NetBSD/sys/kern/kern_rwlock.c
2014-11-28 08:27:27 +00:00

772 lines
19 KiB
C

/* $NetBSD: kern_rwlock.c,v 1.45 2014/11/28 08:28:17 uebayasi Exp $ */
/*-
* Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Kernel reader/writer lock implementation, modeled after those
* found in Solaris, a description of which can be found in:
*
* Solaris Internals: Core Kernel Architecture, Jim Mauro and
* Richard McDougall.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_rwlock.c,v 1.45 2014/11/28 08:28:17 uebayasi Exp $");
#define __RWLOCK_PRIVATE
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sleepq.h>
#include <sys/systm.h>
#include <sys/lockdebug.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <sys/lock.h>
#include <dev/lockstat.h>
/*
* LOCKDEBUG
*/
#if defined(LOCKDEBUG)
#define RW_WANTLOCK(rw, op) \
LOCKDEBUG_WANTLOCK(RW_DEBUG_P(rw), (rw), \
(uintptr_t)__builtin_return_address(0), op == RW_READER);
#define RW_LOCKED(rw, op) \
LOCKDEBUG_LOCKED(RW_DEBUG_P(rw), (rw), NULL, \
(uintptr_t)__builtin_return_address(0), op == RW_READER);
#define RW_UNLOCKED(rw, op) \
LOCKDEBUG_UNLOCKED(RW_DEBUG_P(rw), (rw), \
(uintptr_t)__builtin_return_address(0), op == RW_READER);
#define RW_DASSERT(rw, cond) \
do { \
if (!(cond)) \
rw_abort(rw, __func__, "assertion failed: " #cond); \
} while (/* CONSTCOND */ 0);
#else /* LOCKDEBUG */
#define RW_WANTLOCK(rw, op) /* nothing */
#define RW_LOCKED(rw, op) /* nothing */
#define RW_UNLOCKED(rw, op) /* nothing */
#define RW_DASSERT(rw, cond) /* nothing */
#endif /* LOCKDEBUG */
/*
* DIAGNOSTIC
*/
#if defined(DIAGNOSTIC)
#define RW_ASSERT(rw, cond) \
do { \
if (!(cond)) \
rw_abort(rw, __func__, "assertion failed: " #cond); \
} while (/* CONSTCOND */ 0)
#else
#define RW_ASSERT(rw, cond) /* nothing */
#endif /* DIAGNOSTIC */
#define RW_SETDEBUG(rw, on) ((rw)->rw_owner |= (on) ? 0 : RW_NODEBUG)
#define RW_DEBUG_P(rw) (((rw)->rw_owner & RW_NODEBUG) == 0)
#if defined(LOCKDEBUG)
#define RW_INHERITDEBUG(n, o) (n) |= (o) & RW_NODEBUG
#else /* defined(LOCKDEBUG) */
#define RW_INHERITDEBUG(n, o) /* nothing */
#endif /* defined(LOCKDEBUG) */
static void rw_abort(krwlock_t *, const char *, const char *);
static void rw_dump(volatile void *);
static lwp_t *rw_owner(wchan_t);
static inline uintptr_t
rw_cas(krwlock_t *rw, uintptr_t o, uintptr_t n)
{
RW_INHERITDEBUG(n, o);
return (uintptr_t)atomic_cas_ptr((volatile void *)&rw->rw_owner,
(void *)o, (void *)n);
}
static inline void
rw_swap(krwlock_t *rw, uintptr_t o, uintptr_t n)
{
RW_INHERITDEBUG(n, o);
n = (uintptr_t)atomic_swap_ptr((volatile void *)&rw->rw_owner,
(void *)n);
RW_DASSERT(rw, n == o);
}
/*
* For platforms that do not provide stubs, or for the LOCKDEBUG case.
*/
#ifdef LOCKDEBUG
#undef __HAVE_RW_STUBS
#endif
#ifndef __HAVE_RW_STUBS
__strong_alias(rw_enter,rw_vector_enter);
__strong_alias(rw_exit,rw_vector_exit);
__strong_alias(rw_tryenter,rw_vector_tryenter);
#endif
lockops_t rwlock_lockops = {
"Reader / writer lock",
LOCKOPS_SLEEP,
rw_dump
};
syncobj_t rw_syncobj = {
SOBJ_SLEEPQ_SORTED,
turnstile_unsleep,
turnstile_changepri,
sleepq_lendpri,
rw_owner,
};
/*
* rw_dump:
*
* Dump the contents of a rwlock structure.
*/
static void
rw_dump(volatile void *cookie)
{
volatile krwlock_t *rw = cookie;
printf_nolog("owner/count : %#018lx flags : %#018x\n",
(long)RW_OWNER(rw), (int)RW_FLAGS(rw));
}
/*
* rw_abort:
*
* Dump information about an error and panic the system. This
* generates a lot of machine code in the DIAGNOSTIC case, so
* we ask the compiler to not inline it.
*/
static void __noinline
rw_abort(krwlock_t *rw, const char *func, const char *msg)
{
if (panicstr != NULL)
return;
LOCKDEBUG_ABORT(rw, &rwlock_lockops, func, msg);
}
/*
* rw_init:
*
* Initialize a rwlock for use.
*/
void
rw_init(krwlock_t *rw)
{
bool dodebug;
memset(rw, 0, sizeof(*rw));
dodebug = LOCKDEBUG_ALLOC(rw, &rwlock_lockops,
(uintptr_t)__builtin_return_address(0));
RW_SETDEBUG(rw, dodebug);
}
/*
* rw_destroy:
*
* Tear down a rwlock.
*/
void
rw_destroy(krwlock_t *rw)
{
RW_ASSERT(rw, (rw->rw_owner & ~RW_NODEBUG) == 0);
LOCKDEBUG_FREE(RW_DEBUG_P(rw), rw);
}
/*
* rw_oncpu:
*
* Return true if an rwlock owner is running on a CPU in the system.
* If the target is waiting on the kernel big lock, then we must
* release it. This is necessary to avoid deadlock.
*/
static bool
rw_oncpu(uintptr_t owner)
{
#ifdef MULTIPROCESSOR
struct cpu_info *ci;
lwp_t *l;
KASSERT(kpreempt_disabled());
if ((owner & (RW_WRITE_LOCKED|RW_HAS_WAITERS)) != RW_WRITE_LOCKED) {
return false;
}
/*
* See lwp_dtor() why dereference of the LWP pointer is safe.
* We must have kernel preemption disabled for that.
*/
l = (lwp_t *)(owner & RW_THREAD);
ci = l->l_cpu;
if (ci && ci->ci_curlwp == l) {
/* Target is running; do we need to block? */
return (ci->ci_biglock_wanted != l);
}
#endif
/* Not running. It may be safe to block now. */
return false;
}
/*
* rw_vector_enter:
*
* Acquire a rwlock.
*/
void
rw_vector_enter(krwlock_t *rw, const krw_t op)
{
uintptr_t owner, incr, need_wait, set_wait, curthread, next;
turnstile_t *ts;
int queue;
lwp_t *l;
LOCKSTAT_TIMER(slptime);
LOCKSTAT_TIMER(slpcnt);
LOCKSTAT_TIMER(spintime);
LOCKSTAT_COUNTER(spincnt);
LOCKSTAT_FLAG(lsflag);
l = curlwp;
curthread = (uintptr_t)l;
RW_ASSERT(rw, !cpu_intr_p());
RW_ASSERT(rw, curthread != 0);
RW_WANTLOCK(rw, op);
if (panicstr == NULL) {
LOCKDEBUG_BARRIER(&kernel_lock, 1);
}
/*
* We play a slight trick here. If we're a reader, we want
* increment the read count. If we're a writer, we want to
* set the owner field and the WRITE_LOCKED bit.
*
* In the latter case, we expect those bits to be zero,
* therefore we can use an add operation to set them, which
* means an add operation for both cases.
*/
if (__predict_true(op == RW_READER)) {
incr = RW_READ_INCR;
set_wait = RW_HAS_WAITERS;
need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
queue = TS_READER_Q;
} else {
RW_DASSERT(rw, op == RW_WRITER);
incr = curthread | RW_WRITE_LOCKED;
set_wait = RW_HAS_WAITERS | RW_WRITE_WANTED;
need_wait = RW_WRITE_LOCKED | RW_THREAD;
queue = TS_WRITER_Q;
}
LOCKSTAT_ENTER(lsflag);
KPREEMPT_DISABLE(curlwp);
for (owner = rw->rw_owner; ;) {
/*
* Read the lock owner field. If the need-to-wait
* indicator is clear, then try to acquire the lock.
*/
if ((owner & need_wait) == 0) {
next = rw_cas(rw, owner, (owner + incr) &
~RW_WRITE_WANTED);
if (__predict_true(next == owner)) {
/* Got it! */
membar_enter();
break;
}
/*
* Didn't get it -- spin around again (we'll
* probably sleep on the next iteration).
*/
owner = next;
continue;
}
if (__predict_false(panicstr != NULL)) {
KPREEMPT_ENABLE(curlwp);
return;
}
if (__predict_false(RW_OWNER(rw) == curthread)) {
rw_abort(rw, __func__, "locking against myself");
}
/*
* If the lock owner is running on another CPU, and
* there are no existing waiters, then spin.
*/
if (rw_oncpu(owner)) {
LOCKSTAT_START_TIMER(lsflag, spintime);
u_int count = SPINLOCK_BACKOFF_MIN;
do {
KPREEMPT_ENABLE(curlwp);
SPINLOCK_BACKOFF(count);
KPREEMPT_DISABLE(curlwp);
owner = rw->rw_owner;
} while (rw_oncpu(owner));
LOCKSTAT_STOP_TIMER(lsflag, spintime);
LOCKSTAT_COUNT(spincnt, 1);
if ((owner & need_wait) == 0)
continue;
}
/*
* Grab the turnstile chain lock. Once we have that, we
* can adjust the waiter bits and sleep queue.
*/
ts = turnstile_lookup(rw);
/*
* Mark the rwlock as having waiters. If the set fails,
* then we may not need to sleep and should spin again.
* Reload rw_owner because turnstile_lookup() may have
* spun on the turnstile chain lock.
*/
owner = rw->rw_owner;
if ((owner & need_wait) == 0 || rw_oncpu(owner)) {
turnstile_exit(rw);
continue;
}
next = rw_cas(rw, owner, owner | set_wait);
if (__predict_false(next != owner)) {
turnstile_exit(rw);
owner = next;
continue;
}
LOCKSTAT_START_TIMER(lsflag, slptime);
turnstile_block(ts, queue, rw, &rw_syncobj);
LOCKSTAT_STOP_TIMER(lsflag, slptime);
LOCKSTAT_COUNT(slpcnt, 1);
/*
* No need for a memory barrier because of context switch.
* If not handed the lock, then spin again.
*/
if (op == RW_READER || (rw->rw_owner & RW_THREAD) == curthread)
break;
owner = rw->rw_owner;
}
KPREEMPT_ENABLE(curlwp);
LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK |
(op == RW_WRITER ? LB_SLEEP1 : LB_SLEEP2), slpcnt, slptime);
LOCKSTAT_EVENT(lsflag, rw, LB_RWLOCK | LB_SPIN, spincnt, spintime);
LOCKSTAT_EXIT(lsflag);
RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
(op == RW_READER && RW_COUNT(rw) != 0));
RW_LOCKED(rw, op);
}
/*
* rw_vector_exit:
*
* Release a rwlock.
*/
void
rw_vector_exit(krwlock_t *rw)
{
uintptr_t curthread, owner, decr, newown, next;
turnstile_t *ts;
int rcnt, wcnt;
lwp_t *l;
curthread = (uintptr_t)curlwp;
RW_ASSERT(rw, curthread != 0);
if (__predict_false(panicstr != NULL))
return;
/*
* Again, we use a trick. Since we used an add operation to
* set the required lock bits, we can use a subtract to clear
* them, which makes the read-release and write-release path
* the same.
*/
owner = rw->rw_owner;
if (__predict_false((owner & RW_WRITE_LOCKED) != 0)) {
RW_UNLOCKED(rw, RW_WRITER);
RW_ASSERT(rw, RW_OWNER(rw) == curthread);
decr = curthread | RW_WRITE_LOCKED;
} else {
RW_UNLOCKED(rw, RW_READER);
RW_ASSERT(rw, RW_COUNT(rw) != 0);
decr = RW_READ_INCR;
}
/*
* Compute what we expect the new value of the lock to be. Only
* proceed to do direct handoff if there are waiters, and if the
* lock would become unowned.
*/
membar_exit();
for (;;) {
newown = (owner - decr);
if ((newown & (RW_THREAD | RW_HAS_WAITERS)) == RW_HAS_WAITERS)
break;
next = rw_cas(rw, owner, newown);
if (__predict_true(next == owner))
return;
owner = next;
}
/*
* Grab the turnstile chain lock. This gets the interlock
* on the sleep queue. Once we have that, we can adjust the
* waiter bits.
*/
ts = turnstile_lookup(rw);
owner = rw->rw_owner;
RW_DASSERT(rw, ts != NULL);
RW_DASSERT(rw, (owner & RW_HAS_WAITERS) != 0);
wcnt = TS_WAITERS(ts, TS_WRITER_Q);
rcnt = TS_WAITERS(ts, TS_READER_Q);
/*
* Give the lock away.
*
* If we are releasing a write lock, then prefer to wake all
* outstanding readers. Otherwise, wake one writer if there
* are outstanding readers, or all writers if there are no
* pending readers. If waking one specific writer, the writer
* is handed the lock here. If waking multiple writers, we
* set WRITE_WANTED to block out new readers, and let them
* do the work of acquiring the lock in rw_vector_enter().
*/
if (rcnt == 0 || decr == RW_READ_INCR) {
RW_DASSERT(rw, wcnt != 0);
RW_DASSERT(rw, (owner & RW_WRITE_WANTED) != 0);
if (rcnt != 0) {
/* Give the lock to the longest waiting writer. */
l = TS_FIRST(ts, TS_WRITER_Q);
newown = (uintptr_t)l | RW_WRITE_LOCKED | RW_HAS_WAITERS;
if (wcnt > 1)
newown |= RW_WRITE_WANTED;
rw_swap(rw, owner, newown);
turnstile_wakeup(ts, TS_WRITER_Q, 1, l);
} else {
/* Wake all writers and let them fight it out. */
rw_swap(rw, owner, RW_WRITE_WANTED);
turnstile_wakeup(ts, TS_WRITER_Q, wcnt, NULL);
}
} else {
RW_DASSERT(rw, rcnt != 0);
/*
* Give the lock to all blocked readers. If there
* is a writer waiting, new readers that arrive
* after the release will be blocked out.
*/
newown = rcnt << RW_READ_COUNT_SHIFT;
if (wcnt != 0)
newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
/* Wake up all sleeping readers. */
rw_swap(rw, owner, newown);
turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
}
}
/*
* rw_vector_tryenter:
*
* Try to acquire a rwlock.
*/
int
rw_vector_tryenter(krwlock_t *rw, const krw_t op)
{
uintptr_t curthread, owner, incr, need_wait, next;
curthread = (uintptr_t)curlwp;
RW_ASSERT(rw, curthread != 0);
if (op == RW_READER) {
incr = RW_READ_INCR;
need_wait = RW_WRITE_LOCKED | RW_WRITE_WANTED;
} else {
RW_DASSERT(rw, op == RW_WRITER);
incr = curthread | RW_WRITE_LOCKED;
need_wait = RW_WRITE_LOCKED | RW_THREAD;
}
for (owner = rw->rw_owner;; owner = next) {
owner = rw->rw_owner;
if (__predict_false((owner & need_wait) != 0))
return 0;
next = rw_cas(rw, owner, owner + incr);
if (__predict_true(next == owner)) {
/* Got it! */
membar_enter();
break;
}
}
RW_WANTLOCK(rw, op);
RW_LOCKED(rw, op);
RW_DASSERT(rw, (op != RW_READER && RW_OWNER(rw) == curthread) ||
(op == RW_READER && RW_COUNT(rw) != 0));
return 1;
}
/*
* rw_downgrade:
*
* Downgrade a write lock to a read lock.
*/
void
rw_downgrade(krwlock_t *rw)
{
uintptr_t owner, curthread, newown, next;
turnstile_t *ts;
int rcnt, wcnt;
curthread = (uintptr_t)curlwp;
RW_ASSERT(rw, curthread != 0);
RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) != 0);
RW_ASSERT(rw, RW_OWNER(rw) == curthread);
RW_UNLOCKED(rw, RW_WRITER);
#if !defined(DIAGNOSTIC)
__USE(curthread);
#endif
membar_producer();
owner = rw->rw_owner;
if ((owner & RW_HAS_WAITERS) == 0) {
/*
* There are no waiters, so we can do this the easy way.
* Try swapping us down to one read hold. If it fails, the
* lock condition has changed and we most likely now have
* waiters.
*/
next = rw_cas(rw, owner, RW_READ_INCR);
if (__predict_true(next == owner)) {
RW_LOCKED(rw, RW_READER);
RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
RW_DASSERT(rw, RW_COUNT(rw) != 0);
return;
}
owner = next;
}
/*
* Grab the turnstile chain lock. This gets the interlock
* on the sleep queue. Once we have that, we can adjust the
* waiter bits.
*/
for (;; owner = next) {
ts = turnstile_lookup(rw);
RW_DASSERT(rw, ts != NULL);
rcnt = TS_WAITERS(ts, TS_READER_Q);
wcnt = TS_WAITERS(ts, TS_WRITER_Q);
/*
* If there are no readers, just preserve the waiters
* bits, swap us down to one read hold and return.
*/
if (rcnt == 0) {
RW_DASSERT(rw, wcnt != 0);
RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_WANTED) != 0);
RW_DASSERT(rw, (rw->rw_owner & RW_HAS_WAITERS) != 0);
newown = RW_READ_INCR | RW_HAS_WAITERS | RW_WRITE_WANTED;
next = rw_cas(rw, owner, newown);
turnstile_exit(rw);
if (__predict_true(next == owner))
break;
} else {
/*
* Give the lock to all blocked readers. We may
* retain one read hold if downgrading. If there
* is a writer waiting, new readers will be blocked
* out.
*/
newown = (rcnt << RW_READ_COUNT_SHIFT) + RW_READ_INCR;
if (wcnt != 0)
newown |= RW_HAS_WAITERS | RW_WRITE_WANTED;
next = rw_cas(rw, owner, newown);
if (__predict_true(next == owner)) {
/* Wake up all sleeping readers. */
turnstile_wakeup(ts, TS_READER_Q, rcnt, NULL);
break;
}
turnstile_exit(rw);
}
}
RW_WANTLOCK(rw, RW_READER);
RW_LOCKED(rw, RW_READER);
RW_DASSERT(rw, (rw->rw_owner & RW_WRITE_LOCKED) == 0);
RW_DASSERT(rw, RW_COUNT(rw) != 0);
}
/*
* rw_tryupgrade:
*
* Try to upgrade a read lock to a write lock. We must be the
* only reader.
*/
int
rw_tryupgrade(krwlock_t *rw)
{
uintptr_t owner, curthread, newown, next;
curthread = (uintptr_t)curlwp;
RW_ASSERT(rw, curthread != 0);
RW_ASSERT(rw, rw_read_held(rw));
for (owner = rw->rw_owner;; owner = next) {
RW_ASSERT(rw, (owner & RW_WRITE_LOCKED) == 0);
if (__predict_false((owner & RW_THREAD) != RW_READ_INCR)) {
RW_ASSERT(rw, (owner & RW_THREAD) != 0);
return 0;
}
newown = curthread | RW_WRITE_LOCKED | (owner & ~RW_THREAD);
next = rw_cas(rw, owner, newown);
if (__predict_true(next == owner)) {
membar_producer();
break;
}
}
RW_UNLOCKED(rw, RW_READER);
RW_WANTLOCK(rw, RW_WRITER);
RW_LOCKED(rw, RW_WRITER);
RW_DASSERT(rw, rw->rw_owner & RW_WRITE_LOCKED);
RW_DASSERT(rw, RW_OWNER(rw) == curthread);
return 1;
}
/*
* rw_read_held:
*
* Returns true if the rwlock is held for reading. Must only be
* used for diagnostic assertions, and never be used to make
* decisions about how to use a rwlock.
*/
int
rw_read_held(krwlock_t *rw)
{
uintptr_t owner;
if (panicstr != NULL)
return 1;
if (rw == NULL)
return 0;
owner = rw->rw_owner;
return (owner & RW_WRITE_LOCKED) == 0 && (owner & RW_THREAD) != 0;
}
/*
* rw_write_held:
*
* Returns true if the rwlock is held for writing. Must only be
* used for diagnostic assertions, and never be used to make
* decisions about how to use a rwlock.
*/
int
rw_write_held(krwlock_t *rw)
{
if (panicstr != NULL)
return 1;
if (rw == NULL)
return 0;
return (rw->rw_owner & (RW_WRITE_LOCKED | RW_THREAD)) ==
(RW_WRITE_LOCKED | (uintptr_t)curlwp);
}
/*
* rw_lock_held:
*
* Returns true if the rwlock is held for reading or writing. Must
* only be used for diagnostic assertions, and never be used to make
* decisions about how to use a rwlock.
*/
int
rw_lock_held(krwlock_t *rw)
{
if (panicstr != NULL)
return 1;
if (rw == NULL)
return 0;
return (rw->rw_owner & RW_THREAD) != 0;
}
/*
* rw_owner:
*
* Return the current owner of an RW lock, but only if it is write
* held. Used for priority inheritance.
*/
static lwp_t *
rw_owner(wchan_t obj)
{
krwlock_t *rw = (void *)(uintptr_t)obj; /* discard qualifiers */
uintptr_t owner = rw->rw_owner;
if ((owner & RW_WRITE_LOCKED) == 0)
return NULL;
return (void *)(owner & RW_THREAD);
}