
* before processing the current mbuf. If the ring element
|
|
* cannot be loaded, drop the received packet and reuse the old
|
|
* mbuf. In the unlikely case that the old mbuf can't be
|
|
* reloaded either, explicitly panic.
|
|
*/
|
|
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
|
|
if (mnew == NULL) {
|
|
if_statinc(ifp, if_ierrors);
|
|
goto skip;
|
|
}
|
|
|
|
MCLGET(mnew, M_DONTWAIT);
|
|
if (!(mnew->m_flags & M_EXT)) {
|
|
m_freem(mnew);
|
|
if_statinc(ifp, if_ierrors);
|
|
goto skip;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(mnew);
|
|
|
|
/* try to reload the old mbuf */
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(data->m, void *), MCLBYTES, NULL,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
/* very unlikely that it will fail... */
|
|
panic("%s: could not load old rx mbuf",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
/* physical address may have changed */
|
|
desc->physaddr = htole32(data->map->dm_segs->ds_addr);
|
|
if_statinc(ifp, if_ierrors);
|
|
goto skip;
|
|
}
|
|
|
|
/*
|
|
* New mbuf successfully loaded, update Rx ring and continue
|
|
* processing.
|
|
*/
|
|
m = data->m;
|
|
data->m = mnew;
|
|
desc->physaddr = htole32(data->map->dm_segs->ds_addr);
|
|
|
|
/* finalize mbuf */
|
|
m_set_rcvif(m, ifp);
|
|
m->m_pkthdr.len = m->m_len =
|
|
(le32toh(desc->flags) >> 16) & 0xfff;
|
|
|
|
s = splnet();
|
|
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
uint32_t tsf_lo, tsf_hi;
|
|
|
|
/* get timestamp (low and high 32 bits) */
|
|
tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
|
|
tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
|
|
|
|
tap->wr_tsf =
|
|
htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
|
|
tap->wr_flags = 0;
|
|
tap->wr_rate = rt2661_rxrate(desc);
|
|
tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
|
|
tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
|
|
tap->wr_antsignal = desc->rssi;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
|
|
BPF_D_IN);
|
|
}
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
ni = ieee80211_find_rxnode(ic,
|
|
(struct ieee80211_frame_min *)wh);
|
|
|
|
/* send the frame to the 802.11 layer */
|
|
ieee80211_input(ic, m, ni, desc->rssi, 0);
|
|
|
|
/*-
|
|
* Keep track of the average RSSI using an Exponential Moving
|
|
* Average (EMA) of 8 Wilder's days:
|
|
* avg = (1 / N) x rssi + ((N - 1) / N) x avg
|
|
*/
|
|
rssi = rt2661_get_rssi(sc, desc->rssi);
|
|
sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
|
|
|
|
/* node is no longer needed */
|
|
ieee80211_free_node(ni);
|
|
|
|
splx(s);
|
|
|
|
skip: desc->flags |= htole32(RT2661_RX_BUSY);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
|
|
sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
|
|
|
|
sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
|
|
}
|
|
|
|
/*
|
|
* In HostAP mode, ieee80211_input() will enqueue packets in if_snd
|
|
* without calling if_start().
|
|
*/
|
|
s = splnet();
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
|
|
rt2661_start(ifp);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* This function is called in HostAP or IBSS modes when it's time to send a
|
|
* new beacon (every ni_intval milliseconds).
|
|
*/
|
|
static void
|
|
rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (sc->sc_flags & RT2661_UPDATE_SLOT) {
|
|
sc->sc_flags &= ~RT2661_UPDATE_SLOT;
|
|
sc->sc_flags |= RT2661_SET_SLOTTIME;
|
|
} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
|
|
sc->sc_flags &= ~RT2661_SET_SLOTTIME;
|
|
rt2661_set_slottime(sc);
|
|
}
|
|
|
|
if (ic->ic_curmode == IEEE80211_MODE_11G) {
|
|
/* update ERP Information Element */
|
|
RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
|
|
RAL_RW_BARRIER_1(sc, sc->erp_csr);
|
|
}
|
|
|
|
DPRINTFN(15, ("beacon expired\n"));
|
|
}
|
|
|
|
static void
|
|
rt2661_mcu_wakeup(struct rt2661_softc *sc)
|
|
{
|
|
RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
|
|
|
|
RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
|
|
RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
|
|
RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
|
|
|
|
/* send wakeup command to MCU */
|
|
rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
|
|
}
|
|
|
|
static void
|
|
rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
|
|
{
|
|
RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
|
|
RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
|
|
}
|
|
|
|
int
|
|
rt2661_intr(void *arg)
|
|
{
|
|
struct rt2661_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
uint32_t r1, r2;
|
|
|
|
/* don't re-enable interrupts if we're shutting down */
|
|
if (!(ifp->if_flags & IFF_RUNNING)) {
|
|
/* disable MAC and MCU interrupts */
|
|
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
|
|
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
|
|
return 0;
|
|
}
|
|
|
|
r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
|
|
r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
|
|
|
|
if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
|
|
return 0;
|
|
|
|
/* disable interrupts */
|
|
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
|
|
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
|
|
|
|
softint_schedule(sc->sc_soft_ih);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
rt2661_softintr(void *arg)
|
|
{
|
|
struct rt2661_softc *sc = arg;
|
|
uint32_t r1, r2;
|
|
|
|
for (;;) {
|
|
r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
|
|
r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
|
|
|
|
if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
|
|
(r2 & RT2661_MCU_INT_ALL) == 0)
|
|
break;
|
|
|
|
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
|
|
RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
|
|
|
|
if (r1 & RT2661_MGT_DONE)
|
|
rt2661_tx_dma_intr(sc, &sc->mgtq);
|
|
|
|
if (r1 & RT2661_RX_DONE)
|
|
rt2661_rx_intr(sc);
|
|
|
|
if (r1 & RT2661_TX0_DMA_DONE)
|
|
rt2661_tx_dma_intr(sc, &sc->txq[0]);
|
|
|
|
if (r1 & RT2661_TX1_DMA_DONE)
|
|
rt2661_tx_dma_intr(sc, &sc->txq[1]);
|
|
|
|
if (r1 & RT2661_TX2_DMA_DONE)
|
|
rt2661_tx_dma_intr(sc, &sc->txq[2]);
|
|
|
|
if (r1 & RT2661_TX3_DMA_DONE)
|
|
rt2661_tx_dma_intr(sc, &sc->txq[3]);
|
|
|
|
if (r1 & RT2661_TX_DONE)
|
|
rt2661_tx_intr(sc);
|
|
|
|
if (r2 & RT2661_MCU_CMD_DONE)
|
|
rt2661_mcu_cmd_intr(sc);
|
|
|
|
if (r2 & RT2661_MCU_BEACON_EXPIRE)
|
|
rt2661_mcu_beacon_expire(sc);
|
|
|
|
if (r2 & RT2661_MCU_WAKEUP)
|
|
rt2661_mcu_wakeup(sc);
|
|
}
|
|
|
|
/* enable interrupts */
|
|
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
|
|
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
|
|
}
|
|
|
|
/* quickly determine if a given rate is CCK or OFDM */
|
|
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
|
|
|
|
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
|
|
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
|
|
|
|
/*
|
|
* This function is only used by the Rx radiotap code. It returns the rate at
|
|
* which a given frame was received.
|
|
*/
|
|
static uint8_t
|
|
rt2661_rxrate(struct rt2661_rx_desc *desc)
|
|
{
|
|
if (le32toh(desc->flags) & RT2661_RX_OFDM) {
|
|
/* reverse function of rt2661_plcp_signal */
|
|
switch (desc->rate & 0xf) {
|
|
case 0xb: return 12;
|
|
case 0xf: return 18;
|
|
case 0xa: return 24;
|
|
case 0xe: return 36;
|
|
case 0x9: return 48;
|
|
case 0xd: return 72;
|
|
case 0x8: return 96;
|
|
case 0xc: return 108;
|
|
}
|
|
} else {
|
|
if (desc->rate == 10)
|
|
return 2;
|
|
if (desc->rate == 20)
|
|
return 4;
|
|
if (desc->rate == 55)
|
|
return 11;
|
|
if (desc->rate == 110)
|
|
return 22;
|
|
}
|
|
return 2; /* should not get there */
|
|
}
|
|
|
|
/*
|
|
* Return the expected ack rate for a frame transmitted at rate `rate'.
|
|
* XXX: this should depend on the destination node basic rate set.
|
|
*/
|
|
static int
|
|
rt2661_ack_rate(struct ieee80211com *ic, int rate)
|
|
{
|
|
switch (rate) {
|
|
/* CCK rates */
|
|
case 2:
|
|
return 2;
|
|
case 4:
|
|
case 11:
|
|
case 22:
|
|
return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
|
|
|
|
/* OFDM rates */
|
|
case 12:
|
|
case 18:
|
|
return 12;
|
|
case 24:
|
|
case 36:
|
|
return 24;
|
|
case 48:
|
|
case 72:
|
|
case 96:
|
|
case 108:
|
|
return 48;
|
|
}
|
|
|
|
/* default to 1Mbps */
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
|
|
* The function automatically determines the operating mode depending on the
|
|
* given rate. `flags' indicates whether short preamble is in use or not.
|
|
*/
|
|
static uint16_t
|
|
rt2661_txtime(int len, int rate, uint32_t flags)
|
|
{
|
|
uint16_t txtime;
|
|
|
|
if (RAL_RATE_IS_OFDM(rate)) {
|
|
/* IEEE Std 802.11g-2003, pp. 44 */
|
|
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
|
|
txtime = 16 + 4 + 4 * txtime + 6;
|
|
} else {
|
|
/* IEEE Std 802.11b-1999, pp. 28 */
|
|
txtime = (16 * len + rate - 1) / rate;
|
|
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
|
|
txtime += 72 + 24;
|
|
else
|
|
txtime += 144 + 48;
|
|
}
|
|
return txtime;
|
|
}
|
|
|
|
static uint8_t
|
|
rt2661_plcp_signal(int rate)
|
|
{
|
|
switch (rate) {
|
|
/* CCK rates (returned values are device-dependent) */
|
|
case 2: return 0x0;
|
|
case 4: return 0x1;
|
|
case 11: return 0x2;
|
|
case 22: return 0x3;
|
|
|
|
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
|
|
case 12: return 0xb;
|
|
case 18: return 0xf;
|
|
case 24: return 0xa;
|
|
case 36: return 0xe;
|
|
case 48: return 0x9;
|
|
case 72: return 0xd;
|
|
case 96: return 0x8;
|
|
case 108: return 0xc;
|
|
|
|
/* unsupported rates (should not get there) */
|
|
default: return 0xff;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
|
|
uint32_t flags, uint16_t xflags, int len, int rate,
|
|
const bus_dma_segment_t *segs, int nsegs, int ac)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint16_t plcp_length;
|
|
int i, remainder;
|
|
|
|
desc->flags = htole32(flags);
|
|
desc->flags |= htole32(len << 16);
|
|
|
|
desc->xflags = htole16(xflags);
|
|
desc->xflags |= htole16(nsegs << 13);
|
|
|
|
desc->wme = htole16(
|
|
RT2661_QID(ac) |
|
|
RT2661_AIFSN(2) |
|
|
RT2661_LOGCWMIN(4) |
|
|
RT2661_LOGCWMAX(10));
|
|
|
|
/*
|
|
* Remember in which queue this frame was sent. This field is driver
|
|
* private data only. It will be made available by the NIC in STA_CSR4
|
|
* on Tx interrupts.
|
|
*/
|
|
desc->qid = ac;
|
|
|
|
/* setup PLCP fields */
|
|
desc->plcp_signal = rt2661_plcp_signal(rate);
|
|
desc->plcp_service = 4;
|
|
|
|
len += IEEE80211_CRC_LEN;
|
|
if (RAL_RATE_IS_OFDM(rate)) {
|
|
desc->flags |= htole32(RT2661_TX_OFDM);
|
|
|
|
plcp_length = len & 0xfff;
|
|
desc->plcp_length_hi = plcp_length >> 6;
|
|
desc->plcp_length_lo = plcp_length & 0x3f;
|
|
} else {
|
|
plcp_length = (16 * len + rate - 1) / rate;
|
|
if (rate == 22) {
|
|
remainder = (16 * len) % 22;
|
|
if (remainder != 0 && remainder < 7)
|
|
desc->plcp_service |= RT2661_PLCP_LENGEXT;
|
|
}
|
|
desc->plcp_length_hi = plcp_length >> 8;
|
|
desc->plcp_length_lo = plcp_length & 0xff;
|
|
|
|
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
|
|
desc->plcp_signal |= 0x08;
|
|
}
|
|
|
|
/* RT2x61 supports scatter with up to 5 segments */
|
|
for (i = 0; i < nsegs; i++) {
|
|
desc->addr[i] = htole32(segs[i].ds_addr);
|
|
desc->len [i] = htole16(segs[i].ds_len);
|
|
}
|
|
|
|
desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
|
|
}
|
|
|
|
static int
|
|
rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
|
|
struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct rt2661_tx_desc *desc;
|
|
struct rt2661_tx_data *data;
|
|
struct ieee80211_frame *wh;
|
|
uint16_t dur;
|
|
uint32_t flags = 0;
|
|
int rate, error;
|
|
|
|
desc = &sc->mgtq.desc[sc->mgtq.cur];
|
|
data = &sc->mgtq.data[sc->mgtq.cur];
|
|
|
|
/* send mgt frames at the lowest available rate */
|
|
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
|
|
if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
|
|
m_freem(m0);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
|
|
error);
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_rate = rate;
|
|
tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
|
|
tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
|
|
}
|
|
|
|
data->m = m0;
|
|
data->ni = ni;
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= RT2661_TX_NEED_ACK;
|
|
|
|
dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
|
|
sc->sifs;
|
|
*(uint16_t *)wh->i_dur = htole16(dur);
|
|
|
|
/* tell hardware to set timestamp in probe responses */
|
|
if ((wh->i_fc[0] &
|
|
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
|
|
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
|
|
flags |= RT2661_TX_TIMESTAMP;
|
|
}
|
|
|
|
rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
|
|
m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
|
|
RT2661_QID_MGT);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
|
|
sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
|
|
m0->m_pkthdr.len, sc->mgtq.cur, rate));
|
|
|
|
/* kick mgt */
|
|
sc->mgtq.queued++;
|
|
sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
|
|
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Build a RTS control frame.
|
|
*/
|
|
static struct mbuf *
|
|
rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
|
|
uint16_t dur)
|
|
{
|
|
struct ieee80211_frame_rts *rts;
|
|
struct mbuf *m;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
sc->sc_ic.ic_stats.is_tx_nobuf++;
|
|
aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
|
|
return NULL;
|
|
}
|
|
|
|
rts = mtod(m, struct ieee80211_frame_rts *);
|
|
|
|
rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
|
|
IEEE80211_FC0_SUBTYPE_RTS;
|
|
rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
|
*(uint16_t *)rts->i_dur = htole16(dur);
|
|
IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
|
|
IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
|
|
|
|
m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
|
|
|
|
return m;
|
|
}
|
|
|
|
static int
|
|
rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
|
|
struct ieee80211_node *ni, int ac)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct rt2661_tx_ring *txq = &sc->txq[ac];
|
|
struct rt2661_tx_desc *desc;
|
|
struct rt2661_tx_data *data;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_key *k;
|
|
struct mbuf *mnew;
|
|
uint16_t dur;
|
|
uint32_t flags = 0;
|
|
int rate, useprot, error, tid;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
|
|
rate = ic->ic_sup_rates[ic->ic_curmode].
|
|
rs_rates[ic->ic_fixed_rate];
|
|
} else
|
|
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
|
|
rate &= IEEE80211_RATE_VAL;
|
|
if (rate == 0)
|
|
rate = 2; /* XXX should not happen */
|
|
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
|
|
k = ieee80211_crypto_encap(ic, ni, m0);
|
|
if (k == NULL) {
|
|
m_freem(m0);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
}
|
|
|
|
/*
|
|
* Packet Bursting: backoff after ppb=8 frames to give other STAs a
|
|
* chance to contend for the wireless medium.
|
|
*/
|
|
tid = WME_AC_TO_TID(M_WME_GETAC(m0));
|
|
if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
|
|
flags |= RT2661_TX_IFS_SIFS;
|
|
|
|
/*
|
|
* IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
|
|
* for directed frames only when the length of the MPDU is greater
|
|
* than the length threshold indicated by" ic_rtsthreshold.
|
|
*
|
|
* IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
|
|
* mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
|
|
* type Data or an MMPDU".
|
|
*/
|
|
useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
|
|
(m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
|
|
((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
|
|
if (useprot) {
|
|
struct mbuf *m;
|
|
int rtsrate, ackrate;
|
|
|
|
rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
|
|
ackrate = rt2661_ack_rate(ic, rate);
|
|
|
|
dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
|
|
rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
|
|
rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
|
|
3 * sc->sifs;
|
|
|
|
m = rt2661_get_rts(sc, wh, dur);
|
|
if (m == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate RTS "
|
|
"frame\n");
|
|
m_freem(m0);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
desc = &txq->desc[txq->cur];
|
|
data = &txq->data[txq->cur];
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
|
|
m_freem(m);
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
|
|
/* avoid multiple free() of the same node for each fragment */
|
|
ieee80211_ref_node(ni);
|
|
|
|
data->m = m;
|
|
data->ni = ni;
|
|
|
|
rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
|
|
RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
|
|
data->map->dm_segs, data->map->dm_nsegs, ac);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, txq->map,
|
|
txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
txq->queued++;
|
|
txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
|
|
|
|
flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
|
|
}
|
|
|
|
data = &txq->data[txq->cur];
|
|
desc = &txq->desc[txq->cur];
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0 && error != EFBIG) {
|
|
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
|
|
error);
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
if (error != 0) {
|
|
/* too many fragments, linearize */
|
|
|
|
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
|
|
if (mnew == NULL) {
|
|
m_freem(m0);
|
|
return ENOMEM;
|
|
}
|
|
|
|
m_copy_pkthdr(mnew, m0);
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(mnew, M_DONTWAIT);
|
|
if (!(mnew->m_flags & M_EXT)) {
|
|
m_freem(m0);
|
|
m_freem(mnew);
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
|
|
m_freem(m0);
|
|
mnew->m_len = mnew->m_pkthdr.len;
|
|
m0 = mnew;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
|
|
/* packet header have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
}
|
|
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_rate = rate;
|
|
tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
|
|
tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
|
|
}
|
|
|
|
data->m = m0;
|
|
data->ni = ni;
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= RT2661_TX_NEED_ACK;
|
|
|
|
dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
|
|
ic->ic_flags) + sc->sifs;
|
|
*(uint16_t *)wh->i_dur = htole16(dur);
|
|
}
|
|
|
|
rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
|
|
data->map->dm_segs, data->map->dm_nsegs, ac);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
|
|
RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
|
|
|
|
DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
|
|
m0->m_pkthdr.len, txq->cur, rate));
|
|
|
|
/* kick Tx */
|
|
txq->queued++;
|
|
txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
|
|
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rt2661_start(struct ifnet *ifp)
|
|
{
|
|
struct rt2661_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct mbuf *m0;
|
|
struct ether_header *eh;
|
|
struct ieee80211_node *ni = NULL;
|
|
|
|
/*
|
|
* net80211 may still try to send management frames even if the
|
|
* IFF_RUNNING flag is not set...
|
|
*/
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
for (;;) {
|
|
IF_POLL(&ic->ic_mgtq, m0);
|
|
if (m0 != NULL) {
|
|
if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
IF_DEQUEUE(&ic->ic_mgtq, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
ni = M_GETCTX(m0, struct ieee80211_node *);
|
|
M_CLEARCTX(m0);
|
|
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
|
|
if (rt2661_tx_mgt(sc, m0, ni) != 0)
|
|
break;
|
|
|
|
} else {
|
|
IF_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
|
|
break;
|
|
|
|
if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
|
|
/* there is no place left in this ring */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
|
|
if (m0->m_len < sizeof (struct ether_header) &&
|
|
!(m0 = m_pullup(m0, sizeof (struct ether_header))))
|
|
continue;
|
|
|
|
eh = mtod(m0, struct ether_header *);
|
|
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
|
|
if (ni == NULL) {
|
|
m_freem(m0);
|
|
if_statinc(ifp, if_oerrors);
|
|
continue;
|
|
}
|
|
|
|
bpf_mtap(ifp, m0, BPF_D_OUT);
|
|
m0 = ieee80211_encap(ic, m0, ni);
|
|
if (m0 == NULL) {
|
|
ieee80211_free_node(ni);
|
|
if_statinc(ifp, if_oerrors);
|
|
continue;
|
|
}
|
|
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
|
|
if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
|
|
if (ni != NULL)
|
|
ieee80211_free_node(ni);
|
|
if_statinc(ifp, if_oerrors);
|
|
break;
|
|
}
|
|
}
|
|
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rt2661_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct rt2661_softc *sc = ifp->if_softc;
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
if (sc->sc_tx_timer > 0) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
aprint_error_dev(sc->sc_dev, "device timeout\n");
|
|
rt2661_init(ifp);
|
|
if_statinc(ifp, if_oerrors);
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
ieee80211_watchdog(&sc->sc_ic);
|
|
}
|
|
|
|
/*
|
|
* This function allows for fast channel switching in monitor mode (used by
|
|
* kismet). In IBSS mode, we must explicitly reset the interface to
|
|
* generate a new beacon frame.
|
|
*/
|
|
static int
|
|
rt2661_reset(struct ifnet *ifp)
|
|
{
|
|
struct rt2661_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
return ENETRESET;
|
|
|
|
rt2661_set_chan(sc, ic->ic_curchan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct rt2661_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
|
|
break;
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
rt2661_update_promisc(sc);
|
|
else
|
|
rt2661_init(ifp);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
rt2661_stop(ifp, 1);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/* XXX no h/w multicast filter? --dyoung */
|
|
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
|
|
error = 0;
|
|
break;
|
|
|
|
case SIOCS80211CHANNEL:
|
|
/*
|
|
* This allows for fast channel switching in monitor mode
|
|
* (used by kismet). In IBSS mode, we must explicitly reset
|
|
* the interface to generate a new beacon frame.
|
|
*/
|
|
error = ieee80211_ioctl(ic, cmd, data);
|
|
if (error == ENETRESET &&
|
|
ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING))
|
|
rt2661_set_chan(sc, ic->ic_ibss_chan);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = ieee80211_ioctl(ic, cmd, data);
|
|
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING))
|
|
rt2661_init(ifp);
|
|
error = 0;
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
|
|
{
|
|
uint32_t tmp;
|
|
int ntries;
|
|
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (ntries == 100) {
|
|
aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
|
|
return;
|
|
}
|
|
|
|
tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
|
|
RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
|
|
|
|
DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
|
|
}
|
|
|
|
static uint8_t
|
|
rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
|
|
{
|
|
uint32_t val;
|
|
int ntries;
|
|
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (ntries == 100) {
|
|
aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
|
|
return 0;
|
|
}
|
|
|
|
val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
|
|
RAL_WRITE(sc, RT2661_PHY_CSR3, val);
|
|
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
val = RAL_READ(sc, RT2661_PHY_CSR3);
|
|
if (!(val & RT2661_BBP_BUSY))
|
|
return val & 0xff;
|
|
DELAY(1);
|
|
}
|
|
|
|
aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
|
|
{
|
|
uint32_t tmp;
|
|
int ntries;
|
|
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (ntries == 100) {
|
|
aprint_error_dev(sc->sc_dev, "could not write to RF\n");
|
|
return;
|
|
}
|
|
tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
|
|
(reg & 3);
|
|
RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
|
|
|
|
/* remember last written value in sc */
|
|
sc->rf_regs[reg] = val;
|
|
|
|
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
|
|
}
|
|
|
|
static int
|
|
rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
|
|
{
|
|
if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
|
|
return EIO; /* there is already a command pending */
|
|
|
|
RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
|
|
RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
|
|
|
|
RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rt2661_select_antenna(struct rt2661_softc *sc)
|
|
{
|
|
uint8_t bbp4, bbp77;
|
|
uint32_t tmp;
|
|
|
|
bbp4 = rt2661_bbp_read(sc, 4);
|
|
bbp77 = rt2661_bbp_read(sc, 77);
|
|
|
|
/* TBD */
|
|
|
|
/* make sure Rx is disabled before switching antenna */
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
|
|
|
|
rt2661_bbp_write(sc, 4, bbp4);
|
|
rt2661_bbp_write(sc, 77, bbp77);
|
|
|
|
/* restore Rx filter */
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
|
|
}
|
|
|
|
/*
|
|
* Enable multi-rate retries for frames sent at OFDM rates.
|
|
* In 802.11b/g mode, allow fallback to CCK rates.
|
|
*/
|
|
static void
|
|
rt2661_enable_mrr(struct rt2661_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint32_t tmp;
|
|
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
|
|
|
|
tmp &= ~RT2661_MRR_CCK_FALLBACK;
|
|
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
|
|
tmp |= RT2661_MRR_CCK_FALLBACK;
|
|
tmp |= RT2661_MRR_ENABLED;
|
|
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
|
|
}
|
|
|
|
static void
|
|
rt2661_set_txpreamble(struct rt2661_softc *sc)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
|
|
|
|
tmp &= ~RT2661_SHORT_PREAMBLE;
|
|
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
tmp |= RT2661_SHORT_PREAMBLE;
|
|
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
|
|
}
|
|
|
|
static void
|
|
rt2661_set_basicrates(struct rt2661_softc *sc,
|
|
const struct ieee80211_rateset *rs)
|
|
{
|
|
#define RV(r) ((r) & IEEE80211_RATE_VAL)
|
|
uint32_t mask = 0;
|
|
uint8_t rate;
|
|
int i, j;
|
|
|
|
for (i = 0; i < rs->rs_nrates; i++) {
|
|
rate = rs->rs_rates[i];
|
|
|
|
if (!(rate & IEEE80211_RATE_BASIC))
|
|
continue;
|
|
|
|
/*
|
|
* Find h/w rate index. We know it exists because the rate
|
|
* set has already been negotiated.
|
|
*/
|
|
for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
|
|
|
|
mask |= 1 << j;
|
|
}
|
|
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
|
|
|
|
DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
|
|
#undef RV
|
|
}
|
|
|
|
/*
|
|
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
|
|
* driver.
|
|
*/
|
|
static void
|
|
rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
|
|
uint32_t tmp;
|
|
|
|
/* update all BBP registers that depend on the band */
|
|
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
|
|
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
|
|
if (IEEE80211_IS_CHAN_5GHZ(c)) {
|
|
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
|
|
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
|
|
}
|
|
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
|
|
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
|
|
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
|
|
}
|
|
|
|
sc->bbp17 = bbp17;
|
|
rt2661_bbp_write(sc, 17, bbp17);
|
|
rt2661_bbp_write(sc, 96, bbp96);
|
|
rt2661_bbp_write(sc, 104, bbp104);
|
|
|
|
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
|
|
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
|
|
rt2661_bbp_write(sc, 75, 0x80);
|
|
rt2661_bbp_write(sc, 86, 0x80);
|
|
rt2661_bbp_write(sc, 88, 0x80);
|
|
}
|
|
|
|
rt2661_bbp_write(sc, 35, bbp35);
|
|
rt2661_bbp_write(sc, 97, bbp97);
|
|
rt2661_bbp_write(sc, 98, bbp98);
|
|
|
|
tmp = RAL_READ(sc, RT2661_PHY_CSR0);
|
|
tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
tmp |= RT2661_PA_PE_2GHZ;
|
|
else
|
|
tmp |= RT2661_PA_PE_5GHZ;
|
|
RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
|
|
|
|
/* 802.11a uses a 16 microseconds short interframe space */
|
|
sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
|
|
}
|
|
|
|
static void
|
|
rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const struct rfprog *rfprog;
|
|
uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
|
|
int8_t power;
|
|
u_int i, chan;
|
|
|
|
chan = ieee80211_chan2ieee(ic, c);
|
|
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
|
|
return;
|
|
|
|
/* select the appropriate RF settings based on what EEPROM says */
|
|
rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
|
|
|
|
/* find the settings for this channel (we know it exists) */
|
|
for (i = 0; rfprog[i].chan != chan; i++);
|
|
|
|
power = sc->txpow[i];
|
|
if (power < 0) {
|
|
bbp94 += power;
|
|
power = 0;
|
|
} else if (power > 31) {
|
|
bbp94 += power - 31;
|
|
power = 31;
|
|
}
|
|
|
|
/*
|
|
* If we've yet to select a channel, or we are switching from the
|
|
* 2GHz band to the 5GHz band or vice-versa, BBP registers need to
|
|
* be reprogrammed.
|
|
*/
|
|
if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
|
|
rt2661_select_band(sc, c);
|
|
rt2661_select_antenna(sc);
|
|
}
|
|
sc->sc_curchan = c;
|
|
|
|
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
|
|
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
|
|
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
|
|
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
|
|
|
|
DELAY(200);
|
|
|
|
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
|
|
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
|
|
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
|
|
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
|
|
|
|
DELAY(200);
|
|
|
|
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
|
|
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
|
|
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
|
|
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
|
|
|
|
/* enable smart mode for MIMO-capable RFs */
|
|
bbp3 = rt2661_bbp_read(sc, 3);
|
|
|
|
bbp3 &= ~RT2661_SMART_MODE;
|
|
if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
|
|
bbp3 |= RT2661_SMART_MODE;
|
|
|
|
rt2661_bbp_write(sc, 3, bbp3);
|
|
|
|
if (bbp94 != RT2661_BBPR94_DEFAULT)
|
|
rt2661_bbp_write(sc, 94, bbp94);
|
|
|
|
/* 5GHz radio needs a 1ms delay here */
|
|
if (IEEE80211_IS_CHAN_5GHZ(c))
|
|
DELAY(1000);
|
|
}
|
|
|
|
static void
|
|
rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
|
|
RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
|
|
|
|
tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
|
|
RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
|
|
}
|
|
|
|
static void
|
|
rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
|
|
RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
|
|
|
|
tmp = addr[4] | addr[5] << 8 | 0xff << 16;
|
|
RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
|
|
}
|
|
|
|
static void
|
|
rt2661_update_promisc(struct rt2661_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ic.ic_ifp;
|
|
uint32_t tmp;
|
|
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
|
|
|
|
tmp &= ~RT2661_DROP_NOT_TO_ME;
|
|
if (!(ifp->if_flags & IFF_PROMISC))
|
|
tmp |= RT2661_DROP_NOT_TO_ME;
|
|
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
|
|
|
|
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
|
|
"entering" : "leaving"));
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Update QoS (802.11e) settings for each h/w Tx ring.
|
|
*/
|
|
static int
|
|
rt2661_wme_update(struct ieee80211com *ic)
|
|
{
|
|
struct rt2661_softc *sc = ic->ic_ifp->if_softc;
|
|
const struct wmeParams *wmep;
|
|
|
|
wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
|
|
|
|
/* XXX: not sure about shifts. */
|
|
/* XXX: the reference driver plays with AC_VI settings too. */
|
|
|
|
/* update TxOp */
|
|
RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
|
|
wmep[WME_AC_BE].wmep_txopLimit << 16 |
|
|
wmep[WME_AC_BK].wmep_txopLimit);
|
|
RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
|
|
wmep[WME_AC_VI].wmep_txopLimit << 16 |
|
|
wmep[WME_AC_VO].wmep_txopLimit);
|
|
|
|
/* update CWmin */
|
|
RAL_WRITE(sc, RT2661_CWMIN_CSR,
|
|
wmep[WME_AC_BE].wmep_logcwmin << 12 |
|
|
wmep[WME_AC_BK].wmep_logcwmin << 8 |
|
|
wmep[WME_AC_VI].wmep_logcwmin << 4 |
|
|
wmep[WME_AC_VO].wmep_logcwmin);
|
|
|
|
/* update CWmax */
|
|
RAL_WRITE(sc, RT2661_CWMAX_CSR,
|
|
wmep[WME_AC_BE].wmep_logcwmax << 12 |
|
|
wmep[WME_AC_BK].wmep_logcwmax << 8 |
|
|
wmep[WME_AC_VI].wmep_logcwmax << 4 |
|
|
wmep[WME_AC_VO].wmep_logcwmax);
|
|
|
|
/* update Aifsn */
|
|
RAL_WRITE(sc, RT2661_AIFSN_CSR,
|
|
wmep[WME_AC_BE].wmep_aifsn << 12 |
|
|
wmep[WME_AC_BK].wmep_aifsn << 8 |
|
|
wmep[WME_AC_VI].wmep_aifsn << 4 |
|
|
wmep[WME_AC_VO].wmep_aifsn);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
rt2661_updateslot(struct ifnet *ifp)
|
|
{
|
|
struct rt2661_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
/*
|
|
* In HostAP mode, we defer setting of new slot time until
|
|
* updated ERP Information Element has propagated to all
|
|
* associated STAs.
|
|
*/
|
|
sc->sc_flags |= RT2661_UPDATE_SLOT;
|
|
} else
|
|
rt2661_set_slottime(sc);
|
|
}
|
|
|
|
static void
|
|
rt2661_set_slottime(struct rt2661_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t slottime;
|
|
uint32_t tmp;
|
|
|
|
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
|
|
|
|
tmp = RAL_READ(sc, RT2661_MAC_CSR9);
|
|
tmp = (tmp & ~0xff) | slottime;
|
|
RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
|
|
|
|
DPRINTF(("setting slot time to %uus\n", slottime));
|
|
}
|
|
|
|
static const char *
|
|
rt2661_get_rf(int rev)
|
|
{
|
|
switch (rev) {
|
|
case RT2661_RF_5225: return "RT5225";
|
|
case RT2661_RF_5325: return "RT5325 (MIMO XR)";
|
|
case RT2661_RF_2527: return "RT2527";
|
|
case RT2661_RF_2529: return "RT2529 (MIMO XR)";
|
|
default: return "unknown";
|
|
}
|
|
}
|
|
|
|
static void
|
|
rt2661_read_eeprom(struct rt2661_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint16_t val;
|
|
int i;
|
|
|
|
/* read MAC address */
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
|
|
ic->ic_myaddr[0] = val & 0xff;
|
|
ic->ic_myaddr[1] = val >> 8;
|
|
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
|
|
ic->ic_myaddr[2] = val & 0xff;
|
|
ic->ic_myaddr[3] = val >> 8;
|
|
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
|
|
ic->ic_myaddr[4] = val & 0xff;
|
|
ic->ic_myaddr[5] = val >> 8;
|
|
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
|
|
/* XXX: test if different from 0xffff? */
|
|
sc->rf_rev = (val >> 11) & 0x1f;
|
|
sc->hw_radio = (val >> 10) & 0x1;
|
|
sc->rx_ant = (val >> 4) & 0x3;
|
|
sc->tx_ant = (val >> 2) & 0x3;
|
|
sc->nb_ant = val & 0x3;
|
|
|
|
DPRINTF(("RF revision=%d\n", sc->rf_rev));
|
|
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
|
|
sc->ext_5ghz_lna = (val >> 6) & 0x1;
|
|
sc->ext_2ghz_lna = (val >> 4) & 0x1;
|
|
|
|
DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
|
|
sc->ext_2ghz_lna, sc->ext_5ghz_lna));
|
|
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
|
|
if ((val & 0xff) != 0xff)
|
|
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
|
|
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
|
|
if ((val & 0xff) != 0xff)
|
|
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
|
|
|
|
/* adjust RSSI correction for external low-noise amplifier */
|
|
if (sc->ext_2ghz_lna)
|
|
sc->rssi_2ghz_corr -= 14;
|
|
if (sc->ext_5ghz_lna)
|
|
sc->rssi_5ghz_corr -= 14;
|
|
|
|
DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
|
|
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
|
|
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
|
|
if ((val >> 8) != 0xff)
|
|
sc->rfprog = (val >> 8) & 0x3;
|
|
if ((val & 0xff) != 0xff)
|
|
sc->rffreq = val & 0xff;
|
|
|
|
DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
|
|
|
|
/* read Tx power for all a/b/g channels */
|
|
for (i = 0; i < 19; i++) {
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
|
|
sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
|
|
DPRINTF(("Channel=%d Tx power=%d\n",
|
|
rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
|
|
sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
|
|
DPRINTF(("Channel=%d Tx power=%d\n",
|
|
rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
|
|
}
|
|
|
|
/* read vendor-specific BBP values */
|
|
for (i = 0; i < 16; i++) {
|
|
val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
|
|
if (val == 0 || val == 0xffff)
|
|
continue; /* skip invalid entries */
|
|
sc->bbp_prom[i].reg = val >> 8;
|
|
sc->bbp_prom[i].val = val & 0xff;
|
|
DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
|
|
sc->bbp_prom[i].val));
|
|
}
|
|
}
|
|
|
|
static int
|
|
rt2661_bbp_init(struct rt2661_softc *sc)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof ((a)[0]))
|
|
int i, ntries;
|
|
uint8_t val;
|
|
|
|
/* wait for BBP to be ready */
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
val = rt2661_bbp_read(sc, 0);
|
|
if (val != 0 && val != 0xff)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
if (ntries == 100) {
|
|
aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
|
|
return EIO;
|
|
}
|
|
|
|
/* initialize BBP registers to default values */
|
|
for (i = 0; i < N(rt2661_def_bbp); i++) {
|
|
rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
|
|
rt2661_def_bbp[i].val);
|
|
}
|
|
|
|
/* write vendor-specific BBP values (from EEPROM) */
|
|
for (i = 0; i < 16; i++) {
|
|
if (sc->bbp_prom[i].reg == 0)
|
|
continue;
|
|
rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
|
|
}
|
|
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
static int
|
|
rt2661_init(struct ifnet *ifp)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof ((a)[0]))
|
|
struct rt2661_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const char *name = NULL; /* make lint happy */
|
|
uint8_t *ucode;
|
|
size_t size;
|
|
uint32_t tmp, star[3];
|
|
int i, ntries;
|
|
firmware_handle_t fh;
|
|
|
|
/* for CardBus, power on the socket */
|
|
if (!(sc->sc_flags & RT2661_ENABLED)) {
|
|
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not enable device\n");
|
|
return EIO;
|
|
}
|
|
sc->sc_flags |= RT2661_ENABLED;
|
|
}
|
|
|
|
rt2661_stop(ifp, 0);
|
|
|
|
if (!(sc->sc_flags & RT2661_FWLOADED)) {
|
|
switch (sc->sc_id) {
|
|
case PCI_PRODUCT_RALINK_RT2561:
|
|
name = "ral-rt2561";
|
|
break;
|
|
case PCI_PRODUCT_RALINK_RT2561S:
|
|
name = "ral-rt2561s";
|
|
break;
|
|
case PCI_PRODUCT_RALINK_RT2661:
|
|
name = "ral-rt2661";
|
|
break;
|
|
}
|
|
|
|
if (firmware_open("ral", name, &fh) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
|
|
rt2661_stop(ifp, 1);
|
|
return EIO;
|
|
}
|
|
|
|
size = firmware_get_size(fh);
|
|
if (!(ucode = firmware_malloc(size))) {
|
|
aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
|
|
firmware_close(fh);
|
|
rt2661_stop(ifp, 1);
|
|
return ENOMEM;
|
|
}
|
|
|
|
if (firmware_read(fh, 0, ucode, size) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
|
|
firmware_free(ucode, size);
|
|
firmware_close(fh);
|
|
rt2661_stop(ifp, 1);
|
|
return EIO;
|
|
}
|
|
|
|
if (rt2661_load_microcode(sc, ucode, size) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
|
|
firmware_free(ucode, size);
|
|
firmware_close(fh);
|
|
rt2661_stop(ifp, 1);
|
|
return EIO;
|
|
}
|
|
|
|
firmware_free(ucode, size);
|
|
firmware_close(fh);
|
|
sc->sc_flags |= RT2661_FWLOADED;
|
|
}
|
|
|
|
/* initialize Tx rings */
|
|
RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
|
|
RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
|
|
RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
|
|
RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
|
|
|
|
/* initialize Mgt ring */
|
|
RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
|
|
|
|
/* initialize Rx ring */
|
|
RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
|
|
|
|
/* initialize Tx rings sizes */
|
|
RAL_WRITE(sc, RT2661_TX_RING_CSR0,
|
|
RT2661_TX_RING_COUNT << 24 |
|
|
RT2661_TX_RING_COUNT << 16 |
|
|
RT2661_TX_RING_COUNT << 8 |
|
|
RT2661_TX_RING_COUNT);
|
|
|
|
RAL_WRITE(sc, RT2661_TX_RING_CSR1,
|
|
RT2661_TX_DESC_WSIZE << 16 |
|
|
RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
|
|
RT2661_MGT_RING_COUNT);
|
|
|
|
/* initialize Rx rings */
|
|
RAL_WRITE(sc, RT2661_RX_RING_CSR,
|
|
RT2661_RX_DESC_BACK << 16 |
|
|
RT2661_RX_DESC_WSIZE << 8 |
|
|
RT2661_RX_RING_COUNT);
|
|
|
|
/* XXX: some magic here */
|
|
RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
|
|
|
|
/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
|
|
RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
|
|
|
|
/* load base address of Rx ring */
|
|
RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
|
|
|
|
/* initialize MAC registers to default values */
|
|
for (i = 0; i < N(rt2661_def_mac); i++)
|
|
RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
|
|
|
|
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
|
|
rt2661_set_macaddr(sc, ic->ic_myaddr);
|
|
|
|
/* set host ready */
|
|
RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
|
|
RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
|
|
|
|
/* wait for BBP/RF to wakeup */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (ntries == 1000) {
|
|
printf("timeout waiting for BBP/RF to wakeup\n");
|
|
rt2661_stop(ifp, 1);
|
|
return EIO;
|
|
}
|
|
|
|
if (rt2661_bbp_init(sc) != 0) {
|
|
rt2661_stop(ifp, 1);
|
|
return EIO;
|
|
}
|
|
|
|
/* select default channel */
|
|
sc->sc_curchan = ic->ic_curchan;
|
|
rt2661_select_band(sc, sc->sc_curchan);
|
|
rt2661_select_antenna(sc);
|
|
rt2661_set_chan(sc, sc->sc_curchan);
|
|
|
|
/* update Rx filter */
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
|
|
|
|
tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
|
|
RT2661_DROP_ACKCTS;
|
|
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
|
|
tmp |= RT2661_DROP_TODS;
|
|
if (!(ifp->if_flags & IFF_PROMISC))
|
|
tmp |= RT2661_DROP_NOT_TO_ME;
|
|
}
|
|
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
|
|
|
|
/* clear STA registers */
|
|
RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
|
|
|
|
/* initialize ASIC */
|
|
RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
|
|
|
|
/* clear any pending interrupt */
|
|
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
|
|
|
|
/* enable interrupts */
|
|
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
|
|
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
|
|
|
|
/* kick Rx */
|
|
RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
|
|
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
} else
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
static void
|
|
rt2661_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct rt2661_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint32_t tmp;
|
|
|
|
sc->sc_tx_timer = 0;
|
|
ifp->if_timer = 0;
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
|
|
|
|
/* abort Tx (for all 5 Tx rings) */
|
|
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
|
|
|
|
/* disable Rx (value remains after reset!) */
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
|
|
|
|
/* reset ASIC */
|
|
RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
|
|
RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
|
|
|
|
/* disable interrupts */
|
|
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
|
|
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
|
|
|
|
/* clear any pending interrupt */
|
|
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
|
|
RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
|
|
|
|
/* reset Tx and Rx rings */
|
|
rt2661_reset_tx_ring(sc, &sc->txq[0]);
|
|
rt2661_reset_tx_ring(sc, &sc->txq[1]);
|
|
rt2661_reset_tx_ring(sc, &sc->txq[2]);
|
|
rt2661_reset_tx_ring(sc, &sc->txq[3]);
|
|
rt2661_reset_tx_ring(sc, &sc->mgtq);
|
|
rt2661_reset_rx_ring(sc, &sc->rxq);
|
|
|
|
/* for CardBus, power down the socket */
|
|
if (disable && sc->sc_disable != NULL) {
|
|
if (sc->sc_flags & RT2661_ENABLED) {
|
|
(*sc->sc_disable)(sc);
|
|
sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
|
|
{
|
|
int ntries;
|
|
|
|
/* reset 8051 */
|
|
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
|
|
|
|
/* cancel any pending Host to MCU command */
|
|
RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
|
|
RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
|
|
RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
|
|
|
|
/* write 8051's microcode */
|
|
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
|
|
RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
|
|
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
|
|
|
|
/* kick 8051's ass */
|
|
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
|
|
|
|
/* wait for 8051 to initialize */
|
|
for (ntries = 0; ntries < 500; ntries++) {
|
|
if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
if (ntries == 500) {
|
|
printf("timeout waiting for MCU to initialize\n");
|
|
return EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
|
|
* false CCA count. This function is called periodically (every seconds) when
|
|
* in the RUN state. Values taken from the reference driver.
|
|
*/
|
|
static void
|
|
rt2661_rx_tune(struct rt2661_softc *sc)
|
|
{
|
|
uint8_t bbp17;
|
|
uint16_t cca;
|
|
int lo, hi, dbm;
|
|
|
|
/*
|
|
* Tuning range depends on operating band and on the presence of an
|
|
* external low-noise amplifier.
|
|
*/
|
|
lo = 0x20;
|
|
if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
|
|
lo += 0x08;
|
|
if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
|
|
(IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
|
|
lo += 0x10;
|
|
hi = lo + 0x20;
|
|
|
|
dbm = sc->avg_rssi;
|
|
/* retrieve false CCA count since last call (clear on read) */
|
|
cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
|
|
|
|
DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
|
|
|
|
if (dbm < -74) {
|
|
/* very bad RSSI, tune using false CCA count */
|
|
bbp17 = sc->bbp17; /* current value */
|
|
|
|
hi -= 2 * (-74 - dbm);
|
|
if (hi < lo)
|
|
hi = lo;
|
|
|
|
if (bbp17 > hi)
|
|
bbp17 = hi;
|
|
else if (cca > 512)
|
|
bbp17 = uimin(bbp17 + 1, hi);
|
|
else if (cca < 100)
|
|
bbp17 = uimax(bbp17 - 1, lo);
|
|
|
|
} else if (dbm < -66) {
|
|
bbp17 = lo + 0x08;
|
|
} else if (dbm < -58) {
|
|
bbp17 = lo + 0x10;
|
|
} else if (dbm < -35) {
|
|
bbp17 = hi;
|
|
} else { /* very good RSSI >= -35dBm */
|
|
bbp17 = 0x60; /* very low sensitivity */
|
|
}
|
|
|
|
if (bbp17 != sc->bbp17) {
|
|
DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
|
|
rt2661_bbp_write(sc, 17, bbp17);
|
|
sc->bbp17 = bbp17;
|
|
}
|
|
}
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* Enter/Leave radar detection mode.
|
|
* This is for 802.11h additional regulatory domains.
|
|
*/
|
|
static void
|
|
rt2661_radar_start(struct rt2661_softc *sc)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
/* disable Rx */
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
|
|
|
|
rt2661_bbp_write(sc, 82, 0x20);
|
|
rt2661_bbp_write(sc, 83, 0x00);
|
|
rt2661_bbp_write(sc, 84, 0x40);
|
|
|
|
/* save current BBP registers values */
|
|
sc->bbp18 = rt2661_bbp_read(sc, 18);
|
|
sc->bbp21 = rt2661_bbp_read(sc, 21);
|
|
sc->bbp22 = rt2661_bbp_read(sc, 22);
|
|
sc->bbp16 = rt2661_bbp_read(sc, 16);
|
|
sc->bbp17 = rt2661_bbp_read(sc, 17);
|
|
sc->bbp64 = rt2661_bbp_read(sc, 64);
|
|
|
|
rt2661_bbp_write(sc, 18, 0xff);
|
|
rt2661_bbp_write(sc, 21, 0x3f);
|
|
rt2661_bbp_write(sc, 22, 0x3f);
|
|
rt2661_bbp_write(sc, 16, 0xbd);
|
|
rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
|
|
rt2661_bbp_write(sc, 64, 0x21);
|
|
|
|
/* restore Rx filter */
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
|
|
}
|
|
|
|
static int
|
|
rt2661_radar_stop(struct rt2661_softc *sc)
|
|
{
|
|
uint8_t bbp66;
|
|
|
|
/* read radar detection result */
|
|
bbp66 = rt2661_bbp_read(sc, 66);
|
|
|
|
/* restore BBP registers values */
|
|
rt2661_bbp_write(sc, 16, sc->bbp16);
|
|
rt2661_bbp_write(sc, 17, sc->bbp17);
|
|
rt2661_bbp_write(sc, 18, sc->bbp18);
|
|
rt2661_bbp_write(sc, 21, sc->bbp21);
|
|
rt2661_bbp_write(sc, 22, sc->bbp22);
|
|
rt2661_bbp_write(sc, 64, sc->bbp64);
|
|
|
|
return bbp66 == 1;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
rt2661_prepare_beacon(struct rt2661_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
struct rt2661_tx_desc desc;
|
|
struct mbuf *m0;
|
|
struct ieee80211_beacon_offsets bo;
|
|
int rate;
|
|
|
|
m0 = ieee80211_beacon_alloc(ic, ni, &bo);
|
|
if (m0 == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* send beacons at the lowest available rate */
|
|
rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
|
|
|
|
rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
|
|
m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
|
|
|
|
/* copy the first 24 bytes of Tx descriptor into NIC memory */
|
|
RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
|
|
|
|
/* copy beacon header and payload into NIC memory */
|
|
RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
|
|
mtod(m0, uint8_t *), m0->m_pkthdr.len);
|
|
|
|
m_freem(m0);
|
|
|
|
/*
|
|
* Store offset of ERP Information Element so that we can update it
|
|
* dynamically when the slot time changes.
|
|
* XXX: this is ugly since it depends on how net80211 builds beacon
|
|
* frames but ieee80211_beacon_alloc() doesn't store offsets for us.
|
|
*/
|
|
if (ic->ic_curmode == IEEE80211_MODE_11G) {
|
|
sc->erp_csr =
|
|
RT2661_HW_BEACON_BASE0 + 24 +
|
|
sizeof (struct ieee80211_frame) +
|
|
8 + 2 + 2 + 2 + ni->ni_esslen +
|
|
2 + uimin(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
|
|
2 + 1 +
|
|
((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
|
|
2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
|
|
* and HostAP operating modes.
|
|
*/
|
|
static void
|
|
rt2661_enable_tsf_sync(struct rt2661_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint32_t tmp;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_STA) {
|
|
/*
|
|
* Change default 16ms TBTT adjustment to 8ms.
|
|
* Must be done before enabling beacon generation.
|
|
*/
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
|
|
}
|
|
|
|
tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
|
|
|
|
/* set beacon interval (in 1/16ms unit) */
|
|
tmp |= ic->ic_bss->ni_intval * 16;
|
|
|
|
tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
tmp |= RT2661_TSF_MODE(1);
|
|
else
|
|
tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
|
|
|
|
RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
|
|
}
|
|
|
|
/*
|
|
* Retrieve the "Received Signal Strength Indicator" from the raw values
|
|
* contained in Rx descriptors. The computation depends on which band the
|
|
* frame was received. Correction values taken from the reference driver.
|
|
*/
|
|
static int
|
|
rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
|
|
{
|
|
int lna, agc, rssi;
|
|
|
|
lna = (raw >> 5) & 0x3;
|
|
agc = raw & 0x1f;
|
|
|
|
rssi = 2 * agc;
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
|
|
rssi += sc->rssi_2ghz_corr;
|
|
|
|
if (lna == 1)
|
|
rssi -= 64;
|
|
else if (lna == 2)
|
|
rssi -= 74;
|
|
else if (lna == 3)
|
|
rssi -= 90;
|
|
} else {
|
|
rssi += sc->rssi_5ghz_corr;
|
|
|
|
if (lna == 1)
|
|
rssi -= 64;
|
|
else if (lna == 2)
|
|
rssi -= 86;
|
|
else if (lna == 3)
|
|
rssi -= 100;
|
|
}
|
|
return rssi;
|
|
}
|