487 lines
11 KiB
C
487 lines
11 KiB
C
/* $NetBSD: kern_sleepq.c,v 1.3 2007/02/10 14:02:01 yamt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Sleep queue implementation, used by turnstiles and general sleep/wakeup
|
|
* interfaces.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.3 2007/02/10 14:02:01 yamt Exp $");
|
|
|
|
#include "opt_multiprocessor.h"
|
|
#include "opt_lockdebug.h"
|
|
#include "opt_ktrace.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sleepq.h>
|
|
|
|
#ifdef KTRACE
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
int sleepq_sigtoerror(struct lwp *, int);
|
|
void updatepri(struct lwp *);
|
|
|
|
/* General purpose sleep table, used by ltsleep() and condition variables. */
|
|
sleeptab_t sleeptab;
|
|
|
|
/*
|
|
* sleeptab_init:
|
|
*
|
|
* Initialize a sleep table.
|
|
*/
|
|
void
|
|
sleeptab_init(sleeptab_t *st)
|
|
{
|
|
sleepq_t *sq;
|
|
int i;
|
|
|
|
for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
|
|
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
|
|
sq = &st->st_queues[i].st_queue;
|
|
mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
|
|
sleepq_init(sq, &st->st_queues[i].st_mutex);
|
|
#else
|
|
sq = &st->st_queues[i];
|
|
sleepq_init(sq, &sched_mutex);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sleepq_init:
|
|
*
|
|
* Prepare a sleep queue for use.
|
|
*/
|
|
void
|
|
sleepq_init(sleepq_t *sq, kmutex_t *mtx)
|
|
{
|
|
|
|
sq->sq_waiters = 0;
|
|
sq->sq_mutex = mtx;
|
|
TAILQ_INIT(&sq->sq_queue);
|
|
}
|
|
|
|
/*
|
|
* sleepq_remove:
|
|
*
|
|
* Remove an LWP from a sleep queue and wake it up. Return non-zero if
|
|
* the LWP is swapped out; if so the caller needs to awaken the swapper
|
|
* to bring the LWP into memory.
|
|
*/
|
|
int
|
|
sleepq_remove(sleepq_t *sq, struct lwp *l)
|
|
{
|
|
struct cpu_info *ci;
|
|
|
|
LOCK_ASSERT(lwp_locked(l, sq->sq_mutex));
|
|
KASSERT(sq->sq_waiters > 0);
|
|
|
|
sq->sq_waiters--;
|
|
TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (sq->sq_waiters == 0)
|
|
KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
|
|
else
|
|
KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
|
|
#endif
|
|
|
|
l->l_syncobj = &sched_syncobj;
|
|
l->l_wchan = NULL;
|
|
l->l_sleepq = NULL;
|
|
l->l_flag &= ~L_SINTR;
|
|
|
|
/*
|
|
* If not sleeping, the LWP must have been suspended. Let whoever
|
|
* holds it stopped set it running again.
|
|
*/
|
|
if (l->l_stat != LSSLEEP) {
|
|
KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
|
|
lwp_setlock(l, &sched_mutex);
|
|
return 0;
|
|
}
|
|
|
|
sched_lock(1);
|
|
lwp_setlock(l, &sched_mutex);
|
|
|
|
/*
|
|
* If the LWP is still on the CPU, mark it as LSONPROC. It may be
|
|
* about to call mi_switch(), in which case it will yield.
|
|
*
|
|
* XXXSMP Will need to change for preemption.
|
|
*/
|
|
ci = l->l_cpu;
|
|
#ifdef MULTIPROCESSOR
|
|
if (ci->ci_curlwp == l) {
|
|
#else
|
|
if (l == curlwp) {
|
|
#endif
|
|
l->l_stat = LSONPROC;
|
|
l->l_slptime = 0;
|
|
sched_unlock(1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set it running. We'll try to get the last CPU that ran
|
|
* this LWP to pick it up again.
|
|
*/
|
|
if (l->l_slptime > 1)
|
|
updatepri(l);
|
|
l->l_stat = LSRUN;
|
|
l->l_slptime = 0;
|
|
if ((l->l_flag & L_INMEM) != 0) {
|
|
setrunqueue(l);
|
|
if (l->l_priority < ci->ci_schedstate.spc_curpriority)
|
|
cpu_need_resched(ci);
|
|
sched_unlock(1);
|
|
return 0;
|
|
}
|
|
|
|
sched_unlock(1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* sleepq_insert:
|
|
*
|
|
* Insert an LWP into the sleep queue, optionally sorting by priority.
|
|
*/
|
|
inline void
|
|
sleepq_insert(sleepq_t *sq, struct lwp *l, int pri, syncobj_t *sobj)
|
|
{
|
|
struct lwp *l2;
|
|
|
|
if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
|
|
TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
|
|
if (l2->l_priority > pri) {
|
|
TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
|
|
}
|
|
|
|
/*
|
|
* sleepq_block:
|
|
*
|
|
* Enter an LWP into the sleep queue and prepare for sleep. The sleep
|
|
* queue must already be locked, and any interlock (such as the kernel
|
|
* lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
|
|
*
|
|
* sleepq_block() may return early under exceptional conditions, for
|
|
* example if the LWP's containing process is exiting.
|
|
*/
|
|
void
|
|
sleepq_block(sleepq_t *sq, int pri, wchan_t wchan, const char *wmesg, int timo,
|
|
int catch, syncobj_t *sobj)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
|
|
LOCK_ASSERT(mutex_owned(sq->sq_mutex));
|
|
KASSERT(l->l_stat == LSONPROC);
|
|
KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
|
|
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(l->l_proc, KTR_CSW))
|
|
ktrcsw(l, 1, 0);
|
|
#endif
|
|
|
|
l->l_syncobj = sobj;
|
|
l->l_wchan = wchan;
|
|
l->l_sleepq = sq;
|
|
l->l_wmesg = wmesg;
|
|
l->l_slptime = 0;
|
|
l->l_priority = pri;
|
|
l->l_stat = LSSLEEP;
|
|
l->l_sleeperr = 0;
|
|
l->l_nvcsw++;
|
|
|
|
sq->sq_waiters++;
|
|
sleepq_insert(sq, l, pri, sobj);
|
|
|
|
/*
|
|
* If sleeping interruptably, check for pending signals, exits or
|
|
* core dump events.
|
|
*/
|
|
if (catch) {
|
|
l->l_flag |= L_SINTR;
|
|
if ((l->l_flag & L_PENDSIG) != 0 && sigispending(l, 0)) {
|
|
l->l_sleeperr = EPASSTHROUGH;
|
|
/* lwp_unsleep() will release the lock */
|
|
lwp_unsleep(l);
|
|
return;
|
|
}
|
|
if ((l->l_flag & (L_CANCELLED|L_WEXIT|L_WCORE)) != 0) {
|
|
l->l_flag &= ~L_CANCELLED;
|
|
l->l_sleeperr = EINTR;
|
|
/* lwp_unsleep() will release the lock */
|
|
lwp_unsleep(l);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (timo)
|
|
callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
|
|
|
|
mi_switch(l, NULL);
|
|
l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
|
|
|
|
/*
|
|
* When we reach this point, the LWP and sleep queue are unlocked.
|
|
*/
|
|
KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
|
|
}
|
|
|
|
/*
|
|
* sleepq_unblock:
|
|
*
|
|
* After any intermediate step such as updating statistics, re-acquire
|
|
* the kernel lock and record the switch for ktrace. Note that we are
|
|
* no longer on the sleep queue at this point.
|
|
*
|
|
* This is split out from sleepq_block() in expectation that at some
|
|
* point in the future, LWPs may awake on different kernel stacks than
|
|
* those they went asleep on.
|
|
*/
|
|
int
|
|
sleepq_unblock(int timo, int catch)
|
|
{
|
|
int error, expired, sig;
|
|
struct proc *p;
|
|
struct lwp *l;
|
|
|
|
l = curlwp;
|
|
error = l->l_sleeperr;
|
|
|
|
if (timo) {
|
|
/*
|
|
* Even if the callout appears to have fired, we need to
|
|
* stop it in order to synchronise with other CPUs.
|
|
*/
|
|
expired = callout_expired(&l->l_tsleep_ch);
|
|
callout_stop(&l->l_tsleep_ch);
|
|
if (expired && error == 0)
|
|
error = EWOULDBLOCK;
|
|
}
|
|
|
|
if (catch && (error == 0 || error == EPASSTHROUGH)) {
|
|
l->l_sleeperr = 0;
|
|
p = l->l_proc;
|
|
if ((l->l_flag & (L_CANCELLED | L_WEXIT | L_WCORE)) != 0)
|
|
error = EINTR;
|
|
else if ((l->l_flag & L_PENDSIG) != 0) {
|
|
KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
|
|
mutex_enter(&p->p_smutex);
|
|
if ((sig = issignal(l)) != 0)
|
|
error = sleepq_sigtoerror(l, sig);
|
|
mutex_exit(&p->p_smutex);
|
|
KERNEL_UNLOCK_LAST(l);
|
|
}
|
|
if (error == EPASSTHROUGH) {
|
|
/* Raced */
|
|
error = EINTR;
|
|
}
|
|
}
|
|
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(l->l_proc, KTR_CSW))
|
|
ktrcsw(l, 0, 0);
|
|
#endif
|
|
|
|
KERNEL_LOCK(l->l_biglocks, l);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sleepq_wake:
|
|
*
|
|
* Wake zero or more LWPs blocked on a single wait channel.
|
|
*/
|
|
void
|
|
sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
|
|
{
|
|
struct lwp *l, *next;
|
|
int swapin = 0;
|
|
|
|
LOCK_ASSERT(mutex_owned(sq->sq_mutex));
|
|
|
|
for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
|
|
KASSERT(l->l_sleepq == sq);
|
|
next = TAILQ_NEXT(l, l_sleepchain);
|
|
if (l->l_wchan != wchan)
|
|
continue;
|
|
swapin |= sleepq_remove(sq, l);
|
|
if (--expected == 0)
|
|
break;
|
|
}
|
|
|
|
LOCK_ASSERT(mutex_owned(sq->sq_mutex));
|
|
sleepq_unlock(sq);
|
|
|
|
/*
|
|
* If there are newly awakend threads that need to be swapped in,
|
|
* then kick the swapper into action.
|
|
*/
|
|
if (swapin)
|
|
wakeup(&proc0);
|
|
}
|
|
|
|
/*
|
|
* sleepq_unsleep:
|
|
*
|
|
* Remove an LWP from its sleep queue and set it runnable again.
|
|
* sleepq_unsleep() is called with the LWP's mutex held, and will
|
|
* always release it.
|
|
*/
|
|
void
|
|
sleepq_unsleep(struct lwp *l)
|
|
{
|
|
sleepq_t *sq = l->l_sleepq;
|
|
int swapin;
|
|
|
|
LOCK_ASSERT(lwp_locked(l, NULL));
|
|
KASSERT(l->l_wchan != NULL);
|
|
KASSERT(l->l_mutex == sq->sq_mutex);
|
|
|
|
swapin = sleepq_remove(sq, l);
|
|
sleepq_unlock(sq);
|
|
|
|
if (swapin)
|
|
wakeup(&proc0);
|
|
}
|
|
|
|
/*
|
|
* sleepq_timeout:
|
|
*
|
|
* Entered via the callout(9) subsystem to time out an LWP that is on a
|
|
* sleep queue.
|
|
*/
|
|
void
|
|
sleepq_timeout(void *arg)
|
|
{
|
|
struct lwp *l = arg;
|
|
|
|
/*
|
|
* Lock the LWP. Assuming it's still on the sleep queue, its
|
|
* current mutex will also be the sleep queue mutex.
|
|
*/
|
|
lwp_lock(l);
|
|
|
|
if (l->l_wchan == NULL) {
|
|
/* Somebody beat us to it. */
|
|
lwp_unlock(l);
|
|
return;
|
|
}
|
|
|
|
lwp_unsleep(l);
|
|
}
|
|
|
|
/*
|
|
* sleepq_sigtoerror:
|
|
*
|
|
* Given a signal number, interpret and return an error code.
|
|
*/
|
|
int
|
|
sleepq_sigtoerror(struct lwp *l, int sig)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
int error;
|
|
|
|
LOCK_ASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
/*
|
|
* If this sleep was canceled, don't let the syscall restart.
|
|
*/
|
|
if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
|
|
error = EINTR;
|
|
else
|
|
error = ERESTART;
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sleepq_abort:
|
|
*
|
|
* After a panic or during autoconfiguration, lower the interrupt
|
|
* priority level to give pending interrupts a chance to run, and
|
|
* then return. Called if sleepq_dontsleep() returns non-zero, and
|
|
* always returns zero.
|
|
*/
|
|
int
|
|
sleepq_abort(kmutex_t *mtx, int unlock)
|
|
{
|
|
extern int safepri;
|
|
int s;
|
|
|
|
s = splhigh();
|
|
splx(safepri);
|
|
splx(s);
|
|
if (mtx != NULL && unlock != 0)
|
|
mutex_exit(mtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sleepq_changepri:
|
|
*
|
|
* Adjust the priority of an LWP residing on a sleepq. This method
|
|
* will only alter the user priority; the effective priority is
|
|
* assumed to have been fixed at the time of insertion into the queue.
|
|
*/
|
|
void
|
|
sleepq_changepri(struct lwp *l, int pri)
|
|
{
|
|
|
|
KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
|
|
l->l_usrpri = pri;
|
|
}
|