NetBSD/sys/kern/vfs_vnode.c
hannken 51464fb45f Add vcache operations to support key changes:
vcache_rekey_enter locks the old cache node and creates and locks the
  new cache node.  It is an error if the new cache node exists.

vcache_rekey_exit removes the old cache node and finalizes and
  unlocks the new cache node.

No objections on tech-kern@

Welcome to 6.99.46
2014-07-05 09:33:15 +00:00

1525 lines
38 KiB
C

/* $NetBSD: vfs_vnode.c,v 1.37 2014/07/05 09:33:15 hannken Exp $ */
/*-
* Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
*/
/*
* The vnode cache subsystem.
*
* Life-cycle
*
* Normally, there are two points where new vnodes are created:
* VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
* starts in one of the following ways:
*
* - Allocation, via getnewvnode(9) and/or vnalloc(9).
* - Reclamation of inactive vnode, via vget(9).
*
* Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
* was another, traditional way. Currently, only the draining thread
* recycles the vnodes. This behaviour might be revisited.
*
* The life-cycle ends when the last reference is dropped, usually
* in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
* the file system that vnode is inactive. Via this call, file system
* indicates whether vnode can be recycled (usually, it checks its own
* references, e.g. count of links, whether the file was removed).
*
* Depending on indication, vnode can be put into a free list (cache),
* or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
* underlying file system from the vnode, and finally destroyed.
*
* Reference counting
*
* Vnode is considered active, if reference count (vnode_t::v_usecount)
* is non-zero. It is maintained using: vref(9) and vrele(9), as well
* as vput(9), routines. Common points holding references are e.g.
* file openings, current working directory, mount points, etc.
*
* Note on v_usecount and its locking
*
* At nearly all points it is known that v_usecount could be zero,
* the vnode_t::v_interlock will be held. To change v_usecount away
* from zero, the interlock must be held. To change from a non-zero
* value to zero, again the interlock must be held.
*
* Changing the usecount from a non-zero value to a non-zero value can
* safely be done using atomic operations, without the interlock held.
*
* Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
* mntvnode_lock is still held.
*
* See PR 41374.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.37 2014/07/05 09:33:15 hannken Exp $");
#define _VFS_VNODE_PRIVATE
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/atomic.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/hash.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/module.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/wapbl.h>
#include <sys/fstrans.h>
#include <uvm/uvm.h>
#include <uvm/uvm_readahead.h>
/* Flags to vrelel. */
#define VRELEL_ASYNC_RELE 0x0001 /* Always defer to vrele thread. */
#define VRELEL_CHANGING_SET 0x0002 /* VI_CHANGING set by caller. */
struct vcache_key {
struct mount *vk_mount;
const void *vk_key;
size_t vk_key_len;
};
struct vcache_node {
SLIST_ENTRY(vcache_node) vn_hash;
struct vnode *vn_vnode;
struct vcache_key vn_key;
};
u_int numvnodes __cacheline_aligned;
static pool_cache_t vnode_cache __read_mostly;
static struct mount *dead_mount;
/*
* There are two free lists: one is for vnodes which have no buffer/page
* references and one for those which do (i.e. v_holdcnt is non-zero).
* Vnode recycling mechanism first attempts to look into the former list.
*/
static kmutex_t vnode_free_list_lock __cacheline_aligned;
static vnodelst_t vnode_free_list __cacheline_aligned;
static vnodelst_t vnode_hold_list __cacheline_aligned;
static kcondvar_t vdrain_cv __cacheline_aligned;
static vnodelst_t vrele_list __cacheline_aligned;
static kmutex_t vrele_lock __cacheline_aligned;
static kcondvar_t vrele_cv __cacheline_aligned;
static lwp_t * vrele_lwp __cacheline_aligned;
static int vrele_pending __cacheline_aligned;
static int vrele_gen __cacheline_aligned;
static struct {
kmutex_t lock;
u_long hashmask;
SLIST_HEAD(hashhead, vcache_node) *hashtab;
pool_cache_t pool;
} vcache __cacheline_aligned;
static int cleanvnode(void);
static void vcache_init(void);
static void vcache_reinit(void);
static void vclean(vnode_t *);
static void vrelel(vnode_t *, int);
static void vdrain_thread(void *);
static void vrele_thread(void *);
static void vnpanic(vnode_t *, const char *, ...)
__printflike(2, 3);
static void vwait(vnode_t *, int);
/* Routines having to do with the management of the vnode table. */
extern int (**dead_vnodeop_p)(void *);
extern struct vfsops dead_vfsops;
void
vfs_vnode_sysinit(void)
{
int error __diagused;
vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
NULL, IPL_NONE, NULL, NULL, NULL);
KASSERT(vnode_cache != NULL);
dead_mount = vfs_mountalloc(&dead_vfsops, NULL);
KASSERT(dead_mount != NULL);
dead_mount->mnt_iflag = IMNT_MPSAFE;
mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
TAILQ_INIT(&vnode_free_list);
TAILQ_INIT(&vnode_hold_list);
TAILQ_INIT(&vrele_list);
vcache_init();
mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&vdrain_cv, "vdrain");
cv_init(&vrele_cv, "vrele");
error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
NULL, NULL, "vdrain");
KASSERT(error == 0);
error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
NULL, &vrele_lwp, "vrele");
KASSERT(error == 0);
}
/*
* Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a
* marker vnode.
*/
vnode_t *
vnalloc(struct mount *mp)
{
vnode_t *vp;
vp = pool_cache_get(vnode_cache, PR_WAITOK);
KASSERT(vp != NULL);
memset(vp, 0, sizeof(*vp));
uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
cv_init(&vp->v_cv, "vnode");
/*
* Done by memset() above.
* LIST_INIT(&vp->v_nclist);
* LIST_INIT(&vp->v_dnclist);
*/
if (mp != NULL) {
vp->v_mount = mp;
vp->v_type = VBAD;
vp->v_iflag = VI_MARKER;
return vp;
}
mutex_enter(&vnode_free_list_lock);
numvnodes++;
if (numvnodes > desiredvnodes + desiredvnodes / 10)
cv_signal(&vdrain_cv);
mutex_exit(&vnode_free_list_lock);
rw_init(&vp->v_lock);
vp->v_usecount = 1;
vp->v_type = VNON;
vp->v_size = vp->v_writesize = VSIZENOTSET;
return vp;
}
/*
* Free an unused, unreferenced vnode.
*/
void
vnfree(vnode_t *vp)
{
KASSERT(vp->v_usecount == 0);
if ((vp->v_iflag & VI_MARKER) == 0) {
rw_destroy(&vp->v_lock);
mutex_enter(&vnode_free_list_lock);
numvnodes--;
mutex_exit(&vnode_free_list_lock);
}
/*
* Note: the vnode interlock will either be freed, of reference
* dropped (if VI_LOCKSHARE was in use).
*/
uvm_obj_destroy(&vp->v_uobj, true);
cv_destroy(&vp->v_cv);
pool_cache_put(vnode_cache, vp);
}
/*
* cleanvnode: grab a vnode from freelist, clean and free it.
*
* => Releases vnode_free_list_lock.
*/
static int
cleanvnode(void)
{
vnode_t *vp;
vnodelst_t *listhd;
struct mount *mp;
KASSERT(mutex_owned(&vnode_free_list_lock));
listhd = &vnode_free_list;
try_nextlist:
TAILQ_FOREACH(vp, listhd, v_freelist) {
/*
* It's safe to test v_usecount and v_iflag
* without holding the interlock here, since
* these vnodes should never appear on the
* lists.
*/
KASSERT(vp->v_usecount == 0);
KASSERT((vp->v_iflag & VI_CLEAN) == 0);
KASSERT(vp->v_freelisthd == listhd);
if (!mutex_tryenter(vp->v_interlock))
continue;
if ((vp->v_iflag & VI_XLOCK) != 0) {
mutex_exit(vp->v_interlock);
continue;
}
mp = vp->v_mount;
if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
mutex_exit(vp->v_interlock);
continue;
}
break;
}
if (vp == NULL) {
if (listhd == &vnode_free_list) {
listhd = &vnode_hold_list;
goto try_nextlist;
}
mutex_exit(&vnode_free_list_lock);
return EBUSY;
}
/* Remove it from the freelist. */
TAILQ_REMOVE(listhd, vp, v_freelist);
vp->v_freelisthd = NULL;
mutex_exit(&vnode_free_list_lock);
KASSERT(vp->v_usecount == 0);
/*
* The vnode is still associated with a file system, so we must
* clean it out before freeing it. We need to add a reference
* before doing this.
*/
vp->v_usecount = 1;
KASSERT((vp->v_iflag & VI_CHANGING) == 0);
vp->v_iflag |= VI_CHANGING;
vclean(vp);
vrelel(vp, VRELEL_CHANGING_SET);
fstrans_done(mp);
return 0;
}
/*
* getnewvnode: return a fresh vnode.
*
* => Returns referenced vnode, moved into the mount queue.
* => Shares the interlock specified by 'slock', if it is not NULL.
*/
int
getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
kmutex_t *slock, vnode_t **vpp)
{
struct uvm_object *uobj __diagused;
vnode_t *vp;
int error = 0;
if (mp != NULL) {
/*
* Mark filesystem busy while we are creating a vnode.
* If unmount is in progress, this will fail.
*/
error = vfs_busy(mp, NULL);
if (error)
return error;
}
vp = NULL;
/* Allocate a new vnode. */
vp = vnalloc(NULL);
KASSERT(vp->v_freelisthd == NULL);
KASSERT(LIST_EMPTY(&vp->v_nclist));
KASSERT(LIST_EMPTY(&vp->v_dnclist));
KASSERT(vp->v_data == NULL);
/* Initialize vnode. */
vp->v_tag = tag;
vp->v_op = vops;
uobj = &vp->v_uobj;
KASSERT(uobj->pgops == &uvm_vnodeops);
KASSERT(uobj->uo_npages == 0);
KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
/* Share the vnode_t::v_interlock, if requested. */
if (slock) {
/* Set the interlock and mark that it is shared. */
KASSERT(vp->v_mount == NULL);
mutex_obj_hold(slock);
uvm_obj_setlock(&vp->v_uobj, slock);
KASSERT(vp->v_interlock == slock);
vp->v_iflag |= VI_LOCKSHARE;
}
/* Finally, move vnode into the mount queue. */
vfs_insmntque(vp, mp);
if (mp != NULL) {
if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
vp->v_vflag |= VV_MPSAFE;
vfs_unbusy(mp, true, NULL);
}
*vpp = vp;
return 0;
}
/*
* This is really just the reverse of getnewvnode(). Needed for
* VFS_VGET functions who may need to push back a vnode in case
* of a locking race.
*/
void
ungetnewvnode(vnode_t *vp)
{
KASSERT(vp->v_usecount == 1);
KASSERT(vp->v_data == NULL);
KASSERT(vp->v_freelisthd == NULL);
mutex_enter(vp->v_interlock);
vp->v_iflag |= VI_CLEAN;
vrelel(vp, 0);
}
/*
* Helper thread to keep the number of vnodes below desiredvnodes.
*/
static void
vdrain_thread(void *cookie)
{
int error;
mutex_enter(&vnode_free_list_lock);
for (;;) {
cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
while (numvnodes > desiredvnodes) {
error = cleanvnode();
if (error)
kpause("vndsbusy", false, hz, NULL);
mutex_enter(&vnode_free_list_lock);
if (error)
break;
}
}
}
/*
* Remove a vnode from its freelist.
*/
void
vremfree(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT(vp->v_usecount == 0);
/*
* Note that the reference count must not change until
* the vnode is removed.
*/
mutex_enter(&vnode_free_list_lock);
if (vp->v_holdcnt > 0) {
KASSERT(vp->v_freelisthd == &vnode_hold_list);
} else {
KASSERT(vp->v_freelisthd == &vnode_free_list);
}
TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
vp->v_freelisthd = NULL;
mutex_exit(&vnode_free_list_lock);
}
/*
* vget: get a particular vnode from the free list, increment its reference
* count and lock it.
*
* => Should be called with v_interlock held.
*
* If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean().
* In that case, we cannot grab the vnode, so the process is awakened when
* the transition is completed, and an error returned to indicate that the
* vnode is no longer usable.
*/
int
vget(vnode_t *vp, int flags)
{
int error = 0;
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
/*
* Before adding a reference, we must remove the vnode
* from its freelist.
*/
if (vp->v_usecount == 0) {
vremfree(vp);
vp->v_usecount = 1;
} else {
atomic_inc_uint(&vp->v_usecount);
}
/*
* If the vnode is in the process of changing state we wait
* for the change to complete and take care not to return
* a clean vnode.
*/
if ((vp->v_iflag & VI_CHANGING) != 0) {
if ((flags & LK_NOWAIT) != 0) {
vrelel(vp, 0);
return EBUSY;
}
vwait(vp, VI_CHANGING);
if ((vp->v_iflag & VI_CLEAN) != 0) {
vrelel(vp, 0);
return ENOENT;
}
}
/*
* Ok, we got it in good shape. Just locking left.
*/
KASSERT((vp->v_iflag & VI_CLEAN) == 0);
mutex_exit(vp->v_interlock);
if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
error = vn_lock(vp, flags);
if (error != 0) {
vrele(vp);
}
}
return error;
}
/*
* vput: unlock and release the reference.
*/
void
vput(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
VOP_UNLOCK(vp);
vrele(vp);
}
/*
* Try to drop reference on a vnode. Abort if we are releasing the
* last reference. Note: this _must_ succeed if not the last reference.
*/
static inline bool
vtryrele(vnode_t *vp)
{
u_int use, next;
for (use = vp->v_usecount;; use = next) {
if (use == 1) {
return false;
}
KASSERT(use > 1);
next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
if (__predict_true(next == use)) {
return true;
}
}
}
/*
* Vnode release. If reference count drops to zero, call inactive
* routine and either return to freelist or free to the pool.
*/
static void
vrelel(vnode_t *vp, int flags)
{
bool recycle, defer;
int error;
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(vp->v_freelisthd == NULL);
if (__predict_false(vp->v_op == dead_vnodeop_p &&
(vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
vnpanic(vp, "dead but not clean");
}
/*
* If not the last reference, just drop the reference count
* and unlock.
*/
if (vtryrele(vp)) {
if ((flags & VRELEL_CHANGING_SET) != 0) {
KASSERT((vp->v_iflag & VI_CHANGING) != 0);
vp->v_iflag &= ~VI_CHANGING;
cv_broadcast(&vp->v_cv);
}
mutex_exit(vp->v_interlock);
return;
}
if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
vnpanic(vp, "%s: bad ref count", __func__);
}
KASSERT((vp->v_iflag & VI_XLOCK) == 0);
#ifdef DIAGNOSTIC
if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
vprint("vrelel: missing VOP_CLOSE()", vp);
}
#endif
/*
* If not clean, deactivate the vnode, but preserve
* our reference across the call to VOP_INACTIVE().
*/
if ((vp->v_iflag & VI_CLEAN) == 0) {
recycle = false;
/*
* XXX This ugly block can be largely eliminated if
* locking is pushed down into the file systems.
*
* Defer vnode release to vrele_thread if caller
* requests it explicitly or is the pagedaemon.
*/
if ((curlwp == uvm.pagedaemon_lwp) ||
(flags & VRELEL_ASYNC_RELE) != 0) {
defer = true;
} else if (curlwp == vrele_lwp) {
/*
* We have to try harder.
*/
mutex_exit(vp->v_interlock);
error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
KASSERT(error == 0);
mutex_enter(vp->v_interlock);
defer = false;
} else {
/* If we can't acquire the lock, then defer. */
mutex_exit(vp->v_interlock);
error = vn_lock(vp,
LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
defer = (error != 0);
mutex_enter(vp->v_interlock);
}
KASSERT(mutex_owned(vp->v_interlock));
KASSERT(! (curlwp == vrele_lwp && defer));
if (defer) {
/*
* Defer reclaim to the kthread; it's not safe to
* clean it here. We donate it our last reference.
*/
if ((flags & VRELEL_CHANGING_SET) != 0) {
KASSERT((vp->v_iflag & VI_CHANGING) != 0);
vp->v_iflag &= ~VI_CHANGING;
cv_broadcast(&vp->v_cv);
}
mutex_enter(&vrele_lock);
TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
if (++vrele_pending > (desiredvnodes >> 8))
cv_signal(&vrele_cv);
mutex_exit(&vrele_lock);
mutex_exit(vp->v_interlock);
return;
}
/*
* If the node got another reference while we
* released the interlock, don't try to inactivate it yet.
*/
if (__predict_false(vtryrele(vp))) {
VOP_UNLOCK(vp);
if ((flags & VRELEL_CHANGING_SET) != 0) {
KASSERT((vp->v_iflag & VI_CHANGING) != 0);
vp->v_iflag &= ~VI_CHANGING;
cv_broadcast(&vp->v_cv);
}
mutex_exit(vp->v_interlock);
return;
}
if ((flags & VRELEL_CHANGING_SET) == 0) {
KASSERT((vp->v_iflag & VI_CHANGING) == 0);
vp->v_iflag |= VI_CHANGING;
}
mutex_exit(vp->v_interlock);
/*
* The vnode can gain another reference while being
* deactivated. If VOP_INACTIVE() indicates that
* the described file has been deleted, then recycle
* the vnode irrespective of additional references.
* Another thread may be waiting to re-use the on-disk
* inode.
*
* Note that VOP_INACTIVE() will drop the vnode lock.
*/
VOP_INACTIVE(vp, &recycle);
mutex_enter(vp->v_interlock);
if (!recycle) {
if (vtryrele(vp)) {
KASSERT((vp->v_iflag & VI_CHANGING) != 0);
vp->v_iflag &= ~VI_CHANGING;
cv_broadcast(&vp->v_cv);
mutex_exit(vp->v_interlock);
return;
}
}
/* Take care of space accounting. */
if (vp->v_iflag & VI_EXECMAP) {
atomic_add_int(&uvmexp.execpages,
-vp->v_uobj.uo_npages);
atomic_add_int(&uvmexp.filepages,
vp->v_uobj.uo_npages);
}
vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
vp->v_vflag &= ~VV_MAPPED;
/*
* Recycle the vnode if the file is now unused (unlinked),
* otherwise just free it.
*/
if (recycle) {
vclean(vp);
}
KASSERT(vp->v_usecount > 0);
} else { /* vnode was already clean */
if ((flags & VRELEL_CHANGING_SET) == 0) {
KASSERT((vp->v_iflag & VI_CHANGING) == 0);
vp->v_iflag |= VI_CHANGING;
}
}
if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
/* Gained another reference while being reclaimed. */
KASSERT((vp->v_iflag & VI_CHANGING) != 0);
vp->v_iflag &= ~VI_CHANGING;
cv_broadcast(&vp->v_cv);
mutex_exit(vp->v_interlock);
return;
}
if ((vp->v_iflag & VI_CLEAN) != 0) {
/*
* It's clean so destroy it. It isn't referenced
* anywhere since it has been reclaimed.
*/
KASSERT(vp->v_holdcnt == 0);
KASSERT(vp->v_writecount == 0);
mutex_exit(vp->v_interlock);
vfs_insmntque(vp, NULL);
if (vp->v_type == VBLK || vp->v_type == VCHR) {
spec_node_destroy(vp);
}
vnfree(vp);
} else {
/*
* Otherwise, put it back onto the freelist. It
* can't be destroyed while still associated with
* a file system.
*/
mutex_enter(&vnode_free_list_lock);
if (vp->v_holdcnt > 0) {
vp->v_freelisthd = &vnode_hold_list;
} else {
vp->v_freelisthd = &vnode_free_list;
}
TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
mutex_exit(&vnode_free_list_lock);
KASSERT((vp->v_iflag & VI_CHANGING) != 0);
vp->v_iflag &= ~VI_CHANGING;
cv_broadcast(&vp->v_cv);
mutex_exit(vp->v_interlock);
}
}
void
vrele(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if (vtryrele(vp)) {
return;
}
mutex_enter(vp->v_interlock);
vrelel(vp, 0);
}
/*
* Asynchronous vnode release, vnode is released in different context.
*/
void
vrele_async(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if (vtryrele(vp)) {
return;
}
mutex_enter(vp->v_interlock);
vrelel(vp, VRELEL_ASYNC_RELE);
}
static void
vrele_thread(void *cookie)
{
vnodelst_t skip_list;
vnode_t *vp;
struct mount *mp;
TAILQ_INIT(&skip_list);
mutex_enter(&vrele_lock);
for (;;) {
while (TAILQ_EMPTY(&vrele_list)) {
vrele_gen++;
cv_broadcast(&vrele_cv);
cv_timedwait(&vrele_cv, &vrele_lock, hz);
TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
}
vp = TAILQ_FIRST(&vrele_list);
mp = vp->v_mount;
TAILQ_REMOVE(&vrele_list, vp, v_freelist);
if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
continue;
}
vrele_pending--;
mutex_exit(&vrele_lock);
/*
* If not the last reference, then ignore the vnode
* and look for more work.
*/
mutex_enter(vp->v_interlock);
vrelel(vp, 0);
fstrans_done(mp);
mutex_enter(&vrele_lock);
}
}
void
vrele_flush(void)
{
int gen;
mutex_enter(&vrele_lock);
gen = vrele_gen;
while (vrele_pending && gen == vrele_gen) {
cv_broadcast(&vrele_cv);
cv_wait(&vrele_cv, &vrele_lock);
}
mutex_exit(&vrele_lock);
}
/*
* Vnode reference, where a reference is already held by some other
* object (for example, a file structure).
*/
void
vref(vnode_t *vp)
{
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(vp->v_usecount != 0);
atomic_inc_uint(&vp->v_usecount);
}
/*
* Page or buffer structure gets a reference.
* Called with v_interlock held.
*/
void
vholdl(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
mutex_enter(&vnode_free_list_lock);
KASSERT(vp->v_freelisthd == &vnode_free_list);
TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
vp->v_freelisthd = &vnode_hold_list;
TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
mutex_exit(&vnode_free_list_lock);
}
}
/*
* Page or buffer structure frees a reference.
* Called with v_interlock held.
*/
void
holdrelel(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if (vp->v_holdcnt <= 0) {
vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
}
vp->v_holdcnt--;
if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
mutex_enter(&vnode_free_list_lock);
KASSERT(vp->v_freelisthd == &vnode_hold_list);
TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
vp->v_freelisthd = &vnode_free_list;
TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
mutex_exit(&vnode_free_list_lock);
}
}
/*
* Disassociate the underlying file system from a vnode.
*
* Must be called with the interlock held, and will return with it held.
*/
static void
vclean(vnode_t *vp)
{
lwp_t *l = curlwp;
bool recycle, active, doclose;
int error;
KASSERT(mutex_owned(vp->v_interlock));
KASSERT((vp->v_iflag & VI_MARKER) == 0);
KASSERT(vp->v_usecount != 0);
/* If already clean, nothing to do. */
if ((vp->v_iflag & VI_CLEAN) != 0) {
return;
}
active = (vp->v_usecount > 1);
doclose = ! (active && vp->v_type == VBLK &&
spec_node_getmountedfs(vp) != NULL);
mutex_exit(vp->v_interlock);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
/*
* Prevent the vnode from being recycled or brought into use
* while we clean it out.
*/
mutex_enter(vp->v_interlock);
KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0);
vp->v_iflag |= VI_XLOCK;
if (vp->v_iflag & VI_EXECMAP) {
atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
}
vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
mutex_exit(vp->v_interlock);
/*
* Clean out any cached data associated with the vnode.
* If purging an active vnode, it must be closed and
* deactivated before being reclaimed. Note that the
* VOP_INACTIVE will unlock the vnode.
*/
if (doclose) {
error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
if (error != 0) {
if (wapbl_vphaswapbl(vp))
WAPBL_DISCARD(wapbl_vptomp(vp));
error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
}
KASSERT(error == 0);
KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
spec_node_revoke(vp);
}
}
if (active) {
VOP_INACTIVE(vp, &recycle);
} else {
/*
* Any other processes trying to obtain this lock must first
* wait for VI_XLOCK to clear, then call the new lock operation.
*/
VOP_UNLOCK(vp);
}
/* Disassociate the underlying file system from the vnode. */
if (VOP_RECLAIM(vp)) {
vnpanic(vp, "%s: cannot reclaim", __func__);
}
KASSERT(vp->v_data == NULL);
KASSERT(vp->v_uobj.uo_npages == 0);
if (vp->v_type == VREG && vp->v_ractx != NULL) {
uvm_ra_freectx(vp->v_ractx);
vp->v_ractx = NULL;
}
/* Purge name cache. */
cache_purge(vp);
/* Move to dead mount. */
vp->v_vflag &= ~VV_ROOT;
atomic_inc_uint(&dead_mount->mnt_refcnt);
vfs_insmntque(vp, dead_mount);
/* Done with purge, notify sleepers of the grim news. */
mutex_enter(vp->v_interlock);
if (doclose) {
vp->v_op = dead_vnodeop_p;
vp->v_vflag |= VV_LOCKSWORK;
vp->v_iflag |= VI_CLEAN;
} else {
vp->v_op = spec_vnodeop_p;
vp->v_vflag &= ~VV_LOCKSWORK;
}
vp->v_tag = VT_NON;
KNOTE(&vp->v_klist, NOTE_REVOKE);
vp->v_iflag &= ~VI_XLOCK;
cv_broadcast(&vp->v_cv);
KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
}
/*
* Recycle an unused vnode if caller holds the last reference.
*/
bool
vrecycle(vnode_t *vp)
{
mutex_enter(vp->v_interlock);
KASSERT((vp->v_iflag & VI_MARKER) == 0);
if (vp->v_usecount != 1) {
mutex_exit(vp->v_interlock);
return false;
}
if ((vp->v_iflag & VI_CHANGING) != 0)
vwait(vp, VI_CHANGING);
if (vp->v_usecount != 1) {
mutex_exit(vp->v_interlock);
return false;
} else if ((vp->v_iflag & VI_CLEAN) != 0) {
mutex_exit(vp->v_interlock);
return true;
}
vp->v_iflag |= VI_CHANGING;
vclean(vp);
vrelel(vp, VRELEL_CHANGING_SET);
return true;
}
/*
* Eliminate all activity associated with the requested vnode
* and with all vnodes aliased to the requested vnode.
*/
void
vrevoke(vnode_t *vp)
{
vnode_t *vq;
enum vtype type;
dev_t dev;
KASSERT(vp->v_usecount > 0);
mutex_enter(vp->v_interlock);
if ((vp->v_iflag & VI_CLEAN) != 0) {
mutex_exit(vp->v_interlock);
return;
} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
atomic_inc_uint(&vp->v_usecount);
mutex_exit(vp->v_interlock);
vgone(vp);
return;
} else {
dev = vp->v_rdev;
type = vp->v_type;
mutex_exit(vp->v_interlock);
}
while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
vgone(vq);
}
}
/*
* Eliminate all activity associated with a vnode in preparation for
* reuse. Drops a reference from the vnode.
*/
void
vgone(vnode_t *vp)
{
mutex_enter(vp->v_interlock);
if ((vp->v_iflag & VI_CHANGING) != 0)
vwait(vp, VI_CHANGING);
vp->v_iflag |= VI_CHANGING;
vclean(vp);
vrelel(vp, VRELEL_CHANGING_SET);
}
static inline uint32_t
vcache_hash(const struct vcache_key *key)
{
uint32_t hash = HASH32_BUF_INIT;
hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
return hash;
}
static void
vcache_init(void)
{
vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
"vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
KASSERT(vcache.pool != NULL);
mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
&vcache.hashmask);
}
static void
vcache_reinit(void)
{
int i;
uint32_t hash;
u_long oldmask, newmask;
struct hashhead *oldtab, *newtab;
struct vcache_node *node;
newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
mutex_enter(&vcache.lock);
oldtab = vcache.hashtab;
oldmask = vcache.hashmask;
vcache.hashtab = newtab;
vcache.hashmask = newmask;
for (i = 0; i <= oldmask; i++) {
while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
hash = vcache_hash(&node->vn_key);
SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
node, vn_hash);
}
}
mutex_exit(&vcache.lock);
hashdone(oldtab, HASH_SLIST, oldmask);
}
static inline struct vcache_node *
vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
{
struct hashhead *hashp;
struct vcache_node *node;
KASSERT(mutex_owned(&vcache.lock));
hashp = &vcache.hashtab[hash & vcache.hashmask];
SLIST_FOREACH(node, hashp, vn_hash) {
if (key->vk_mount != node->vn_key.vk_mount)
continue;
if (key->vk_key_len != node->vn_key.vk_key_len)
continue;
if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
continue;
return node;
}
return NULL;
}
/*
* Get a vnode / fs node pair by key and return it referenced through vpp.
*/
int
vcache_get(struct mount *mp, const void *key, size_t key_len,
struct vnode **vpp)
{
int error;
uint32_t hash;
const void *new_key;
struct vnode *vp;
struct vcache_key vcache_key;
struct vcache_node *node, *new_node;
new_key = NULL;
*vpp = NULL;
vcache_key.vk_mount = mp;
vcache_key.vk_key = key;
vcache_key.vk_key_len = key_len;
hash = vcache_hash(&vcache_key);
again:
mutex_enter(&vcache.lock);
node = vcache_hash_lookup(&vcache_key, hash);
/* If found, take a reference or retry. */
if (__predict_true(node != NULL && node->vn_vnode != NULL)) {
vp = node->vn_vnode;
mutex_enter(vp->v_interlock);
mutex_exit(&vcache.lock);
error = vget(vp, 0);
if (error == ENOENT)
goto again;
if (error == 0)
*vpp = vp;
KASSERT((error != 0) == (*vpp == NULL));
return error;
}
/* If another thread loads this node, wait and retry. */
if (node != NULL) {
KASSERT(node->vn_vnode == NULL);
mutex_exit(&vcache.lock);
kpause("vcache", false, mstohz(20), NULL);
goto again;
}
mutex_exit(&vcache.lock);
/* Allocate and initialize a new vcache / vnode pair. */
error = vfs_busy(mp, NULL);
if (error)
return error;
new_node = pool_cache_get(vcache.pool, PR_WAITOK);
new_node->vn_vnode = NULL;
new_node->vn_key = vcache_key;
vp = vnalloc(NULL);
mutex_enter(&vcache.lock);
node = vcache_hash_lookup(&vcache_key, hash);
if (node == NULL) {
SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
new_node, vn_hash);
node = new_node;
}
mutex_exit(&vcache.lock);
/* If another thread beat us inserting this node, retry. */
if (node != new_node) {
pool_cache_put(vcache.pool, new_node);
KASSERT(vp->v_usecount == 1);
vp->v_usecount = 0;
vnfree(vp);
vfs_unbusy(mp, false, NULL);
goto again;
}
/* Load the fs node. Exclusive as new_node->vn_vnode is NULL. */
error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
if (error) {
mutex_enter(&vcache.lock);
SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
new_node, vcache_node, vn_hash);
mutex_exit(&vcache.lock);
pool_cache_put(vcache.pool, new_node);
KASSERT(vp->v_usecount == 1);
vp->v_usecount = 0;
vnfree(vp);
vfs_unbusy(mp, false, NULL);
KASSERT(*vpp == NULL);
return error;
}
KASSERT(new_key != NULL);
KASSERT(memcmp(key, new_key, key_len) == 0);
KASSERT(vp->v_op != NULL);
vfs_insmntque(vp, mp);
if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
vp->v_vflag |= VV_MPSAFE;
vfs_unbusy(mp, true, NULL);
/* Finished loading, finalize node. */
mutex_enter(&vcache.lock);
new_node->vn_key.vk_key = new_key;
new_node->vn_vnode = vp;
mutex_exit(&vcache.lock);
*vpp = vp;
return 0;
}
/*
* Prepare key change: lock old and new cache node.
* Return an error if the new node already exists.
*/
int
vcache_rekey_enter(struct mount *mp, struct vnode *vp,
const void *old_key, size_t old_key_len,
const void *new_key, size_t new_key_len)
{
uint32_t old_hash, new_hash;
struct vcache_key old_vcache_key, new_vcache_key;
struct vcache_node *node, *new_node;
old_vcache_key.vk_mount = mp;
old_vcache_key.vk_key = old_key;
old_vcache_key.vk_key_len = old_key_len;
old_hash = vcache_hash(&old_vcache_key);
new_vcache_key.vk_mount = mp;
new_vcache_key.vk_key = new_key;
new_vcache_key.vk_key_len = new_key_len;
new_hash = vcache_hash(&new_vcache_key);
new_node = pool_cache_get(vcache.pool, PR_WAITOK);
new_node->vn_vnode = NULL;
new_node->vn_key = new_vcache_key;
mutex_enter(&vcache.lock);
node = vcache_hash_lookup(&new_vcache_key, new_hash);
if (node != NULL) {
mutex_exit(&vcache.lock);
pool_cache_put(vcache.pool, new_node);
return EEXIST;
}
SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
new_node, vn_hash);
node = vcache_hash_lookup(&old_vcache_key, old_hash);
KASSERT(node != NULL);
KASSERT(node->vn_vnode == vp);
node->vn_vnode = NULL;
node->vn_key = old_vcache_key;
mutex_exit(&vcache.lock);
return 0;
}
/*
* Key change complete: remove old node and unlock new node.
*/
void
vcache_rekey_exit(struct mount *mp, struct vnode *vp,
const void *old_key, size_t old_key_len,
const void *new_key, size_t new_key_len)
{
uint32_t old_hash, new_hash;
struct vcache_key old_vcache_key, new_vcache_key;
struct vcache_node *node;
old_vcache_key.vk_mount = mp;
old_vcache_key.vk_key = old_key;
old_vcache_key.vk_key_len = old_key_len;
old_hash = vcache_hash(&old_vcache_key);
new_vcache_key.vk_mount = mp;
new_vcache_key.vk_key = new_key;
new_vcache_key.vk_key_len = new_key_len;
new_hash = vcache_hash(&new_vcache_key);
mutex_enter(&vcache.lock);
node = vcache_hash_lookup(&new_vcache_key, new_hash);
KASSERT(node != NULL && node->vn_vnode == NULL);
KASSERT(node->vn_key.vk_key_len == new_key_len);
node->vn_vnode = vp;
node->vn_key = new_vcache_key;
node = vcache_hash_lookup(&old_vcache_key, old_hash);
KASSERT(node != NULL);
KASSERT(node->vn_vnode == NULL);
SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
node, vcache_node, vn_hash);
mutex_exit(&vcache.lock);
pool_cache_put(vcache.pool, node);
}
/*
* Remove a vnode / fs node pair from the cache.
*/
void
vcache_remove(struct mount *mp, const void *key, size_t key_len)
{
uint32_t hash;
struct vcache_key vcache_key;
struct vcache_node *node;
vcache_key.vk_mount = mp;
vcache_key.vk_key = key;
vcache_key.vk_key_len = key_len;
hash = vcache_hash(&vcache_key);
mutex_enter(&vcache.lock);
node = vcache_hash_lookup(&vcache_key, hash);
KASSERT(node != NULL);
SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
node, vcache_node, vn_hash);
mutex_exit(&vcache.lock);
pool_cache_put(vcache.pool, node);
}
/*
* Update outstanding I/O count and do wakeup if requested.
*/
void
vwakeup(struct buf *bp)
{
vnode_t *vp;
if ((vp = bp->b_vp) == NULL)
return;
KASSERT(bp->b_objlock == vp->v_interlock);
KASSERT(mutex_owned(bp->b_objlock));
if (--vp->v_numoutput < 0)
vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
if (vp->v_numoutput == 0)
cv_broadcast(&vp->v_cv);
}
/*
* Test a vnode for being or becoming dead. Returns one of:
* EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
* ENOENT: vnode is dead.
* 0: otherwise.
*
* Whenever this function returns a non-zero value all future
* calls will also return a non-zero value.
*/
int
vdead_check(struct vnode *vp, int flags)
{
KASSERT(mutex_owned(vp->v_interlock));
if (ISSET(vp->v_iflag, VI_XLOCK)) {
if (ISSET(flags, VDEAD_NOWAIT))
return EBUSY;
vwait(vp, VI_XLOCK);
KASSERT(ISSET(vp->v_iflag, VI_CLEAN));
}
if (ISSET(vp->v_iflag, VI_CLEAN))
return ENOENT;
return 0;
}
/*
* Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
* recycled.
*/
static void
vwait(vnode_t *vp, int flags)
{
KASSERT(mutex_owned(vp->v_interlock));
KASSERT(vp->v_usecount != 0);
while ((vp->v_iflag & flags) != 0)
cv_wait(&vp->v_cv, vp->v_interlock);
}
int
vfs_drainvnodes(long target)
{
int error;
mutex_enter(&vnode_free_list_lock);
while (numvnodes > target) {
error = cleanvnode();
if (error != 0)
return error;
mutex_enter(&vnode_free_list_lock);
}
mutex_exit(&vnode_free_list_lock);
vcache_reinit();
return 0;
}
void
vnpanic(vnode_t *vp, const char *fmt, ...)
{
va_list ap;
#ifdef DIAGNOSTIC
vprint(NULL, vp);
#endif
va_start(ap, fmt);
vpanic(fmt, ap);
va_end(ap);
}