NetBSD/sys/dev/ic/aac.c

1785 lines
48 KiB
C

/* $NetBSD: aac.c,v 1.49 2021/08/07 16:19:11 thorpej Exp $ */
/*-
* Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2001 Scott Long
* Copyright (c) 2001 Adaptec, Inc.
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* Copyright (c) 2000 Niklas Hallqvist
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
*
* TODO:
*
* o Management interface.
* o Look again at some of the portability issues.
* o Handle various AIFs (e.g., notification that a container is going away).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: aac.c,v 1.49 2021/08/07 16:19:11 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <dev/ic/aacreg.h>
#include <dev/ic/aacvar.h>
#include <dev/ic/aac_tables.h>
#include "locators.h"
#include "ioconf.h"
static int aac_new_intr(void *);
static int aac_alloc_commands(struct aac_softc *);
#ifdef notyet
static void aac_free_commands(struct aac_softc *);
#endif
static int aac_check_firmware(struct aac_softc *);
static void aac_describe_controller(struct aac_softc *);
static int aac_dequeue_fib(struct aac_softc *, int, u_int32_t *,
struct aac_fib **);
static int aac_enqueue_fib(struct aac_softc *, int, struct aac_ccb *);
static int aac_enqueue_response(struct aac_softc *, int, struct aac_fib *);
static void aac_host_command(struct aac_softc *);
static void aac_host_response(struct aac_softc *);
static int aac_init(struct aac_softc *);
static int aac_print(void *, const char *);
static void aac_shutdown(void *);
static void aac_startup(struct aac_softc *);
static int aac_sync_command(struct aac_softc *, u_int32_t, u_int32_t,
u_int32_t, u_int32_t, u_int32_t, u_int32_t *);
static int aac_sync_fib(struct aac_softc *, u_int32_t, u_int32_t, void *,
u_int16_t, void *, u_int16_t *);
#ifdef AAC_DEBUG
static void aac_print_fib(struct aac_softc *, struct aac_fib *, const char *);
#endif
/*
* Adapter-space FIB queue manipulation.
*
* Note that the queue implementation here is a little funky; neither the PI or
* CI will ever be zero. This behaviour is a controller feature.
*/
static struct {
int size;
int notify;
} const aac_qinfo[] = {
{ AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL },
{ AAC_HOST_HIGH_CMD_ENTRIES, 0 },
{ AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY },
{ AAC_ADAP_HIGH_CMD_ENTRIES, 0 },
{ AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL },
{ AAC_HOST_HIGH_RESP_ENTRIES, 0 },
{ AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY },
{ AAC_ADAP_HIGH_RESP_ENTRIES, 0 }
};
#ifdef AAC_DEBUG
int aac_debug = AAC_DEBUG;
#endif
MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for aac(4)");
static void *aac_sdh;
int
aac_attach(struct aac_softc *sc)
{
int rv;
SIMPLEQ_INIT(&sc->sc_ccb_free);
SIMPLEQ_INIT(&sc->sc_ccb_queue);
SIMPLEQ_INIT(&sc->sc_ccb_complete);
/*
* Disable interrupts before we do anything.
*/
AAC_MASK_INTERRUPTS(sc);
/*
* Initialise the adapter.
*/
if (aac_check_firmware(sc))
return (EINVAL);
if ((rv = aac_init(sc)) != 0)
return (rv);
if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
rv = sc->sc_intr_set(sc, aac_new_intr, sc);
if (rv)
return (rv);
}
aac_startup(sc);
/*
* Print a little information about the controller.
*/
aac_describe_controller(sc);
/*
* Attach devices
*/
aac_devscan(sc);
/*
* Enable interrupts, and register our shutdown hook.
*/
sc->sc_flags |= AAC_ONLINE;
AAC_UNMASK_INTERRUPTS(sc);
if (aac_sdh != NULL)
shutdownhook_establish(aac_shutdown, NULL);
return (0);
}
int
aac_devscan(struct aac_softc *sc)
{
struct aac_attach_args aaca;
int i;
int locs[AACCF_NLOCS];
for (i = 0; i < AAC_MAX_CONTAINERS; i++) {
if (!sc->sc_hdr[i].hd_present)
continue;
aaca.aaca_unit = i;
locs[AACCF_UNIT] = i;
config_found(sc->sc_dv, &aaca, aac_print,
CFARGS(.submatch = config_stdsubmatch,
.locators = locs));
}
return 0;
}
static int
aac_alloc_commands(struct aac_softc *sc)
{
struct aac_fibmap *fm;
struct aac_ccb *ac;
bus_addr_t fibpa;
int size, nsegs;
int i, error;
int state;
if (sc->sc_total_fibs + sc->sc_max_fibs_alloc > sc->sc_max_fibs)
return ENOMEM;
fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
if (fm == NULL)
return ENOMEM;
size = sc->sc_max_fibs_alloc * sc->sc_max_fib_size;
state = 0;
error = bus_dmamap_create(sc->sc_dmat, size, 1, size,
0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &fm->fm_fibmap);
if (error != 0) {
aprint_error_dev(sc->sc_dv, "cannot create fibs dmamap (%d)\n",
error);
goto bail_out;
}
state++;
error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
&fm->fm_fibseg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dv, "can't allocate fibs structure (%d)\n",
error);
goto bail_out;
}
state++;
error = bus_dmamem_map(sc->sc_dmat, &fm->fm_fibseg, nsegs, size,
(void **)&fm->fm_fibs, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dv, "can't map fibs structure (%d)\n",
error);
goto bail_out;
}
state++;
error = bus_dmamap_load(sc->sc_dmat, fm->fm_fibmap, fm->fm_fibs,
size, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dv, "cannot load fibs dmamap (%d)\n",
error);
goto bail_out;
}
fm->fm_ccbs = sc->sc_ccbs + sc->sc_total_fibs;
fibpa = fm->fm_fibseg.ds_addr;
memset(fm->fm_fibs, 0, size);
for (i = 0; i < sc->sc_max_fibs_alloc; i++) {
ac = fm->fm_ccbs + i;
error = bus_dmamap_create(sc->sc_dmat, AAC_MAX_XFER(sc),
sc->sc_max_sgs, AAC_MAX_XFER(sc), 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_dmamap_xfer);
if (error) {
while (--i >= 0) {
ac = fm->fm_ccbs + i;
bus_dmamap_destroy(sc->sc_dmat,
ac->ac_dmamap_xfer);
sc->sc_total_fibs--;
}
aprint_error_dev(sc->sc_dv, "cannot create ccb dmamap (%d)",
error);
goto bail_out;
}
ac->ac_fibmap = fm;
ac->ac_fib = (struct aac_fib *)
((char *) fm->fm_fibs + i * sc->sc_max_fib_size);
ac->ac_fibphys = fibpa + i * sc->sc_max_fib_size;
aac_ccb_free(sc, ac);
sc->sc_total_fibs++;
}
TAILQ_INSERT_TAIL(&sc->sc_fibmap_tqh, fm, fm_link);
return 0;
bail_out:
if (state > 3)
bus_dmamap_unload(sc->sc_dmat, fm->fm_fibmap);
if (state > 2)
bus_dmamem_unmap(sc->sc_dmat, (void *) fm->fm_fibs, size);
if (state > 1)
bus_dmamem_free(sc->sc_dmat, &fm->fm_fibseg, 1);
bus_dmamap_destroy(sc->sc_dmat, fm->fm_fibmap);
free(fm, M_AACBUF);
return error;
}
#ifdef notyet
static void
aac_free_commands(struct aac_softc *sc)
{
}
#endif
/*
* Print autoconfiguration message for a sub-device.
*/
static int
aac_print(void *aux, const char *pnp)
{
struct aac_attach_args *aaca;
aaca = aux;
if (pnp != NULL)
aprint_normal("block device at %s", pnp);
aprint_normal(" unit %d", aaca->aaca_unit);
return (UNCONF);
}
/*
* Look up a text description of a numeric error code and return a pointer to
* same.
*/
const char *
aac_describe_code(const struct aac_code_lookup *table, u_int32_t code)
{
int i;
for (i = 0; table[i].string != NULL; i++)
if (table[i].code == code)
return (table[i].string);
return (table[i + 1].string);
}
/*
* snprintb(3) format string for the adapter options.
*/
static const char *optfmt =
"\20\1SNAPSHOT\2CLUSTERS\3WCACHE\4DATA64\5HOSTTIME\6RAID50"
"\7WINDOW4GB"
"\10SCSIUPGD\11SOFTERR\12NORECOND\13SGMAP64\14ALARM\15NONDASD";
static void
aac_describe_controller(struct aac_softc *sc)
{
u_int8_t fmtbuf[256];
u_int8_t tbuf[AAC_FIB_DATASIZE];
u_int16_t bufsize;
struct aac_adapter_info *info;
u_int8_t arg;
arg = 0;
if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &tbuf,
&bufsize)) {
aprint_error_dev(sc->sc_dv, "RequestAdapterInfo failed\n");
return;
}
if (bufsize != sizeof(*info)) {
aprint_error_dev(sc->sc_dv,
"RequestAdapterInfo returned wrong data size (%d != %zu)\n",
bufsize, sizeof(*info));
return;
}
info = (struct aac_adapter_info *)&tbuf[0];
aprint_normal_dev(sc->sc_dv, "%s at %dMHz, %dMB mem (%dMB cache), %s\n",
aac_describe_code(aac_cpu_variant, le32toh(info->CpuVariant)),
le32toh(info->ClockSpeed),
le32toh(info->TotalMem) / (1024 * 1024),
le32toh(info->BufferMem) / (1024 * 1024),
aac_describe_code(aac_battery_platform,
le32toh(info->batteryPlatform)));
aprint_verbose_dev(sc->sc_dv, "Kernel %d.%d-%d [Build %d], ",
info->KernelRevision.external.comp.major,
info->KernelRevision.external.comp.minor,
info->KernelRevision.external.comp.dash,
info->KernelRevision.buildNumber);
aprint_verbose("Monitor %d.%d-%d [Build %d], S/N %6X\n",
info->MonitorRevision.external.comp.major,
info->MonitorRevision.external.comp.minor,
info->MonitorRevision.external.comp.dash,
info->MonitorRevision.buildNumber,
((u_int32_t)info->SerialNumber & 0xffffff));
snprintb(fmtbuf, sizeof(fmtbuf), optfmt, sc->sc_supported_options);
aprint_verbose_dev(sc->sc_dv, "Controller supports: %s\n", fmtbuf);
/* Save the kernel revision structure for later use. */
sc->sc_revision = info->KernelRevision;
}
/*
* Retrieve the firmware version numbers. Dell PERC2/QC cards with firmware
* version 1.x are not compatible with this driver.
*/
static int
aac_check_firmware(struct aac_softc *sc)
{
u_int32_t major, minor, opts, atusize = 0, status = 0;
u_int32_t calcsgs;
if ((sc->sc_quirks & AAC_QUIRK_PERC2QC) != 0) {
if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
NULL)) {
aprint_error_dev(sc->sc_dv, "error reading firmware version\n");
return (1);
}
/* These numbers are stored as ASCII! */
major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
if (major == 1) {
aprint_error_dev(sc->sc_dv,
"firmware version %d.%d not supported.\n",
major, minor);
return (1);
}
}
if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) {
if (status != AAC_SRB_STS_INVALID_REQUEST) {
aprint_error_dev(sc->sc_dv, "GETINFO failed, status 0x%08x\n", status);
return (1);
}
} else {
opts = AAC_GET_MAILBOX(sc, 1);
atusize = AAC_GET_MAILBOX(sc, 2);
sc->sc_supported_options = opts;
if (((opts & AAC_SUPPORTED_4GB_WINDOW) != 0) &&
((sc->sc_quirks & AAC_QUIRK_NO4GB) == 0) )
sc->sc_quirks |= AAC_QUIRK_4GB_WINDOW;
if (((opts & AAC_SUPPORTED_SGMAP_HOST64) != 0) &&
(sizeof(bus_addr_t) > 4)) {
aprint_normal_dev(sc->sc_dv, "Enabling 64-bit address support\n");
sc->sc_quirks |= AAC_QUIRK_SG_64BIT;
}
if ((opts & AAC_SUPPORTED_NEW_COMM) &&
(sc->sc_if.aif_send_command != NULL)) {
sc->sc_quirks |= AAC_QUIRK_NEW_COMM;
}
if (opts & AAC_SUPPORTED_64BIT_ARRAYSIZE)
sc->sc_quirks |= AAC_QUIRK_ARRAY_64BIT;
}
sc->sc_max_fibs = (sc->sc_quirks & AAC_QUIRK_256FIBS) ? 256 : 512;
if ( (sc->sc_quirks & AAC_QUIRK_NEW_COMM)
&& (sc->sc_regsize < atusize)) {
aprint_error_dev(sc->sc_dv, "Not enabling new comm i/f -- "
"atusize 0x%08x, regsize 0x%08x\n",
atusize,
(uint32_t) sc->sc_regsize);
sc->sc_quirks &= ~AAC_QUIRK_NEW_COMM;
}
#if 0
if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
aprint_error_dev(sc->sc_dv, "Not enabling new comm i/f -- "
"driver not ready yet\n");
sc->sc_quirks &= ~AAC_QUIRK_NEW_COMM;
}
#endif
sc->sc_max_fib_size = sizeof(struct aac_fib);
sc->sc_max_sectors = 128; /* 64KB */
if (sc->sc_quirks & AAC_QUIRK_SG_64BIT)
sc->sc_max_sgs = (sc->sc_max_fib_size
- sizeof(struct aac_blockwrite64)
+ sizeof(struct aac_sg_table64))
/ sizeof(struct aac_sg_table64);
else
sc->sc_max_sgs = (sc->sc_max_fib_size
- sizeof(struct aac_blockwrite)
+ sizeof(struct aac_sg_table))
/ sizeof(struct aac_sg_table);
if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) {
u_int32_t opt1, opt2, opt3;
u_int32_t tmpval;
opt1 = AAC_GET_MAILBOX(sc, 1);
opt2 = AAC_GET_MAILBOX(sc, 2);
opt3 = AAC_GET_MAILBOX(sc, 3);
if (!opt1 || !opt2 || !opt3) {
aprint_verbose_dev(sc->sc_dv, "GETCOMMPREF appears untrustworthy."
" Ignoring.\n");
} else {
sc->sc_max_fib_size = le32toh(opt1) & 0xffff;
sc->sc_max_sectors = (le32toh(opt1) >> 16) << 1;
tmpval = (le32toh(opt2) >> 16);
if (tmpval < sc->sc_max_sgs) {
sc->sc_max_sgs = tmpval;
}
tmpval = (le32toh(opt3) & 0xffff);
if (tmpval < sc->sc_max_fibs) {
sc->sc_max_fibs = tmpval;
}
}
}
if (sc->sc_max_fib_size > PAGE_SIZE)
sc->sc_max_fib_size = PAGE_SIZE;
if (sc->sc_quirks & AAC_QUIRK_SG_64BIT)
calcsgs = (sc->sc_max_fib_size
- sizeof(struct aac_blockwrite64)
+ sizeof(struct aac_sg_table64))
/ sizeof(struct aac_sg_table64);
else
calcsgs = (sc->sc_max_fib_size
- sizeof(struct aac_blockwrite)
+ sizeof(struct aac_sg_table))
/ sizeof(struct aac_sg_table);
if (calcsgs < sc->sc_max_sgs) {
sc->sc_max_sgs = calcsgs;
}
sc->sc_max_fibs_alloc = PAGE_SIZE / sc->sc_max_fib_size;
if (sc->sc_max_fib_size > sizeof(struct aac_fib)) {
sc->sc_quirks |= AAC_QUIRK_RAW_IO;
aprint_debug_dev(sc->sc_dv, "Enable raw I/O\n");
}
if ((sc->sc_quirks & AAC_QUIRK_RAW_IO) &&
(sc->sc_quirks & AAC_QUIRK_ARRAY_64BIT)) {
sc->sc_quirks |= AAC_QUIRK_LBA_64BIT;
aprint_normal_dev(sc->sc_dv, "Enable 64-bit array support\n");
}
return (0);
}
static int
aac_init(struct aac_softc *sc)
{
int nsegs, i, rv, state, norm, high;
struct aac_adapter_init *ip;
u_int32_t code, qoff;
state = 0;
/*
* First wait for the adapter to come ready.
*/
for (i = 0; i < AAC_BOOT_TIMEOUT * 1000; i++) {
code = AAC_GET_FWSTATUS(sc);
if ((code & AAC_SELF_TEST_FAILED) != 0) {
aprint_error_dev(sc->sc_dv, "FATAL: selftest failed\n");
return (ENXIO);
}
if ((code & AAC_KERNEL_PANIC) != 0) {
aprint_error_dev(sc->sc_dv, "FATAL: controller kernel panic\n");
return (ENXIO);
}
if ((code & AAC_UP_AND_RUNNING) != 0)
break;
DELAY(1000);
}
if (i == AAC_BOOT_TIMEOUT * 1000) {
aprint_error_dev(sc->sc_dv,
"FATAL: controller not coming ready, status %x\n",
code);
return (ENXIO);
}
sc->sc_aif_fib = malloc(sizeof(struct aac_fib), M_AACBUF,
M_WAITOK | M_ZERO);
if ((rv = bus_dmamap_create(sc->sc_dmat, sizeof(*sc->sc_common), 1,
sizeof(*sc->sc_common), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&sc->sc_common_dmamap)) != 0) {
aprint_error_dev(sc->sc_dv, "cannot create common dmamap\n");
goto bail_out;
}
state++;
if ((rv = bus_dmamem_alloc(sc->sc_dmat, sizeof(*sc->sc_common),
PAGE_SIZE, 0, &sc->sc_common_seg, 1, &nsegs,
BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dv, "can't allocate common structure\n");
goto bail_out;
}
state++;
if ((rv = bus_dmamem_map(sc->sc_dmat, &sc->sc_common_seg, nsegs,
sizeof(*sc->sc_common), (void **)&sc->sc_common, 0)) != 0) {
aprint_error_dev(sc->sc_dv, "can't map common structure\n");
goto bail_out;
}
state++;
if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_common_dmamap,
sc->sc_common, sizeof(*sc->sc_common), NULL,
BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dv, "cannot load common dmamap\n");
goto bail_out;
}
state++;
memset(sc->sc_common, 0, sizeof(*sc->sc_common));
TAILQ_INIT(&sc->sc_fibmap_tqh);
sc->sc_ccbs = malloc(sizeof(struct aac_ccb) * sc->sc_max_fibs, M_AACBUF,
M_WAITOK | M_ZERO);
state++;
while (sc->sc_total_fibs < AAC_PREALLOCATE_FIBS(sc)) {
if (aac_alloc_commands(sc) != 0)
break;
}
if (sc->sc_total_fibs == 0)
goto bail_out;
/*
* Fill in the init structure. This tells the adapter about the
* physical location of various important shared data structures.
*/
ip = &sc->sc_common->ac_init;
ip->InitStructRevision = htole32(AAC_INIT_STRUCT_REVISION);
if (sc->sc_quirks & AAC_QUIRK_RAW_IO)
ip->InitStructRevision = htole32(AAC_INIT_STRUCT_REVISION_4);
ip->MiniPortRevision = htole32(AAC_INIT_STRUCT_MINIPORT_REVISION);
ip->AdapterFibsPhysicalAddress = htole32(sc->sc_common_seg.ds_addr +
offsetof(struct aac_common, ac_fibs));
ip->AdapterFibsVirtualAddress = 0;
ip->AdapterFibsSize =
htole32(AAC_ADAPTER_FIBS * sizeof(struct aac_fib));
ip->AdapterFibAlign = htole32(sizeof(struct aac_fib));
ip->PrintfBufferAddress = htole32(sc->sc_common_seg.ds_addr +
offsetof(struct aac_common, ac_printf));
ip->PrintfBufferSize = htole32(AAC_PRINTF_BUFSIZE);
/*
* The adapter assumes that pages are 4K in size, except on some
* broken firmware versions that do the page->byte conversion twice,
* therefore 'assuming' that this value is in 16MB units (2^24).
* Round up since the granularity is so high.
*/
ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
if (sc->sc_quirks & AAC_QUIRK_BROKEN_MMAP) {
ip->HostPhysMemPages =
(ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
}
ip->HostElapsedSeconds = 0; /* reset later if invalid */
ip->InitFlags = 0;
if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
ip->InitFlags = htole32(AAC_INITFLAGS_NEW_COMM_SUPPORTED);
aprint_normal_dev(sc->sc_dv, "New comm. interface enabled\n");
}
ip->MaxIoCommands = htole32(sc->sc_max_fibs);
ip->MaxIoSize = htole32(sc->sc_max_sectors << 9);
ip->MaxFibSize = htole32(sc->sc_max_fib_size);
/*
* Initialise FIB queues. Note that it appears that the layout of
* the indexes and the segmentation of the entries is mandated by
* the adapter, which is only told about the base of the queue index
* fields.
*
* The initial values of the indices are assumed to inform the
* adapter of the sizes of the respective queues.
*
* The Linux driver uses a much more complex scheme whereby several
* header records are kept for each queue. We use a couple of
* generic list manipulation functions which 'know' the size of each
* list by virtue of a table.
*/
qoff = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
qoff &= ~(AAC_QUEUE_ALIGN - 1);
sc->sc_queues = (struct aac_queue_table *)((uintptr_t)sc->sc_common + qoff);
ip->CommHeaderAddress = htole32(sc->sc_common_seg.ds_addr +
((char *)sc->sc_queues - (char *)sc->sc_common));
memset(sc->sc_queues, 0, sizeof(struct aac_queue_table));
norm = htole32(AAC_HOST_NORM_CMD_ENTRIES);
high = htole32(AAC_HOST_HIGH_CMD_ENTRIES);
sc->sc_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
norm;
sc->sc_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
norm;
sc->sc_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
high;
sc->sc_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
high;
norm = htole32(AAC_ADAP_NORM_CMD_ENTRIES);
high = htole32(AAC_ADAP_HIGH_CMD_ENTRIES);
sc->sc_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
norm;
sc->sc_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
norm;
sc->sc_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
high;
sc->sc_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
high;
norm = htole32(AAC_HOST_NORM_RESP_ENTRIES);
high = htole32(AAC_HOST_HIGH_RESP_ENTRIES);
sc->sc_queues->
qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] = norm;
sc->sc_queues->
qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] = norm;
sc->sc_queues->
qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] = high;
sc->sc_queues->
qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] = high;
norm = htole32(AAC_ADAP_NORM_RESP_ENTRIES);
high = htole32(AAC_ADAP_HIGH_RESP_ENTRIES);
sc->sc_queues->
qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] = norm;
sc->sc_queues->
qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] = norm;
sc->sc_queues->
qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] = high;
sc->sc_queues->
qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] = high;
sc->sc_qentries[AAC_HOST_NORM_CMD_QUEUE] =
&sc->sc_queues->qt_HostNormCmdQueue[0];
sc->sc_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
&sc->sc_queues->qt_HostHighCmdQueue[0];
sc->sc_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
&sc->sc_queues->qt_AdapNormCmdQueue[0];
sc->sc_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
&sc->sc_queues->qt_AdapHighCmdQueue[0];
sc->sc_qentries[AAC_HOST_NORM_RESP_QUEUE] =
&sc->sc_queues->qt_HostNormRespQueue[0];
sc->sc_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
&sc->sc_queues->qt_HostHighRespQueue[0];
sc->sc_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
&sc->sc_queues->qt_AdapNormRespQueue[0];
sc->sc_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
&sc->sc_queues->qt_AdapHighRespQueue[0];
/*
* Do controller-type-specific initialisation
*/
switch (sc->sc_hwif) {
case AAC_HWIF_I960RX:
AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
break;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap, 0,
sizeof(*sc->sc_common),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Give the init structure to the controller.
*/
if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
sc->sc_common_seg.ds_addr + offsetof(struct aac_common, ac_init),
0, 0, 0, NULL)) {
aprint_error_dev(sc->sc_dv, "error establishing init structure\n");
rv = EIO;
goto bail_out;
}
return (0);
bail_out:
if (state > 4)
free(sc->sc_ccbs, M_AACBUF);
if (state > 3)
bus_dmamap_unload(sc->sc_dmat, sc->sc_common_dmamap);
if (state > 2)
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_common,
sizeof(*sc->sc_common));
if (state > 1)
bus_dmamem_free(sc->sc_dmat, &sc->sc_common_seg, 1);
if (state > 0)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_common_dmamap);
free(sc->sc_aif_fib, M_AACBUF);
return (rv);
}
/*
* Probe for containers, create disks.
*/
static void
aac_startup(struct aac_softc *sc)
{
struct aac_mntinfo mi;
struct aac_mntinforesponse mir;
struct aac_drive *hd;
u_int16_t rsize;
size_t ersize;
int i;
/*
* Loop over possible containers.
*/
hd = sc->sc_hdr;
for (i = 0; i < AAC_MAX_CONTAINERS; i++, hd++) {
/*
* Request information on this container.
*/
memset(&mi, 0, sizeof(mi));
/* use 64-bit LBA if enabled */
if (sc->sc_quirks & AAC_QUIRK_LBA_64BIT) {
mi.Command = htole32(VM_NameServe64);
ersize = sizeof(mir);
} else {
mi.Command = htole32(VM_NameServe);
ersize = sizeof(mir) - sizeof(mir.MntTable[0].CapacityHigh);
}
mi.MntType = htole32(FT_FILESYS);
mi.MntCount = htole32(i);
if (aac_sync_fib(sc, ContainerCommand, 0, &mi, sizeof(mi), &mir,
&rsize)) {
aprint_error_dev(sc->sc_dv, "error probing container %d\n", i);
continue;
}
if (rsize != ersize) {
aprint_error_dev(sc->sc_dv, "container info response wrong size "
"(%d should be %zu)\n", rsize, ersize);
continue;
}
/*
* Check container volume type for validity. Note that many
* of the possible types may never show up.
*/
if (le32toh(mir.Status) != ST_OK ||
le32toh(mir.MntTable[0].VolType) == CT_NONE)
continue;
hd->hd_present = 1;
hd->hd_size = le32toh(mir.MntTable[0].Capacity);
if (sc->sc_quirks & AAC_QUIRK_LBA_64BIT)
hd->hd_size += (u_int64_t)
le32toh(mir.MntTable[0].CapacityHigh) << 32;
hd->hd_devtype = le32toh(mir.MntTable[0].VolType);
hd->hd_size &= ~0x1f;
sc->sc_nunits++;
}
}
static void
aac_shutdown(void *cookie)
{
struct aac_softc *sc;
struct aac_close_command cc;
u_int32_t i;
for (i = 0; i < aac_cd.cd_ndevs; i++) {
if ((sc = device_lookup_private(&aac_cd, i)) == NULL)
continue;
if ((sc->sc_flags & AAC_ONLINE) == 0)
continue;
AAC_MASK_INTERRUPTS(sc);
/*
* Send a Container shutdown followed by a HostShutdown FIB
* to the controller to convince it that we don't want to
* talk to it anymore. We've been closed and all I/O
* completed already
*/
memset(&cc, 0, sizeof(cc));
cc.Command = htole32(VM_CloseAll);
cc.ContainerId = 0xffffffff;
if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc),
NULL, NULL)) {
aprint_error_dev(sc->sc_dv, "unable to halt controller\n");
continue;
}
/*
* Note that issuing this command to the controller makes it
* shut down but also keeps it from coming back up without a
* reset of the PCI bus.
*/
if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
&i, sizeof(i), NULL, NULL))
aprint_error_dev(sc->sc_dv, "unable to halt controller\n");
sc->sc_flags &= ~AAC_ONLINE;
}
}
static int
aac_new_intr(void *cookie)
{
struct aac_softc *sc;
u_int32_t index, fast;
struct aac_ccb *ac;
struct aac_fib *fib;
struct aac_fibmap *fm;
int i;
sc = (struct aac_softc *) cookie;
for (;;) {
index = AAC_GET_OUTB_QUEUE(sc);
if (index == 0xffffffff)
index = AAC_GET_OUTB_QUEUE(sc);
if (index == 0xffffffff)
break;
if (index & 2) {
if (index == 0xfffffffe) {
/* XXX This means that the controller wants
* more work. Ignore it for now.
*/
continue;
}
/* AIF */
index &= ~2;
fib = sc->sc_aif_fib;
for (i = 0; i < sizeof(struct aac_fib)/4; i++) {
((u_int32_t*)fib)[i] =
AAC_GETREG4(sc, index + i*4);
}
#ifdef notyet
aac_handle_aif(sc, &fib);
#endif
AAC_SET_OUTB_QUEUE(sc, index);
AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
} else {
fast = index & 1;
ac = sc->sc_ccbs + (index >> 2);
fib = ac->ac_fib;
fm = ac->ac_fibmap;
if (fast) {
bus_dmamap_sync(sc->sc_dmat, fm->fm_fibmap,
(char *)fib - (char *)fm->fm_fibs,
sc->sc_max_fib_size,
BUS_DMASYNC_POSTWRITE |
BUS_DMASYNC_POSTREAD);
fib->Header.XferState |=
htole32(AAC_FIBSTATE_DONEADAP);
*((u_int32_t *)(fib->data)) =
htole32(AAC_ERROR_NORMAL);
}
ac->ac_flags |= AAC_CCB_COMPLETED;
if (ac->ac_intr != NULL)
(*ac->ac_intr)(ac);
else
wakeup(ac);
}
}
/*
* Try to submit more commands.
*/
if (! SIMPLEQ_EMPTY(&sc->sc_ccb_queue))
aac_ccb_enqueue(sc, NULL);
return 1;
}
/*
* Take an interrupt.
*/
int
aac_intr(void *cookie)
{
struct aac_softc *sc;
u_int16_t reason;
int claimed;
sc = cookie;
claimed = 0;
AAC_DPRINTF(AAC_D_INTR, ("aac_intr(%p) ", sc));
reason = AAC_GET_ISTATUS(sc);
AAC_CLEAR_ISTATUS(sc, reason);
AAC_DPRINTF(AAC_D_INTR, ("istatus 0x%04x ", reason));
/*
* Controller wants to talk to the log. XXX Should we defer this?
*/
if ((reason & AAC_DB_PRINTF) != 0) {
if (sc->sc_common->ac_printf[0] == '\0')
sc->sc_common->ac_printf[0] = ' ';
printf("%s: WARNING: adapter logged message:\n",
device_xname(sc->sc_dv));
printf("%s: %.*s", device_xname(sc->sc_dv),
AAC_PRINTF_BUFSIZE, sc->sc_common->ac_printf);
sc->sc_common->ac_printf[0] = '\0';
AAC_QNOTIFY(sc, AAC_DB_PRINTF);
claimed = 1;
}
/*
* Controller has a message for us?
*/
if ((reason & AAC_DB_COMMAND_READY) != 0) {
aac_host_command(sc);
claimed = 1;
}
/*
* Controller has a response for us?
*/
if ((reason & AAC_DB_RESPONSE_READY) != 0) {
aac_host_response(sc);
claimed = 1;
}
/*
* Spurious interrupts that we don't use - reset the mask and clear
* the interrupts.
*/
if ((reason & (AAC_DB_SYNC_COMMAND | AAC_DB_COMMAND_NOT_FULL |
AAC_DB_RESPONSE_NOT_FULL)) != 0) {
AAC_UNMASK_INTERRUPTS(sc);
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND |
AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL);
claimed = 1;
}
return (claimed);
}
/*
* Handle notification of one or more FIBs coming from the controller.
*/
static void
aac_host_command(struct aac_softc *sc)
{
struct aac_fib *fib;
u_int32_t fib_size;
for (;;) {
if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, &fib_size,
&fib))
break; /* nothing to do */
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)fib - (char *)sc->sc_common, sizeof(*fib),
BUS_DMASYNC_POSTREAD);
switch (le16toh(fib->Header.Command)) {
case AifRequest:
#ifdef notyet
aac_handle_aif(sc,
(struct aac_aif_command *)&fib->data[0]);
#endif
AAC_PRINT_FIB(sc, fib);
break;
default:
aprint_error_dev(sc->sc_dv, "unknown command from controller\n");
AAC_PRINT_FIB(sc, fib);
break;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)fib - (char *)sc->sc_common, sizeof(*fib),
BUS_DMASYNC_PREREAD);
if ((fib->Header.XferState == 0) ||
(fib->Header.StructType != AAC_FIBTYPE_TFIB)) {
break; // continue; ???
}
/* XXX reply to FIBs requesting responses ?? */
/* Return the AIF/FIB to the controller */
if (le32toh(fib->Header.XferState) & AAC_FIBSTATE_FROMADAP) {
u_int16_t size;
fib->Header.XferState |=
htole32(AAC_FIBSTATE_DONEHOST);
*(u_int32_t*)fib->data = htole32(ST_OK);
/* XXX Compute the Size field? */
size = le16toh(fib->Header.Size);
if (size > sizeof(struct aac_fib)) {
size = sizeof(struct aac_fib);
fib->Header.Size = htole16(size);
}
/*
* Since we didn't generate this command, it can't
* go through the normal process.
*/
aac_enqueue_response(sc,
AAC_ADAP_NORM_RESP_QUEUE, fib);
}
}
}
/*
* Handle notification of one or more FIBs completed by the controller
*/
static void
aac_host_response(struct aac_softc *sc)
{
struct aac_ccb *ac;
struct aac_fib *fib;
u_int32_t fib_size;
/*
* Look for completed FIBs on our queue.
*/
for (;;) {
if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
&fib))
break; /* nothing to do */
if ((fib->Header.SenderData & 0x80000000) == 0) {
/* Not valid; not sent by us. */
AAC_PRINT_FIB(sc, fib);
} else {
ac = (struct aac_ccb *)(sc->sc_ccbs +
(fib->Header.SenderData & 0x7fffffff));
fib->Header.SenderData = 0;
SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_complete, ac, ac_chain);
}
}
/*
* Deal with any completed commands.
*/
while ((ac = SIMPLEQ_FIRST(&sc->sc_ccb_complete)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_complete, ac_chain);
ac->ac_flags |= AAC_CCB_COMPLETED;
if (ac->ac_intr != NULL)
(*ac->ac_intr)(ac);
else
wakeup(ac);
}
/*
* Try to submit more commands.
*/
if (! SIMPLEQ_EMPTY(&sc->sc_ccb_queue))
aac_ccb_enqueue(sc, NULL);
}
/*
* Send a synchronous command to the controller and wait for a result.
*/
static int
aac_sync_command(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, u_int32_t *sp)
{
int i;
u_int32_t status;
int s;
s = splbio();
/* Populate the mailbox. */
AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
/* Ensure the sync command doorbell flag is cleared. */
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* ... then set it to signal the adapter. */
AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
DELAY(AAC_SYNC_DELAY);
/* Spin waiting for the command to complete. */
for (i = 0; i < AAC_IMMEDIATE_TIMEOUT * 1000; i++) {
if (AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)
break;
DELAY(1000);
}
if (i == AAC_IMMEDIATE_TIMEOUT * 1000) {
splx(s);
return (EIO);
}
/* Clear the completion flag. */
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* Get the command status. */
status = AAC_GET_MAILBOXSTATUS(sc);
splx(s);
if (sp != NULL)
*sp = status;
return (0); /* XXX Check command return status? */
}
/*
* Send a synchronous FIB to the controller and wait for a result.
*/
static int
aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
void *data, u_int16_t datasize, void *result,
u_int16_t *resultsize)
{
struct aac_fib *fib;
u_int32_t fibpa, status;
fib = &sc->sc_common->ac_sync_fib;
fibpa = sc->sc_common_seg.ds_addr +
offsetof(struct aac_common, ac_sync_fib);
if (datasize > AAC_FIB_DATASIZE)
return (EINVAL);
/*
* Set up the sync FIB.
*/
fib->Header.XferState = htole32(AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED | AAC_FIBSTATE_EMPTY | xferstate);
fib->Header.Command = htole16(command);
fib->Header.StructType = AAC_FIBTYPE_TFIB;
fib->Header.Size = htole16(sizeof(*fib) + datasize);
fib->Header.SenderSize = htole16(sizeof(*fib));
fib->Header.SenderFibAddress = 0; /* not needed */
fib->Header.ReceiverFibAddress = htole32(fibpa);
/*
* Copy in data.
*/
if (data != NULL) {
memcpy(fib->data, data, datasize);
fib->Header.XferState |=
htole32(AAC_FIBSTATE_FROMHOST | AAC_FIBSTATE_NORM);
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)fib - (char *)sc->sc_common, sizeof(*fib),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/*
* Give the FIB to the controller, wait for a response.
*/
if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, fibpa, 0, 0, 0, &status))
return (EIO);
if (status != 1) {
printf("%s: syncfib command %04x status %08x\n",
device_xname(sc->sc_dv), command, status);
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)fib - (char *)sc->sc_common, sizeof(*fib),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
/*
* Copy out the result
*/
if (result != NULL) {
*resultsize = le16toh(fib->Header.Size) - sizeof(fib->Header);
memcpy(result, fib->data, *resultsize);
}
return (0);
}
struct aac_ccb *
aac_ccb_alloc(struct aac_softc *sc, int flags)
{
struct aac_ccb *ac;
int s;
AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_alloc(%p, 0x%x) ", sc, flags));
s = splbio();
ac = SIMPLEQ_FIRST(&sc->sc_ccb_free);
if (ac == NULL) {
if (aac_alloc_commands(sc)) {
splx(s);
return NULL;
}
ac = SIMPLEQ_FIRST(&sc->sc_ccb_free);
}
#ifdef DIAGNOSTIC
if (ac == NULL)
panic("aac_ccb_get: no free CCBS");
#endif
SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ac_chain);
splx(s);
ac->ac_flags = flags;
return (ac);
}
void
aac_ccb_free(struct aac_softc *sc, struct aac_ccb *ac)
{
int s;
AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_free(%p, %p) ", sc, ac));
ac->ac_flags = 0;
ac->ac_intr = NULL;
ac->ac_fib->Header.XferState = htole32(AAC_FIBSTATE_EMPTY);
ac->ac_fib->Header.StructType = AAC_FIBTYPE_TFIB;
ac->ac_fib->Header.Flags = 0;
ac->ac_fib->Header.SenderSize = htole16(sc->sc_max_fib_size);
#ifdef AAC_DEBUG
/*
* These are duplicated in aac_ccb_submit() to cover the case where
* an intermediate stage may have destroyed them. They're left
* initialised here for debugging purposes only.
*/
ac->ac_fib->Header.SenderFibAddress =
htole32(((u_int32_t) (ac - sc->sc_ccbs)) << 2);
ac->ac_fib->Header.ReceiverFibAddress = htole32(ac->ac_fibphys);
#endif
s = splbio();
SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ac, ac_chain);
splx(s);
}
int
aac_ccb_map(struct aac_softc *sc, struct aac_ccb *ac)
{
int error;
AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_map(%p, %p) ", sc, ac));
#ifdef DIAGNOSTIC
if ((ac->ac_flags & AAC_CCB_MAPPED) != 0)
panic("aac_ccb_map: already mapped");
#endif
error = bus_dmamap_load(sc->sc_dmat, ac->ac_dmamap_xfer, ac->ac_data,
ac->ac_datalen, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
((ac->ac_flags & AAC_CCB_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE));
if (error) {
printf("%s: aac_ccb_map: ", device_xname(sc->sc_dv));
if (error == EFBIG)
printf("more than %d DMA segs\n", sc->sc_max_sgs);
else
printf("error %d loading DMA map\n", error);
return (error);
}
bus_dmamap_sync(sc->sc_dmat, ac->ac_dmamap_xfer, 0, ac->ac_datalen,
(ac->ac_flags & AAC_CCB_DATA_IN) ? BUS_DMASYNC_PREREAD :
BUS_DMASYNC_PREWRITE);
#ifdef DIAGNOSTIC
ac->ac_flags |= AAC_CCB_MAPPED;
#endif
return (0);
}
void
aac_ccb_unmap(struct aac_softc *sc, struct aac_ccb *ac)
{
AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_unmap(%p, %p) ", sc, ac));
#ifdef DIAGNOSTIC
if ((ac->ac_flags & AAC_CCB_MAPPED) == 0)
panic("aac_ccb_unmap: not mapped");
#endif
bus_dmamap_sync(sc->sc_dmat, ac->ac_dmamap_xfer, 0, ac->ac_datalen,
(ac->ac_flags & AAC_CCB_DATA_IN) ? BUS_DMASYNC_POSTREAD :
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ac->ac_dmamap_xfer);
#ifdef DIAGNOSTIC
ac->ac_flags &= ~AAC_CCB_MAPPED;
#endif
}
void
aac_ccb_enqueue(struct aac_softc *sc, struct aac_ccb *ac)
{
int s;
AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_enqueue(%p, %p) ", sc, ac));
s = splbio();
if (ac != NULL)
SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ac, ac_chain);
while ((ac = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
if (aac_ccb_submit(sc, ac))
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ac_chain);
}
splx(s);
}
int
aac_ccb_submit(struct aac_softc *sc, struct aac_ccb *ac)
{
struct aac_fibmap *fm;
u_int32_t acidx;
AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_submit(%p, %p) ", sc, ac));
acidx = (u_int32_t) (ac - sc->sc_ccbs);
/* Fix up the address values. */
ac->ac_fib->Header.SenderFibAddress = htole32(acidx << 2);
ac->ac_fib->Header.ReceiverFibAddress = htole32(ac->ac_fibphys);
/* Save a pointer to the command for speedy reverse-lookup. */
ac->ac_fib->Header.SenderData = acidx | 0x80000000;
fm = ac->ac_fibmap;
bus_dmamap_sync(sc->sc_dmat, fm->fm_fibmap,
(char *)ac->ac_fib - (char *)fm->fm_fibs, sc->sc_max_fib_size,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Put the FIB on the outbound queue. */
if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
int count = 10000000L;
while (AAC_SEND_COMMAND(sc, ac) != 0) {
if (--count == 0) {
panic("aac: fixme!");
return EAGAIN;
}
DELAY(5);
}
return 0;
} else {
return (aac_enqueue_fib(sc, AAC_ADAP_NORM_CMD_QUEUE, ac));
}
}
int
aac_ccb_poll(struct aac_softc *sc, struct aac_ccb *ac, int timo)
{
int rv, s;
AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_poll(%p, %p, %d) ", sc, ac, timo));
s = splbio();
if ((rv = aac_ccb_submit(sc, ac)) != 0) {
splx(s);
return (rv);
}
for (timo *= 1000; timo != 0; timo--) {
if (sc->sc_quirks & AAC_QUIRK_NEW_COMM)
aac_new_intr(sc);
else
aac_intr(sc);
if ((ac->ac_flags & AAC_CCB_COMPLETED) != 0)
break;
DELAY(100);
}
splx(s);
return (timo == 0);
}
/*
* Atomically insert an entry into the nominated queue, returns 0 on success
* or EBUSY if the queue is full.
*
* XXX Note that it would be more efficient to defer notifying the
* controller in the case where we may be inserting several entries in rapid
* succession, but implementing this usefully is difficult.
*/
static int
aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_ccb *ac)
{
u_int32_t fib_size, fib_addr, pi, ci;
fib_size = le16toh(ac->ac_fib->Header.Size);
fib_addr = le32toh(ac->ac_fib->Header.ReceiverFibAddress);
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
sizeof(sc->sc_common->ac_qbuf),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
/* Get the producer/consumer indices. */
pi = le32toh(sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]);
ci = le32toh(sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]);
/* Wrap the queue? */
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* Check for queue full. */
if ((pi + 1) == ci)
return (EAGAIN);
/* Populate queue entry. */
(sc->sc_qentries[queue] + pi)->aq_fib_size = htole32(fib_size);
(sc->sc_qentries[queue] + pi)->aq_fib_addr = htole32(fib_addr);
/* Update producer index. */
sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = htole32(pi + 1);
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
sizeof(sc->sc_common->ac_qbuf),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Notify the adapter if we know how. */
if (aac_qinfo[queue].notify != 0)
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
return (0);
}
/*
* Atomically remove one entry from the nominated queue, returns 0 on success
* or ENOENT if the queue is empty.
*/
static int
aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
struct aac_fib **fib_addr)
{
struct aac_fibmap *fm;
struct aac_ccb *ac;
u_int32_t pi, ci, idx;
int notify;
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
sizeof(sc->sc_common->ac_qbuf),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
/* Get the producer/consumer indices. */
pi = le32toh(sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]);
ci = le32toh(sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]);
/* Check for queue empty. */
if (ci == pi)
return (ENOENT);
notify = 0;
if (ci == pi + 1)
notify = 1;
/* Wrap the queue? */
if (ci >= aac_qinfo[queue].size)
ci = 0;
/* Fetch the entry. */
*fib_size = le32toh((sc->sc_qentries[queue] + ci)->aq_fib_size);
switch (queue) {
case AAC_HOST_NORM_CMD_QUEUE:
case AAC_HOST_HIGH_CMD_QUEUE:
idx = le32toh((sc->sc_qentries[queue] + ci)->aq_fib_addr);
idx /= sizeof(struct aac_fib);
*fib_addr = &sc->sc_common->ac_fibs[idx];
break;
case AAC_HOST_NORM_RESP_QUEUE:
case AAC_HOST_HIGH_RESP_QUEUE:
idx = le32toh((sc->sc_qentries[queue] + ci)->aq_fib_addr);
ac = sc->sc_ccbs + (idx >> 2);
*fib_addr = ac->ac_fib;
if (idx & 0x01) {
fm = ac->ac_fibmap;
bus_dmamap_sync(sc->sc_dmat, fm->fm_fibmap,
(char *)ac->ac_fib - (char *)fm->fm_fibs,
sc->sc_max_fib_size,
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
ac->ac_fib->Header.XferState |=
htole32(AAC_FIBSTATE_DONEADAP);
*((u_int32_t*)(ac->ac_fib->data)) =
htole32(AAC_ERROR_NORMAL);
}
break;
default:
panic("Invalid queue in aac_dequeue_fib()");
break;
}
/* Update consumer index. */
sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
sizeof(sc->sc_common->ac_qbuf),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* If we have made the queue un-full, notify the adapter. */
if (notify && (aac_qinfo[queue].notify != 0))
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
return (0);
}
/*
* Put our response to an adapter-initiated fib (AIF) on the response queue.
*/
static int
aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
{
u_int32_t fib_size, fib_addr, pi, ci;
fib_size = le16toh(fib->Header.Size);
fib_addr = fib->Header.SenderFibAddress;
fib->Header.ReceiverFibAddress = fib_addr;
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
sizeof(sc->sc_common->ac_qbuf),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
/* Get the producer/consumer indices. */
pi = le32toh(sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]);
ci = le32toh(sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]);
/* Wrap the queue? */
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* Check for queue full. */
if ((pi + 1) == ci)
return (EAGAIN);
/* Populate queue entry. */
(sc->sc_qentries[queue] + pi)->aq_fib_size = htole32(fib_size);
(sc->sc_qentries[queue] + pi)->aq_fib_addr = htole32(fib_addr);
/* Update producer index. */
sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = htole32(pi + 1);
bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
(char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
sizeof(sc->sc_common->ac_qbuf),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Notify the adapter if we know how. */
if (aac_qinfo[queue].notify != 0)
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
return (0);
}
#ifdef AAC_DEBUG
/*
* Print a FIB
*/
static void
aac_print_fib(struct aac_softc *sc, struct aac_fib *fib,
const char *caller)
{
struct aac_blockread *br;
struct aac_blockwrite *bw;
struct aac_sg_table *sg;
char tbuf[512];
int i;
printf("%s: FIB @ %p\n", caller, fib);
snprintb(tbuf, sizeof(tbuf),
"\20"
"\1HOSTOWNED"
"\2ADAPTEROWNED"
"\3INITIALISED"
"\4EMPTY"
"\5FROMPOOL"
"\6FROMHOST"
"\7FROMADAP"
"\10REXPECTED"
"\11RNOTEXPECTED"
"\12DONEADAP"
"\13DONEHOST"
"\14HIGH"
"\15NORM"
"\16ASYNC"
"\17PAGEFILEIO"
"\20SHUTDOWN"
"\21LAZYWRITE"
"\22ADAPMICROFIB"
"\23BIOSFIB"
"\24FAST_RESPONSE"
"\25APIFIB\n", le32toh(fib->Header.XferState));
printf(" XferState %s\n", tbuf);
printf(" Command %d\n", le16toh(fib->Header.Command));
printf(" StructType %d\n", fib->Header.StructType);
printf(" Flags 0x%x\n", fib->Header.Flags);
printf(" Size %d\n", le16toh(fib->Header.Size));
printf(" SenderSize %d\n", le16toh(fib->Header.SenderSize));
printf(" SenderAddress 0x%x\n",
le32toh(fib->Header.SenderFibAddress));
printf(" ReceiverAddress 0x%x\n",
le32toh(fib->Header.ReceiverFibAddress));
printf(" SenderData 0x%x\n", fib->Header.SenderData);
switch (fib->Header.Command) {
case ContainerCommand: {
br = (struct aac_blockread *)fib->data;
bw = (struct aac_blockwrite *)fib->data;
sg = NULL;
if (le32toh(br->Command) == VM_CtBlockRead) {
printf(" BlockRead: container %d 0x%x/%d\n",
le32toh(br->ContainerId), le32toh(br->BlockNumber),
le32toh(br->ByteCount));
sg = &br->SgMap;
}
if (le32toh(bw->Command) == VM_CtBlockWrite) {
printf(" BlockWrite: container %d 0x%x/%d (%s)\n",
le32toh(bw->ContainerId), le32toh(bw->BlockNumber),
le32toh(bw->ByteCount),
le32toh(bw->Stable) == CSTABLE ?
"stable" : "unstable");
sg = &bw->SgMap;
}
if (sg != NULL) {
printf(" %d s/g entries\n", le32toh(sg->SgCount));
for (i = 0; i < le32toh(sg->SgCount); i++)
printf(" 0x%08x/%d\n",
le32toh(sg->SgEntry[i].SgAddress),
le32toh(sg->SgEntry[i].SgByteCount));
}
break;
}
default:
// dump first 32 bytes of fib->data
printf(" Raw data:");
for (i = 0; i < 32; i++)
printf(" %02x", fib->data[i]);
printf("\n");
break;
}
}
#endif /* AAC_DEBUG */
MODULE(MODULE_CLASS_DRIVER, aac, "pci");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
aac_modcmd(modcmd_t cmd, void *opaque)
{
int error = 0;
#ifdef _MODULE
switch (cmd) {
case MODULE_CMD_INIT:
error = config_init_component(cfdriver_ioconf_aac,
cfattach_ioconf_aac, cfdata_ioconf_aac);
break;
case MODULE_CMD_FINI:
error = config_fini_component(cfdriver_ioconf_aac,
cfattach_ioconf_aac, cfdata_ioconf_aac);
break;
default:
error = ENOTTY;
break;
}
#endif
return error;
}