NetBSD/sys/arch/atari/dev/zs.c

1226 lines
29 KiB
C

/* $NetBSD: zs.c,v 1.10 1995/11/30 00:57:58 jtc Exp $ */
/*
* Copyright (c) 1995 L. Weppelman (Atari modifications)
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)zs.c 8.1 (Berkeley) 7/19/93
*/
/*
* Zilog Z8530 (ZSCC) driver.
*
* Runs two tty ports (modem2 and serial2) on zs0.
*
* This driver knows far too much about chip to usage mappings.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <machine/cpu.h>
#include <machine/iomap.h>
#include <machine/scu.h>
#include <machine/mfp.h>
#include <machine/video.h>
#include <dev/ic/z8530reg.h>
#include <atari/dev/zsvar.h>
#include "zs.h"
#if NZS > 1
#error "This driver supports only 1 85C30!"
#endif
#if NZS > 0
#define PCLK (8000000) /* PCLK pin input clock rate */
#define splzs spl5
/*
* Software state per found chip.
*/
struct zs_softc {
struct device zi_dev; /* base device */
volatile struct zsdevice *zi_zs; /* chip registers */
struct zs_chanstate zi_cs[2]; /* chan A and B software state */
};
static u_char cb_scheduled = 0; /* Already asked for callback? */
/*
* Define the registers for a closed port
*/
static u_char zs_init_regs[16] = {
/* 0 */ 0,
/* 1 */ 0,
/* 2 */ 0x60,
/* 3 */ 0,
/* 4 */ 0,
/* 5 */ 0,
/* 6 */ 0,
/* 7 */ 0,
/* 8 */ 0,
/* 9 */ ZSWR9_VECTOR_INCL_STAT,
/* 10 */ ZSWR10_NRZ,
/* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
/* 12 */ 0,
/* 13 */ 0,
/* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
/* 15 */ 0
};
/*
* Define the machine dependant clock frequencies
* If BRgen feeds sender/receiver we always use a
* divisor 16, therefor the division by 16 can as
* well be done here.
*/
static u_long zs_freqs_tt[] = {
/*
* Atari TT, RTxCB is generated by TT-MFP timer C,
* which is set to 307.2KHz during initialisation
* and never changed afterwards.
*/
PCLK/16, /* BRgen, PCLK, divisor 16 */
229500, /* BRgen, RTxCA, divisor 16 */
3672000, /* RTxCA, from PCLK4 */
0, /* TRxCA, external */
PCLK/16, /* BRgen, PCLK, divisor 16 */
19200, /* BRgen, RTxCB, divisor 16 */
307200, /* RTxCB, from TT-MFP TCO */
2457600 /* TRxCB, from BCLK */
};
static u_long zs_freqs_falcon[] = {
/*
* Atari Falcon, XXX no specs available, this might be wrong
*/
PCLK/16, /* BRgen, PCLK, divisor 16 */
229500, /* BRgen, RTxCA, divisor 16 */
3672000, /* RTxCA, ??? */
0, /* TRxCA, external */
PCLK/16, /* BRgen, PCLK, divisor 16 */
229500, /* BRgen, RTxCB, divisor 16 */
3672000, /* RTxCB, ??? */
2457600 /* TRxCB, ??? */
};
static u_long zs_freqs_generic[] = {
/*
* other machines, assume only PCLK is available
*/
PCLK/16, /* BRgen, PCLK, divisor 16 */
0, /* BRgen, RTxCA, divisor 16 */
0, /* RTxCA, unknown */
0, /* TRxCA, unknown */
PCLK/16, /* BRgen, PCLK, divisor 16 */
0, /* BRgen, RTxCB, divisor 16 */
0, /* RTxCB, unknown */
0 /* TRxCB, unknown */
};
static u_long *zs_frequencies;
/* Definition of the driver for autoconfig. */
static int zsmatch __P((struct device *, struct cfdata *, void *));
static void zsattach __P((struct device *, struct device *, void *));
struct cfdriver zscd = {
NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
sizeof(struct zs_softc), NULL, 0 };
/* Interrupt handlers. */
int zshard __P((long));
static int zssoft __P((long));
static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
static struct zs_chanstate *zslist;
/* Routines called from other code. */
static void zsstart __P((struct tty *));
void zsstop __P((struct tty *, int));
static int zsparam __P((struct tty *, struct termios *));
static int zsbaudrate __P((int, int, int *, int *, int *, int *));
/* Routines purely local to this driver. */
static void zs_reset __P((volatile struct zschan *, int, int));
static int zs_modem __P((struct zs_chanstate *, int, int));
static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
static int zsshortcuts; /* number of "shortcut" software interrupts */
static int
zsmatch(pdp, cfp, auxp)
struct device *pdp;
struct cfdata *cfp;
void *auxp;
{
if(strcmp("zs", auxp) || cfp->cf_unit != 0)
return(0);
return(1);
}
/*
* Attach a found zs.
*/
static void
zsattach(parent, dev, aux)
struct device *parent;
struct device *dev;
void *aux;
{
register struct zs_softc *zi;
register struct zs_chanstate *cs;
register volatile struct zsdevice *addr;
register struct tty *tp;
char tmp;
addr = (struct zsdevice *)AD_SCC;
zi = (struct zs_softc *)dev;
zi->zi_zs = addr;
cs = zi->zi_cs;
/*
* Get the command register into a known state.
*/
tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
/*
* Do a hardware reset.
*/
ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
delay(50000); /*enough ? */
ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
/*
* Initialize both channels
*/
zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
if(machineid & ATARI_TT) {
/*
* ininitialise TT-MFP timer C: 307200Hz
* timer C and D share one control register:
* bits 0-2 control timer D
* bits 4-6 control timer C
*/
int cr = MFP2->mf_tcdcr & 7;
MFP2->mf_tcdcr = cr; /* stop timer C */
MFP2->mf_tcdr = 1; /* counter 1 */
cr |= T_Q004 << 4; /* divisor 4 */
MFP2->mf_tcdcr = cr; /* start timer C */
/*
* enable scc related interrupts
*/
SCU->sys_mask |= SCU_SCC;
zs_frequencies = zs_freqs_tt;
} else if (machineid & ATARI_FALCON) {
zs_frequencies = zs_freqs_falcon;
} else {
zs_frequencies = zs_freqs_generic;
}
/* link into interrupt list with order (A,B) (B=A+1) */
cs[0].cs_next = &cs[1];
cs[1].cs_next = zslist;
zslist = cs;
cs->cs_unit = 0;
cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
cs++;
cs->cs_unit = 1;
cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
printf(": serial2 on channel a and modem2 on channel b\n");
}
/*
* Open a zs serial port.
*/
int
zsopen(dev, flags, mode, p)
dev_t dev;
int flags;
int mode;
struct proc *p;
{
register struct tty *tp;
register struct zs_chanstate *cs;
struct zs_softc *zi;
int unit = ZS_UNIT(dev);
int zs = unit >> 1;
int error, s;
if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
return (ENXIO);
cs = &zi->zi_cs[unit & 1];
/*
* When port A (ser02) is selected on the TT, make sure
* the port is enabled.
*/
if((machineid & ATARI_TT) && !(unit & 1)) {
SOUND->sd_selr = YM_IOA;
SOUND->sd_wdat = SOUND->sd_rdat | PA_SER2;
}
tp = cs->cs_ttyp;
if(tp == NULL) {
cs->cs_ttyp = tp = ttymalloc();
tp->t_dev = dev;
tp->t_oproc = zsstart;
tp->t_param = zsparam;
}
s = spltty();
if((tp->t_state & TS_ISOPEN) == 0) {
ttychars(tp);
if(tp->t_ispeed == 0) {
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_cflag = TTYDEF_CFLAG;
tp->t_lflag = TTYDEF_LFLAG;
tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
}
(void)zsparam(tp, &tp->t_termios);
ttsetwater(tp);
}
else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
splx(s);
return (EBUSY);
}
error = 0;
for(;;) {
/* loop, turning on the device, until carrier present */
zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
/* May never get a status intr. if DCD already on. -gwr */
if(cs->cs_zc->zc_csr & ZSRR0_DCD)
tp->t_state |= TS_CARR_ON;
if(cs->cs_softcar)
tp->t_state |= TS_CARR_ON;
if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
tp->t_state & TS_CARR_ON)
break;
tp->t_state |= TS_WOPEN;
if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
ttopen, 0)) {
if(!(tp->t_state & TS_ISOPEN)) {
zs_modem(cs, 0, DMSET);
tp->t_state &= ~TS_WOPEN;
ttwakeup(tp);
}
splx(s);
return error;
}
}
splx(s);
if(error == 0)
error = linesw[tp->t_line].l_open(dev, tp);
if(error)
zs_modem(cs, 0, DMSET);
return(error);
}
/*
* Close a zs serial port.
*/
int
zsclose(dev, flags, mode, p)
dev_t dev;
int flags;
int mode;
struct proc *p;
{
register struct zs_chanstate *cs;
register struct tty *tp;
struct zs_softc *zi;
int unit = ZS_UNIT(dev);
int s;
zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
tp = cs->cs_ttyp;
linesw[tp->t_line].l_close(tp, flags);
if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
(tp->t_state & TS_ISOPEN) == 0) {
zs_modem(cs, 0, DMSET);
/* hold low for 1 second */
(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
}
if(cs->cs_creg[5] & ZSWR5_BREAK) {
s = splzs();
cs->cs_preg[5] &= ~ZSWR5_BREAK;
cs->cs_creg[5] &= ~ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
}
ttyclose(tp);
/*
* Drop all lines and cancel interrupts
*/
zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
return (0);
}
/*
* Read/write zs serial port.
*/
int
zsread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register struct zs_chanstate *cs;
register struct zs_softc *zi;
register struct tty *tp;
int unit;
unit = ZS_UNIT(dev);
zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
tp = cs->cs_ttyp;
return(linesw[tp->t_line].l_read(tp, uio, flags));
}
int
zswrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register struct zs_chanstate *cs;
register struct zs_softc *zi;
register struct tty *tp;
int unit;
unit = ZS_UNIT(dev);
zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
tp = cs->cs_ttyp;
return(linesw[tp->t_line].l_write(tp, uio, flags));
}
struct tty *
zstty(dev)
dev_t dev;
{
register struct zs_chanstate *cs;
register struct zs_softc *zi;
int unit;
unit = ZS_UNIT(dev);
zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
return(cs->cs_ttyp);
}
/*
* ZS hardware interrupt. Scan all ZS channels. NB: we know here that
* channels are kept in (A,B) pairs.
*
* Do just a little, then get out; set a software interrupt if more
* work is needed.
*
* We deliberately ignore the vectoring Zilog gives us, and match up
* only the number of `reset interrupt under service' operations, not
* the order.
*/
int
zshard(sr)
long sr;
{
register struct zs_chanstate *a;
#define b (a + 1)
register volatile struct zschan *zc;
register int rr3, intflags = 0, v, i;
do {
intflags &= ~4;
for(a = zslist; a != NULL; a = b->cs_next) {
rr3 = ZS_READ(a->cs_zc, 3);
if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
intflags |= 4|2;
zc = a->cs_zc;
i = a->cs_rbput;
if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
a->cs_rbput = i;
}
if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
intflags |= 4|2;
zc = b->cs_zc;
i = b->cs_rbput;
if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
b->cs_rbput = i;
}
}
} while(intflags & 4);
#undef b
if(intflags & 1) {
if(BASEPRI(sr)) {
spl1();
zsshortcuts++;
return(zssoft(sr));
}
else if(!cb_scheduled) {
cb_scheduled++;
add_sicallback(zssoft, 0, 0);
}
}
return(intflags & 2);
}
static int
zsrint(cs, zc)
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
{
register int c;
/*
* First read the status, because read of the received char
* destroy the status of this char.
*/
c = ZS_READ(zc, 1);
c |= (zc->zc_data << 8);
/* clear receive error & interrupt condition */
zc->zc_csr = ZSWR0_RESET_ERRORS;
zc->zc_csr = ZSWR0_CLR_INTR;
return(ZRING_MAKE(ZRING_RINT, c));
}
static int
zsxint(cs, zc)
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
{
register int i = cs->cs_tbc;
if(i == 0) {
zc->zc_csr = ZSWR0_RESET_TXINT;
zc->zc_csr = ZSWR0_CLR_INTR;
return(ZRING_MAKE(ZRING_XINT, 0));
}
cs->cs_tbc = i - 1;
zc->zc_data = *cs->cs_tba++;
zc->zc_csr = ZSWR0_CLR_INTR;
return (0);
}
static int
zssint(cs, zc)
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
{
register int rr0;
rr0 = zc->zc_csr;
zc->zc_csr = ZSWR0_RESET_STATUS;
zc->zc_csr = ZSWR0_CLR_INTR;
/*
* The chip's hardware flow control is, as noted in zsreg.h,
* busted---if the DCD line goes low the chip shuts off the
* receiver (!). If we want hardware CTS flow control but do
* not have it, and carrier is now on, turn HFC on; if we have
* HFC now but carrier has gone low, turn it off.
*/
if(rr0 & ZSRR0_DCD) {
if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
(cs->cs_creg[3] & ZSWR3_HFC) == 0) {
cs->cs_creg[3] |= ZSWR3_HFC;
ZS_WRITE(zc, 3, cs->cs_creg[3]);
}
}
else {
if (cs->cs_creg[3] & ZSWR3_HFC) {
cs->cs_creg[3] &= ~ZSWR3_HFC;
ZS_WRITE(zc, 3, cs->cs_creg[3]);
}
}
return(ZRING_MAKE(ZRING_SINT, rr0));
}
/*
* Print out a ring or fifo overrun error message.
*/
static void
zsoverrun(unit, ptime, what)
int unit;
long *ptime;
char *what;
{
if(*ptime != time.tv_sec) {
*ptime = time.tv_sec;
log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
(unit & 1) + 'a', what);
}
}
/*
* ZS software interrupt. Scan all channels for deferred interrupts.
*/
int
zssoft(sr)
long sr;
{
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
register struct linesw *line;
register struct tty *tp;
register int get, n, c, cc, unit, s;
int retval = 0;
cb_scheduled = 0;
s = spltty();
for(cs = zslist; cs != NULL; cs = cs->cs_next) {
get = cs->cs_rbget;
again:
n = cs->cs_rbput; /* atomic */
if(get == n) /* nothing more on this line */
continue;
retval = 1;
unit = cs->cs_unit; /* set up to handle interrupts */
zc = cs->cs_zc;
tp = cs->cs_ttyp;
line = &linesw[tp->t_line];
/*
* Compute the number of interrupts in the receive ring.
* If the count is overlarge, we lost some events, and
* must advance to the first valid one. It may get
* overwritten if more data are arriving, but this is
* too expensive to check and gains nothing (we already
* lost out; all we can do at this point is trade one
* kind of loss for another).
*/
n -= get;
if(n > ZLRB_RING_SIZE) {
zsoverrun(unit, &cs->cs_rotime, "ring");
get += n - ZLRB_RING_SIZE;
n = ZLRB_RING_SIZE;
}
while(--n >= 0) {
/* race to keep ahead of incoming interrupts */
c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
switch (ZRING_TYPE(c)) {
case ZRING_RINT:
c = ZRING_VALUE(c);
if(c & ZSRR1_DO)
zsoverrun(unit, &cs->cs_fotime, "fifo");
cc = c >> 8;
if(c & ZSRR1_FE)
cc |= TTY_FE;
if(c & ZSRR1_PE)
cc |= TTY_PE;
line->l_rint(cc, tp);
break;
case ZRING_XINT:
/*
* Transmit done: change registers and resume,
* or clear BUSY.
*/
if(cs->cs_heldchange) {
int sps;
sps = splzs();
c = zc->zc_csr;
if((c & ZSRR0_DCD) == 0)
cs->cs_preg[3] &= ~ZSWR3_HFC;
bcopy((caddr_t)cs->cs_preg,
(caddr_t)cs->cs_creg, 16);
zs_loadchannelregs(zc, cs->cs_creg);
splx(sps);
cs->cs_heldchange = 0;
if(cs->cs_heldtbc
&& (tp->t_state & TS_TTSTOP) == 0) {
cs->cs_tbc = cs->cs_heldtbc - 1;
zc->zc_data = *cs->cs_tba++;
goto again;
}
}
tp->t_state &= ~TS_BUSY;
if(tp->t_state & TS_FLUSH)
tp->t_state &= ~TS_FLUSH;
else ndflush(&tp->t_outq,cs->cs_tba
- (caddr_t)tp->t_outq.c_cf);
line->l_start(tp);
break;
case ZRING_SINT:
/*
* Status line change. HFC bit is run in
* hardware interrupt, to avoid locking
* at splzs here.
*/
c = ZRING_VALUE(c);
if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
cc = (c & ZSRR0_DCD) != 0;
if(line->l_modem(tp, cc) == 0)
zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
cc ? DMBIS : DMBIC);
}
cs->cs_rr0 = c;
break;
default:
log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
unit >> 1, (unit & 1) + 'a', c);
break;
}
}
cs->cs_rbget = get;
goto again;
}
splx(s);
return (retval);
}
int
zsioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
int unit = ZS_UNIT(dev);
struct zs_softc *zi = zscd.cd_devs[unit >> 1];
register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
register int error, s;
register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
if(error >= 0)
return(error);
error = ttioctl(tp, cmd, data, flag, p);
if(error >= 0)
return (error);
switch (cmd) {
case TIOCSBRK:
s = splzs();
cs->cs_preg[5] |= ZSWR5_BREAK;
cs->cs_creg[5] |= ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
break;
case TIOCCBRK:
s = splzs();
cs->cs_preg[5] &= ~ZSWR5_BREAK;
cs->cs_creg[5] &= ~ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
break;
case TIOCGFLAGS: {
int bits = 0;
if(cs->cs_softcar)
bits |= TIOCFLAG_SOFTCAR;
if(cs->cs_creg[15] & ZSWR15_DCD_IE)
bits |= TIOCFLAG_CLOCAL;
if(cs->cs_creg[3] & ZSWR3_HFC)
bits |= TIOCFLAG_CRTSCTS;
*(int *)data = bits;
break;
}
case TIOCSFLAGS: {
int userbits, driverbits = 0;
error = suser(p->p_ucred, &p->p_acflag);
if(error != 0)
return (EPERM);
userbits = *(int *)data;
/*
* can have `local' or `softcar', and `rtscts' or `mdmbuf'
# defaulting to software flow control.
*/
if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
return(EINVAL);
if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
return(ENXIO);
s = splzs();
if((userbits & TIOCFLAG_SOFTCAR)) {
cs->cs_softcar = 1; /* turn on softcar */
cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
}
else if(userbits & TIOCFLAG_CLOCAL) {
cs->cs_softcar = 0; /* turn off softcar */
cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
cs->cs_creg[15] |= ZSWR15_DCD_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
tp->t_termios.c_cflag |= CLOCAL;
}
if(userbits & TIOCFLAG_CRTSCTS) {
cs->cs_preg[15] |= ZSWR15_CTS_IE;
cs->cs_creg[15] |= ZSWR15_CTS_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
cs->cs_preg[3] |= ZSWR3_HFC;
cs->cs_creg[3] |= ZSWR3_HFC;
ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
tp->t_termios.c_cflag |= CRTSCTS;
}
else {
/* no mdmbuf, so we must want software flow control */
cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
cs->cs_preg[3] &= ~ZSWR3_HFC;
cs->cs_creg[3] &= ~ZSWR3_HFC;
ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
tp->t_termios.c_cflag &= ~CRTSCTS;
}
splx(s);
break;
}
case TIOCSDTR:
zs_modem(cs, ZSWR5_DTR, DMBIS);
break;
case TIOCCDTR:
zs_modem(cs, ZSWR5_DTR, DMBIC);
break;
case TIOCMGET:
zs_modem(cs, 0, DMGET);
break;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
default:
return (ENOTTY);
}
return (0);
}
/*
* Start or restart transmission.
*/
static void
zsstart(tp)
register struct tty *tp;
{
register struct zs_chanstate *cs;
register int s, nch;
int unit = ZS_UNIT(tp->t_dev);
struct zs_softc *zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
s = spltty();
/*
* If currently active or delaying, no need to do anything.
*/
if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
goto out;
/*
* If there are sleepers, and output has drained below low
* water mark, awaken.
*/
if(tp->t_outq.c_cc <= tp->t_lowat) {
if(tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t)&tp->t_outq);
}
selwakeup(&tp->t_wsel);
}
nch = ndqb(&tp->t_outq, 0); /* XXX */
if(nch) {
register char *p = tp->t_outq.c_cf;
/* mark busy, enable tx done interrupts, & send first byte */
tp->t_state |= TS_BUSY;
(void) splzs();
cs->cs_preg[1] |= ZSWR1_TIE;
cs->cs_creg[1] |= ZSWR1_TIE;
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
cs->cs_zc->zc_data = *p;
cs->cs_tba = p + 1;
cs->cs_tbc = nch - 1;
} else {
/*
* Nothing to send, turn off transmit done interrupts.
* This is useful if something is doing polled output.
*/
(void) splzs();
cs->cs_preg[1] &= ~ZSWR1_TIE;
cs->cs_creg[1] &= ~ZSWR1_TIE;
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
}
out:
splx(s);
}
/*
* Stop output, e.g., for ^S or output flush.
*/
void
zsstop(tp, flag)
register struct tty *tp;
int flag;
{
register struct zs_chanstate *cs;
register int s, unit = ZS_UNIT(tp->t_dev);
struct zs_softc *zi = zscd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
s = splzs();
if(tp->t_state & TS_BUSY) {
/*
* Device is transmitting; must stop it.
*/
cs->cs_tbc = 0;
if ((tp->t_state & TS_TTSTOP) == 0)
tp->t_state |= TS_FLUSH;
}
splx(s);
}
/*
* Set ZS tty parameters from termios.
*
* This routine makes use of the fact that only registers
* 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
*/
static int
zsparam(tp, t)
register struct tty *tp;
register struct termios *t;
{
int unit = ZS_UNIT(tp->t_dev);
struct zs_softc *zi = zscd.cd_devs[unit >> 1];
register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
int cdiv, clkm, brgm, tcon;
register int tmp, tmp5, cflag, s;
tmp = t->c_ospeed;
tmp5 = t->c_ispeed;
if(tmp < 0 || (tmp5 && tmp5 != tmp))
return(EINVAL);
if(tmp == 0) {
/* stty 0 => drop DTR and RTS */
zs_modem(cs, 0, DMSET);
return(0);
}
tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
if (tmp < 0)
return(EINVAL);
tp->t_ispeed = tp->t_ospeed = tmp;
cflag = tp->t_cflag = t->c_cflag;
if (cflag & CSTOPB)
cdiv |= ZSWR4_TWOSB;
else
cdiv |= ZSWR4_ONESB;
if (!(cflag & PARODD))
cdiv |= ZSWR4_EVENP;
if (cflag & PARENB)
cdiv |= ZSWR4_PARENB;
switch(cflag & CSIZE) {
case CS5:
tmp = ZSWR3_RX_5;
tmp5 = ZSWR5_TX_5;
break;
case CS6:
tmp = ZSWR3_RX_6;
tmp5 = ZSWR5_TX_6;
break;
case CS7:
tmp = ZSWR3_RX_7;
tmp5 = ZSWR5_TX_7;
break;
case CS8:
default:
tmp = ZSWR3_RX_8;
tmp5 = ZSWR5_TX_8;
break;
}
tmp |= ZSWR3_RX_ENABLE;
tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
/*
* Block interrupts so that state will not
* be altered until we are done setting it up.
*/
s = splzs();
cs->cs_preg[4] = cdiv;
cs->cs_preg[11] = clkm;
cs->cs_preg[12] = tcon;
cs->cs_preg[13] = tcon >> 8;
cs->cs_preg[14] = brgm;
cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
cs->cs_preg[10] = ZSWR10_NRZ;
cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
/*
* Output hardware flow control on the chip is horrendous: if
* carrier detect drops, the receiver is disabled. Hence we
* can only do this when the carrier is on.
*/
if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
tmp |= ZSWR3_HFC;
cs->cs_preg[3] = tmp;
cs->cs_preg[5] = tmp5;
/*
* If nothing is being transmitted, set up new current values,
* else mark them as pending.
*/
if(cs->cs_heldchange == 0) {
if (cs->cs_ttyp->t_state & TS_BUSY) {
cs->cs_heldtbc = cs->cs_tbc;
cs->cs_tbc = 0;
cs->cs_heldchange = 1;
} else {
bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
}
}
splx(s);
return (0);
}
/*
* search for the best matching baudrate
*/
static int
zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
{
int bestdiff, bestbps, source;
unit = (unit & 1) << 2;
for (source = 0; source < 4; ++source) {
long freq = zs_frequencies[unit + source];
int diff, bps, div, clkm, brgm, tcon;
switch (source) {
case 0: /* BRgen, PCLK */
brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
break;
case 1: /* BRgen, RTxC */
brgm = ZSWR14_BAUD_ENA;
break;
case 2: /* RTxC */
clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
break;
case 3: /* TRxC */
clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
break;
}
switch (source) {
case 0:
case 1:
div = ZSWR4_CLK_X16;
clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
tcon = BPS_TO_TCONST(freq, wanted);
if (tcon < 0)
tcon = 0;
bps = TCONST_TO_BPS(freq, tcon);
break;
case 2:
case 3:
{ int b1 = freq / 16, d1 = abs(b1 - wanted);
int b2 = freq / 32, d2 = abs(b2 - wanted);
int b3 = freq / 64, d3 = abs(b3 - wanted);
if (d1 < d2 && d1 < d3) {
div = ZSWR4_CLK_X16;
bps = b1;
} else if (d2 < d3 && d2 < d1) {
div = ZSWR4_CLK_X32;
bps = b2;
} else {
div = ZSWR4_CLK_X64;
bps = b3;
}
brgm = tcon = 0;
break;
}
}
diff = abs(bps - wanted);
if (!source || diff < bestdiff) {
*divisor = div;
*clockmode = clkm;
*brgenmode = brgm;
*timeconst = tcon;
bestbps = bps;
bestdiff = diff;
if (diff == 0)
break;
}
}
/* Allow deviations upto 5% */
if (20 * bestdiff > wanted)
return -1;
return bestbps;
}
/*
* Raise or lower modem control (DTR/RTS) signals. If a character is
* in transmission, the change is deferred.
*/
static int
zs_modem(cs, bits, how)
struct zs_chanstate *cs;
int bits, how;
{
int s, mbits;
bits &= ZSWR5_DTR | ZSWR5_RTS;
s = splzs();
mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
switch(how) {
case DMSET:
mbits = bits;
break;
case DMBIS:
mbits |= bits;
break;
case DMBIC:
mbits &= ~bits;
break;
case DMGET:
splx(s);
return(mbits);
}
cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
if(cs->cs_heldchange == 0) {
if(cs->cs_ttyp->t_state & TS_BUSY) {
cs->cs_heldtbc = cs->cs_tbc;
cs->cs_tbc = 0;
cs->cs_heldchange = 1;
}
else {
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
}
}
splx(s);
return(0);
}
/*
* Write the given register set to the given zs channel in the proper order.
* The channel must not be transmitting at the time. The receiver will
* be disabled for the time it takes to write all the registers.
*/
static void
zs_loadchannelregs(zc, reg)
volatile struct zschan *zc;
u_char *reg;
{
int i;
zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
i = zc->zc_data; /* drain fifo */
i = zc->zc_data;
i = zc->zc_data;
ZS_WRITE(zc, 4, reg[4]);
ZS_WRITE(zc, 10, reg[10]);
ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
ZS_WRITE(zc, 1, reg[1]);
ZS_WRITE(zc, 9, reg[9]);
ZS_WRITE(zc, 11, reg[11]);
ZS_WRITE(zc, 12, reg[12]);
ZS_WRITE(zc, 13, reg[13]);
ZS_WRITE(zc, 14, reg[14]);
ZS_WRITE(zc, 15, reg[15]);
ZS_WRITE(zc, 3, reg[3]);
ZS_WRITE(zc, 5, reg[5]);
}
#endif /* NZS > 1 */