NetBSD/sys/dev/ic/atppc.c
drochner c6de49574c The interrupt claim stuff is broken -- data buffers
and external interrupt handlers should be completely
unrelated.
For now, just remove the obvious culprit in the nibble/ps2
case to make NTP pps signal capturing work again.
External handlers should be passed to the lower level,
and they should have full power and responsibility if
they are installed, and their lavel should be selected
by the frontend.
Being here, comment out <machine/intr.h> - it is not
used yet, and do some more conmetic cleanup.
2004-02-24 17:41:09 +00:00

2421 lines
57 KiB
C

/* $NetBSD: atppc.c,v 1.15 2004/02/24 17:41:09 drochner Exp $ */
/*
* Copyright (c) 2001 Alcove - Nicolas Souchu
* Copyright (c) 2003, 2004 Gary Thorpe <gathorpe@users.sourceforge.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* FreeBSD: src/sys/isa/ppc.c,v 1.26.2.5 2001/10/02 05:21:45 nsouch Exp
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: atppc.c,v 1.15 2004/02/24 17:41:09 drochner Exp $");
#include "opt_atppc.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/syslog.h>
#include <machine/bus.h>
/*#include <machine/intr.h>*/
#include <dev/isa/isareg.h>
#include <dev/ic/atppcreg.h>
#include <dev/ic/atppcvar.h>
#include <dev/ppbus/ppbus_conf.h>
#include <dev/ppbus/ppbus_msq.h>
#include <dev/ppbus/ppbus_io.h>
#include <dev/ppbus/ppbus_var.h>
#ifdef ATPPC_DEBUG
int atppc_debug = 1;
#endif
#ifdef ATPPC_VERBOSE
int atppc_verbose = 1;
#endif
/* List of supported chipsets detection routines */
static int (*chipset_detect[])(struct atppc_softc *) = {
/* XXX Add these LATER: maybe as seperate devices?
atppc_pc873xx_detect,
atppc_smc37c66xgt_detect,
atppc_w83877f_detect,
atppc_smc37c935_detect,
*/
NULL
};
/* Prototypes for functions. */
/* Soft configuration attach */
void atppc_sc_attach(struct atppc_softc *);
int atppc_sc_detach(struct atppc_softc *, int);
/* Interrupt handler for atppc device */
int atppcintr(void *);
/* Print function for config_found_sm() */
static int atppc_print(void *, const char *);
/* Detection routines */
static int atppc_detect_fifo(struct atppc_softc *);
static int atppc_detect_chipset(struct atppc_softc *);
static int atppc_detect_generic(struct atppc_softc *);
/* Routines for ppbus interface (bus + device) */
static int atppc_read(struct device *, char *, int, int, size_t *);
static int atppc_write(struct device *, char *, int, int, size_t *);
static int atppc_setmode(struct device *, int);
static int atppc_getmode(struct device *);
static int atppc_check_epp_timeout(struct device *);
static void atppc_reset_epp_timeout(struct device *);
static void atppc_ecp_sync(struct device *);
static int atppc_exec_microseq(struct device *, struct ppbus_microseq * *);
static u_int8_t atppc_io(struct device *, int, u_char *, int, u_char);
static int atppc_read_ivar(struct device *, int, unsigned int *);
static int atppc_write_ivar(struct device *, int, unsigned int *);
static int atppc_add_handler(struct device *, void (*)(void *), void *);
static int atppc_remove_handler(struct device *, void (*)(void *));
/* Utility functions */
/* Functions to read bytes into device's input buffer */
static void atppc_nibble_read(struct atppc_softc * const);
static void atppc_byte_read(struct atppc_softc * const);
static void atppc_epp_read(struct atppc_softc * const);
static void atppc_ecp_read(struct atppc_softc * const);
static void atppc_ecp_read_dma(struct atppc_softc *, unsigned int *,
unsigned char);
static void atppc_ecp_read_pio(struct atppc_softc *, unsigned int *,
unsigned char);
static void atppc_ecp_read_error(struct atppc_softc *, const unsigned int);
/* Functions to write bytes to device's output buffer */
static void atppc_std_write(struct atppc_softc * const);
static void atppc_epp_write(struct atppc_softc * const);
static void atppc_fifo_write(struct atppc_softc * const);
static void atppc_fifo_write_dma(struct atppc_softc * const, unsigned char,
unsigned char);
static void atppc_fifo_write_pio(struct atppc_softc * const, unsigned char,
unsigned char);
static void atppc_fifo_write_error(struct atppc_softc * const,
const unsigned int);
/* Miscellaneous */
static int atppc_poll_str(const struct atppc_softc * const, const u_int8_t,
const u_int8_t);
static int atppc_wait_interrupt(struct atppc_softc * const, const caddr_t,
const u_int8_t);
/*
* Generic attach and detach functions for atppc device. If sc_dev_ok in soft
* configuration data is not ATPPC_ATTACHED, these should be skipped altogether.
*/
/* Soft configuration attach for atppc */
void
atppc_sc_attach(struct atppc_softc *lsc)
{
/* Adapter used to configure ppbus device */
struct parport_adapter sc_parport_adapter;
char buf[64];
/* Probe and set up chipset */
if (atppc_detect_chipset(lsc) != 0) {
if (atppc_detect_generic(lsc) != 0) {
ATPPC_DPRINTF(("%s: Error detecting chipset\n",
lsc->sc_dev.dv_xname));
}
}
/* Probe and setup FIFO queue */
if (atppc_detect_fifo(lsc) == 0) {
printf("%s: FIFO <depth,wthr,rthr>=<%d,%d,%d>\n",
lsc->sc_dev.dv_xname, lsc->sc_fifo, lsc->sc_wthr,
lsc->sc_rthr);
}
/* Print out chipset capabilities */
bitmask_snprintf(lsc->sc_has, "\20\1INTR\2DMA\3FIFO\4PS2\5ECP\6EPP",
buf, sizeof(buf));
printf("%s: capabilities=%s\n", lsc->sc_dev.dv_xname, buf);
/* Initialize device's buffer pointers */
lsc->sc_outb = lsc->sc_outbstart = lsc->sc_inb = lsc->sc_inbstart
= NULL;
lsc->sc_inb_nbytes = lsc->sc_outb_nbytes = 0;
/* Last configuration step: set mode to standard mode */
if (atppc_setmode(&(lsc->sc_dev), PPBUS_COMPATIBLE) != 0) {
ATPPC_DPRINTF(("%s: unable to initialize mode.\n",
lsc->sc_dev.dv_xname));
}
#if defined (MULTIPROCESSOR) || defined (LOCKDEBUG)
/* Initialize lock structure */
simple_lock_init(&(lsc->sc_lock));
#endif
/* Set up parport_adapter structure */
/* Set capabilites */
sc_parport_adapter.capabilities = 0;
if (lsc->sc_has & ATPPC_HAS_INTR) {
sc_parport_adapter.capabilities |= PPBUS_HAS_INTR;
}
if (lsc->sc_has & ATPPC_HAS_DMA) {
sc_parport_adapter.capabilities |= PPBUS_HAS_DMA;
}
if (lsc->sc_has & ATPPC_HAS_FIFO) {
sc_parport_adapter.capabilities |= PPBUS_HAS_FIFO;
}
if (lsc->sc_has & ATPPC_HAS_PS2) {
sc_parport_adapter.capabilities |= PPBUS_HAS_PS2;
}
if (lsc->sc_has & ATPPC_HAS_EPP) {
sc_parport_adapter.capabilities |= PPBUS_HAS_EPP;
}
if (lsc->sc_has & ATPPC_HAS_ECP) {
sc_parport_adapter.capabilities |= PPBUS_HAS_ECP;
}
/* Set function pointers */
sc_parport_adapter.parport_io = atppc_io;
sc_parport_adapter.parport_exec_microseq = atppc_exec_microseq;
sc_parport_adapter.parport_reset_epp_timeout =
atppc_reset_epp_timeout;
sc_parport_adapter.parport_setmode = atppc_setmode;
sc_parport_adapter.parport_getmode = atppc_getmode;
sc_parport_adapter.parport_ecp_sync = atppc_ecp_sync;
sc_parport_adapter.parport_read = atppc_read;
sc_parport_adapter.parport_write = atppc_write;
sc_parport_adapter.parport_read_ivar = atppc_read_ivar;
sc_parport_adapter.parport_write_ivar = atppc_write_ivar;
sc_parport_adapter.parport_dma_malloc = lsc->sc_dma_malloc;
sc_parport_adapter.parport_dma_free = lsc->sc_dma_free;
sc_parport_adapter.parport_add_handler = atppc_add_handler;
sc_parport_adapter.parport_remove_handler = atppc_remove_handler;
/* Initialize handler list, may be added to by grandchildren */
SLIST_INIT(&(lsc->sc_handler_listhead));
/* Initialize interrupt state */
lsc->sc_irqstat = ATPPC_IRQ_NONE;
lsc->sc_ecr_intr = lsc->sc_ctr_intr = lsc->sc_str_intr = 0;
/* Disable DMA/interrupts (each ppbus driver selects usage itself) */
lsc->sc_use = 0;
/* Configure child of the device. */
lsc->child = config_found_sm(&(lsc->sc_dev), &(sc_parport_adapter),
atppc_print, NULL);
return;
}
/* Soft configuration detach */
int atppc_sc_detach(struct atppc_softc *lsc, int flag)
{
struct device *dev = (struct device *)lsc;
/* Detach children devices */
if (config_detach(lsc->child, flag) && !(flag & DETACH_QUIET)) {
printf("%s not able to detach child device, ", dev->dv_xname);
if (!(flag & DETACH_FORCE)) {
printf("cannot detach\n");
return 1;
} else {
printf("continuing (DETACH_FORCE)\n");
}
}
if (!(flag & DETACH_QUIET))
printf("%s detached", dev->dv_xname);
return 0;
}
/* Used by config_found_sm() to print out device information */
static int
atppc_print(void *aux, const char *name)
{
/* Print out something on failure. */
if (name != NULL) {
printf("%s: child devices", name);
return UNCONF;
}
return QUIET;
}
/*
* Machine independent detection routines for atppc driver.
*/
/* Detect parallel port I/O port: taken from FreeBSD code directly. */
int
atppc_detect_port(bus_space_tag_t iot, bus_space_handle_t ioh)
{
/*
* Much shorter than scheme used by lpt_isa_probe() and lpt_port_test()
* in original lpt driver.
* Write to data register common to all controllers and read back the
* values. Also tests control and status registers.
*/
/*
* Cannot use convenient macros because the device's config structure
* may not have been created yet: major change from FreeBSD code.
*/
int rval;
u_int8_t ctr_sav, dtr_sav, str_sav;
/* Store writtable registers' values and test if they can be read */
str_sav = bus_space_read_1(iot, ioh, ATPPC_SPP_STR);
ctr_sav = bus_space_read_1(iot, ioh, ATPPC_SPP_CTR);
dtr_sav = bus_space_read_1(iot, ioh, ATPPC_SPP_DTR);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
/*
* Ensure PS2 ports in output mode, also read back value of control
* register.
*/
bus_space_write_1(iot, ioh, ATPPC_SPP_CTR, 0x0c);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
if (bus_space_read_1(iot, ioh, ATPPC_SPP_CTR) != 0x0c) {
rval = 0;
} else {
/*
* Test if two values can be written and read from the data
* register.
*/
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
bus_space_write_1(iot, ioh, ATPPC_SPP_DTR, 0xaa);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
if (bus_space_read_1(iot, ioh, ATPPC_SPP_DTR) != 0xaa) {
rval = 1;
} else {
/* Second value to test */
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
bus_space_write_1(iot, ioh, ATPPC_SPP_DTR, 0x55);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
if (bus_space_read_1(iot, ioh, ATPPC_SPP_DTR) != 0x55) {
rval = 1;
} else {
rval = 0;
}
}
}
/* Restore registers */
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
bus_space_write_1(iot, ioh, ATPPC_SPP_CTR, ctr_sav);
bus_space_write_1(iot, ioh, ATPPC_SPP_DTR, dtr_sav);
bus_space_write_1(iot, ioh, ATPPC_SPP_STR, str_sav);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
return rval;
}
/* Detect parallel port chipset. */
static int
atppc_detect_chipset(struct atppc_softc *atppc)
{
/* Try each detection routine. */
int i, mode;
for (i = 0; chipset_detect[i] != NULL; i++) {
if ((mode = chipset_detect[i](atppc)) != -1) {
atppc->sc_mode = mode;
return 0;
}
}
return 1;
}
/* Detect generic capabilities. */
static int
atppc_detect_generic(struct atppc_softc *atppc)
{
u_int8_t ecr_sav = atppc_r_ecr(atppc);
u_int8_t ctr_sav = atppc_r_ctr(atppc);
u_int8_t str_sav = atppc_r_str(atppc);
u_int8_t tmp;
atppc_barrier_r(atppc);
/* Default to generic */
atppc->sc_type = ATPPC_TYPE_GENERIC;
atppc->sc_model = GENERIC;
/* Check for ECP */
tmp = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if ((tmp & ATPPC_FIFO_EMPTY) && !(tmp & ATPPC_FIFO_FULL)) {
atppc_w_ecr(atppc, 0x34);
atppc_barrier_w(atppc);
tmp = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (tmp == 0x35) {
atppc->sc_has |= ATPPC_HAS_ECP;
}
}
/* Allow search for SMC style ECP+EPP mode */
if (atppc->sc_has & ATPPC_HAS_ECP) {
atppc_w_ecr(atppc, ATPPC_ECR_EPP);
atppc_barrier_w(atppc);
}
/* Check for EPP by checking for timeout bit */
if (atppc_check_epp_timeout(&(atppc->sc_dev)) != 0) {
atppc->sc_has |= ATPPC_HAS_EPP;
atppc->sc_epp = ATPPC_EPP_1_9;
if (atppc->sc_has & ATPPC_HAS_ECP) {
/* SMC like chipset found */
atppc->sc_model = SMC_LIKE;
atppc->sc_type = ATPPC_TYPE_SMCLIKE;
}
}
/* Detect PS2 mode */
if (atppc->sc_has & ATPPC_HAS_ECP) {
/* Put ECP port into PS2 mode */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
}
/* Put PS2 port in input mode: writes should not be readable */
atppc_w_ctr(atppc, 0x20);
atppc_barrier_w(atppc);
/*
* Write two values to data port: if neither are read back,
* bidirectional mode is functional.
*/
atppc_w_dtr(atppc, 0xaa);
atppc_barrier_w(atppc);
tmp = atppc_r_dtr(atppc);
atppc_barrier_r(atppc);
if (tmp != 0xaa) {
atppc_w_dtr(atppc, 0x55);
atppc_barrier_w(atppc);
tmp = atppc_r_dtr(atppc);
atppc_barrier_r(atppc);
if (tmp != 0x55) {
atppc->sc_has |= ATPPC_HAS_PS2;
}
}
/* Restore to previous state */
atppc_w_ecr(atppc, ecr_sav);
atppc_w_ctr(atppc, ctr_sav);
atppc_w_str(atppc, str_sav);
atppc_barrier_w(atppc);
return 0;
}
/*
* Detect parallel port FIFO: taken from FreeBSD code directly.
*/
static int
atppc_detect_fifo(struct atppc_softc *atppc)
{
#ifdef ATPPC_DEBUG
struct device *dev = (struct device *)atppc;
#endif
u_int8_t ecr_sav;
u_int8_t ctr_sav;
u_int8_t str_sav;
u_int8_t cc;
short i;
/* If there is no ECP mode, we cannot config a FIFO */
if (!(atppc->sc_has & ATPPC_HAS_ECP)) {
return (EINVAL);
}
/* save registers */
ecr_sav = atppc_r_ecr(atppc);
ctr_sav = atppc_r_ctr(atppc);
str_sav = atppc_r_str(atppc);
atppc_barrier_r(atppc);
/* Enter ECP configuration mode, no interrupt, no DMA */
atppc_w_ecr(atppc, (ATPPC_ECR_CFG | ATPPC_SERVICE_INTR) &
~ATPPC_ENABLE_DMA);
atppc_barrier_w(atppc);
/* read PWord size - transfers in FIFO mode must be PWord aligned */
atppc->sc_pword = (atppc_r_cnfgA(atppc) & ATPPC_PWORD_MASK);
atppc_barrier_r(atppc);
/* XXX 16 and 32 bits implementations not supported */
if (atppc->sc_pword != ATPPC_PWORD_8) {
ATPPC_DPRINTF(("%s(%s): FIFO PWord(%d) not supported.\n",
__func__, dev->dv_xname, atppc->sc_pword));
goto error;
}
/* Byte mode, reverse direction, no interrupt, no DMA */
atppc_w_ecr(atppc, ATPPC_ECR_PS2 | ATPPC_SERVICE_INTR);
atppc_w_ctr(atppc, (ctr_sav & ~IRQENABLE) | PCD);
/* enter ECP test mode, no interrupt, no DMA */
atppc_w_ecr(atppc, ATPPC_ECR_TST | ATPPC_SERVICE_INTR);
atppc_barrier_w(atppc);
/* flush the FIFO */
for (i = 0; i < 1024; i++) {
atppc_r_fifo(atppc);
atppc_barrier_r(atppc);
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (cc & ATPPC_FIFO_EMPTY)
break;
}
if (i >= 1024) {
ATPPC_DPRINTF(("%s(%s): cannot flush FIFO.\n", __func__,
dev->dv_xname));
goto error;
}
/* Test mode, enable interrupts, no DMA */
atppc_w_ecr(atppc, ATPPC_ECR_TST);
atppc_barrier_w(atppc);
/* Determine readIntrThreshold - fill FIFO until serviceIntr is set */
for (i = atppc->sc_rthr = atppc->sc_fifo = 0; i < 1024; i++) {
atppc_w_fifo(atppc, (char)i);
atppc_barrier_w(atppc);
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if ((atppc->sc_rthr == 0) && (cc & ATPPC_SERVICE_INTR)) {
/* readThreshold reached */
atppc->sc_rthr = i + 1;
}
if (cc & ATPPC_FIFO_FULL) {
atppc->sc_fifo = i + 1;
break;
}
}
if (i >= 1024) {
ATPPC_DPRINTF(("%s(%s): cannot fill FIFO.\n", __func__,
dev->dv_xname));
goto error;
}
/* Change direction */
atppc_w_ctr(atppc, (ctr_sav & ~IRQENABLE) & ~PCD);
atppc_barrier_w(atppc);
/* Clear the serviceIntr bit we've already set in the above loop */
atppc_w_ecr(atppc, ATPPC_ECR_TST);
atppc_barrier_w(atppc);
/* Determine writeIntrThreshold - empty FIFO until serviceIntr is set */
for (atppc->sc_wthr = 0; i > -1; i--) {
cc = atppc_r_fifo(atppc);
atppc_barrier_r(atppc);
if (cc != (char)(atppc->sc_fifo - i - 1)) {
ATPPC_DPRINTF(("%s(%s): invalid data in FIFO.\n",
__func__, dev->dv_xname));
goto error;
}
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if ((atppc->sc_wthr == 0) && (cc & ATPPC_SERVICE_INTR)) {
/* writeIntrThreshold reached */
atppc->sc_wthr = atppc->sc_fifo - i;
}
if (i > 0 && (cc & ATPPC_FIFO_EMPTY)) {
/* If FIFO empty before the last byte, error */
ATPPC_DPRINTF(("%s(%s): data lost in FIFO.\n", __func__,
dev->dv_xname));
goto error;
}
}
/* FIFO must be empty after the last byte */
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (!(cc & ATPPC_FIFO_EMPTY)) {
ATPPC_DPRINTF(("%s(%s): cannot empty the FIFO.\n", __func__,
dev->dv_xname));
goto error;
}
/* Restore original registers */
atppc_w_ctr(atppc, ctr_sav);
atppc_w_str(atppc, str_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
/* Update capabilities */
atppc->sc_has |= ATPPC_HAS_FIFO;
return 0;
error:
/* Restore original registers */
atppc_w_ctr(atppc, ctr_sav);
atppc_w_str(atppc, str_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
return (EINVAL);
}
/* Interrupt handler for atppc device: wakes up read/write functions */
int
atppcintr(void *arg)
{
struct atppc_softc *atppc = (struct atppc_softc *)arg;
struct device *dev = &atppc->sc_dev;
int claim = 1;
enum { NONE, READER, WRITER } wake_up = NONE;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
/* Record registers' status */
atppc->sc_str_intr = atppc_r_str(atppc);
atppc->sc_ctr_intr = atppc_r_ctr(atppc);
atppc->sc_ecr_intr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
/* Determine cause of interrupt and wake up top half */
switch (atppc->sc_mode) {
case ATPPC_MODE_STD:
/* nAck pulsed for 5 usec, too fast to check reliably, assume */
atppc->sc_irqstat = ATPPC_IRQ_nACK;
if (atppc->sc_outb)
wake_up = WRITER;
else
claim = 0;
break;
case ATPPC_MODE_NIBBLE:
case ATPPC_MODE_PS2:
/* nAck is set low by device and then high on ack */
if (!(atppc->sc_str_intr & nACK)) {
claim = 0;
break;
}
atppc->sc_irqstat = ATPPC_IRQ_nACK;
if (atppc->sc_inb)
wake_up = READER;
break;
case ATPPC_MODE_ECP:
case ATPPC_MODE_FAST:
/* Confirm interrupt cause: these are not pulsed as in nAck. */
if (atppc->sc_ecr_intr & ATPPC_SERVICE_INTR) {
if (atppc->sc_ecr_intr & ATPPC_ENABLE_DMA)
atppc->sc_irqstat |= ATPPC_IRQ_DMA;
else
atppc->sc_irqstat |= ATPPC_IRQ_FIFO;
/* Decide where top half will be waiting */
if (atppc->sc_mode & ATPPC_MODE_ECP) {
if (atppc->sc_ctr_intr & PCD) {
if (atppc->sc_inb)
wake_up = READER;
else
claim = 0;
} else {
if (atppc->sc_outb)
wake_up = WRITER;
else
claim = 0;
}
} else {
if (atppc->sc_outb)
wake_up = WRITER;
else
claim = 0;
}
}
/* Determine if nFault has occurred */
if ((atppc->sc_mode & ATPPC_MODE_ECP) &&
(atppc->sc_ecr_intr & ATPPC_nFAULT_INTR) &&
!(atppc->sc_str_intr & nFAULT)) {
/* Device is requesting the channel */
atppc->sc_irqstat |= ATPPC_IRQ_nFAULT;
claim = 1;
}
break;
case ATPPC_MODE_EPP:
/* nAck pulsed for 5 usec, too fast to check reliably */
atppc->sc_irqstat = ATPPC_IRQ_nACK;
if (atppc->sc_inb)
wake_up = WRITER;
else if (atppc->sc_outb)
wake_up = READER;
else
claim = 0;
break;
default:
panic("%s: chipset is in invalid mode.", dev->dv_xname);
}
if (claim) {
switch (wake_up) {
case NONE:
break;
case READER:
wakeup(atppc->sc_inb);
break;
case WRITER:
wakeup(atppc->sc_outb);
break;
}
}
ATPPC_UNLOCK(atppc);
/* Call all of the installed handlers */
if (claim) {
struct atppc_handler_node * callback;
SLIST_FOREACH(callback, &(atppc->sc_handler_listhead),
entries) {
(*callback->func)(callback->arg);
}
}
splx(s);
return claim;
}
/* Functions which support ppbus interface */
/* Check EPP mode timeout */
static int
atppc_check_epp_timeout(struct device *dev)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
int s;
int error;
s = splatppc();
ATPPC_LOCK(atppc);
atppc_reset_epp_timeout(dev);
error = !(atppc_r_str(atppc) & TIMEOUT);
atppc_barrier_r(atppc);
ATPPC_UNLOCK(atppc);
splx(s);
return (error);
}
/*
* EPP timeout, according to the PC87332 manual
* Semantics of clearing EPP timeout bit.
* PC87332 - reading SPP_STR does it...
* SMC - write 1 to EPP timeout bit XXX
* Others - (?) write 0 to EPP timeout bit
*/
static void
atppc_reset_epp_timeout(struct device *dev)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
register unsigned char r;
r = atppc_r_str(atppc);
atppc_barrier_r(atppc);
atppc_w_str(atppc, r | 0x1);
atppc_barrier_w(atppc);
atppc_w_str(atppc, r & 0xfe);
atppc_barrier_w(atppc);
return;
}
/* Read from atppc device: returns 0 on success. */
static int
atppc_read(struct device *dev, char *buf, int len, int ioflag,
size_t *cnt)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
int error = 0;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
*cnt = 0;
/* Initialize buffer */
atppc->sc_inb = atppc->sc_inbstart = buf;
atppc->sc_inb_nbytes = len;
/* Initialize device input error state for new operation */
atppc->sc_inerr = 0;
/* Call appropriate function to read bytes */
switch(atppc->sc_mode) {
case ATPPC_MODE_STD:
case ATPPC_MODE_FAST:
error = ENODEV;
break;
case ATPPC_MODE_NIBBLE:
atppc_nibble_read(atppc);
break;
case ATPPC_MODE_PS2:
atppc_byte_read(atppc);
break;
case ATPPC_MODE_ECP:
atppc_ecp_read(atppc);
break;
case ATPPC_MODE_EPP:
atppc_epp_read(atppc);
break;
default:
panic("%s(%s): chipset in invalid mode.\n", __func__,
dev->dv_xname);
}
/* Update counter*/
*cnt = (atppc->sc_inbstart - atppc->sc_inb);
/* Reset buffer */
atppc->sc_inb = atppc->sc_inbstart = NULL;
atppc->sc_inb_nbytes = 0;
if (!(error))
error = atppc->sc_inerr;
ATPPC_UNLOCK(atppc);
splx(s);
return (error);
}
/* Write to atppc device: returns 0 on success. */
static int
atppc_write(struct device *dev, char *buf, int len, int ioflag, size_t *cnt)
{
struct atppc_softc * const atppc = (struct atppc_softc *)dev;
int error = 0;
int s;
*cnt = 0;
s = splatppc();
ATPPC_LOCK(atppc);
/* Set up line buffer */
atppc->sc_outb = atppc->sc_outbstart = buf;
atppc->sc_outb_nbytes = len;
/* Initialize device output error state for new operation */
atppc->sc_outerr = 0;
/* Call appropriate function to write bytes */
switch (atppc->sc_mode) {
case ATPPC_MODE_STD:
atppc_std_write(atppc);
break;
case ATPPC_MODE_NIBBLE:
case ATPPC_MODE_PS2:
error = ENODEV;
break;
case ATPPC_MODE_FAST:
case ATPPC_MODE_ECP:
atppc_fifo_write(atppc);
break;
case ATPPC_MODE_EPP:
atppc_epp_write(atppc);
break;
default:
panic("%s(%s): chipset in invalid mode.\n", __func__,
dev->dv_xname);
}
/* Update counter*/
*cnt = (atppc->sc_outbstart - atppc->sc_outb);
/* Reset output buffer */
atppc->sc_outb = atppc->sc_outbstart = NULL;
atppc->sc_outb_nbytes = 0;
if (!(error))
error = atppc->sc_outerr;
ATPPC_UNLOCK(atppc);
splx(s);
return (error);
}
/*
* Set mode of chipset to mode argument. Modes not supported are ignored. If
* multiple modes are flagged, the mode is not changed. Mode's are those
* defined for ppbus_softc.sc_mode in ppbus_conf.h. Only ECP-capable chipsets
* can change their mode of operation. However, ALL operation modes support
* centronics mode and nibble mode. Modes determine both hardware AND software
* behaviour.
* NOTE: the mode for ECP should only be changed when the channel is in
* forward idle mode. This function does not make sure FIFO's have flushed or
* any consistency checks.
*/
static int
atppc_setmode(struct device *dev, int mode)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
u_int8_t ecr;
u_int8_t chipset_mode;
int s;
int rval = 0;
s = splatppc();
ATPPC_LOCK(atppc);
/* If ECP capable, configure ecr register */
if (atppc->sc_has & ATPPC_HAS_ECP) {
/* Read ECR with mode masked out */
ecr = (atppc_r_ecr(atppc) & 0x1f);
atppc_barrier_r(atppc);
switch (mode) {
case PPBUS_ECP:
/* Set ECP mode */
ecr |= ATPPC_ECR_ECP;
chipset_mode = ATPPC_MODE_ECP;
break;
case PPBUS_EPP:
/* Set EPP mode */
if (atppc->sc_has & ATPPC_HAS_EPP) {
ecr |= ATPPC_ECR_EPP;
chipset_mode = ATPPC_MODE_EPP;
} else {
rval = ENODEV;
goto end;
}
break;
case PPBUS_FAST:
/* Set fast centronics mode */
ecr |= ATPPC_ECR_FIFO;
chipset_mode = ATPPC_MODE_FAST;
break;
case PPBUS_PS2:
/* Set PS2 mode */
ecr |= ATPPC_ECR_PS2;
chipset_mode = ATPPC_MODE_PS2;
break;
case PPBUS_COMPATIBLE:
/* Set standard mode */
ecr |= ATPPC_ECR_STD;
chipset_mode = ATPPC_MODE_STD;
break;
case PPBUS_NIBBLE:
/* Set nibble mode: uses chipset standard mode */
ecr |= ATPPC_ECR_STD;
chipset_mode = ATPPC_MODE_NIBBLE;
break;
default:
/* Invalid mode specified for ECP chip */
ATPPC_DPRINTF(("%s(%s): invalid mode passed as "
"argument.\n", __func__, dev->dv_xname));
rval = ENODEV;
goto end;
}
/* Switch to byte mode to be able to change modes. */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
/* Update mode */
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
} else {
switch (mode) {
case PPBUS_EPP:
if (atppc->sc_has & ATPPC_HAS_EPP) {
chipset_mode = ATPPC_MODE_EPP;
} else {
rval = ENODEV;
goto end;
}
break;
case PPBUS_PS2:
if (atppc->sc_has & ATPPC_HAS_PS2) {
chipset_mode = ATPPC_MODE_PS2;
} else {
rval = ENODEV;
goto end;
}
break;
case PPBUS_NIBBLE:
/* Set nibble mode (virtual) */
chipset_mode = ATPPC_MODE_NIBBLE;
break;
case PPBUS_COMPATIBLE:
chipset_mode = ATPPC_MODE_STD;
break;
case PPBUS_ECP:
rval = ENODEV;
goto end;
default:
ATPPC_DPRINTF(("%s(%s): invalid mode passed as "
"argument.\n", __func__, dev->dv_xname));
rval = ENODEV;
goto end;
}
}
atppc->sc_mode = chipset_mode;
if (chipset_mode == ATPPC_MODE_PS2) {
/* Set direction bit to reverse */
ecr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
ecr |= PCD;
atppc_w_ctr(atppc, ecr);
atppc_barrier_w(atppc);
}
end:
ATPPC_UNLOCK(atppc);
splx(s);
return rval;
}
/* Get the current mode of chipset */
static int
atppc_getmode(struct device *dev)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
int mode;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
/* The chipset can only be in one mode at a time logically */
switch (atppc->sc_mode) {
case ATPPC_MODE_ECP:
mode = PPBUS_ECP;
break;
case ATPPC_MODE_EPP:
mode = PPBUS_EPP;
break;
case ATPPC_MODE_PS2:
mode = PPBUS_PS2;
break;
case ATPPC_MODE_STD:
mode = PPBUS_COMPATIBLE;
break;
case ATPPC_MODE_NIBBLE:
mode = PPBUS_NIBBLE;
break;
case ATPPC_MODE_FAST:
mode = PPBUS_FAST;
break;
default:
panic("%s(%s): device is in invalid mode!", __func__,
dev->dv_xname);
break;
}
ATPPC_UNLOCK(atppc);
splx(s);
return mode;
}
/* Wait for FIFO buffer to empty for ECP-capable chipset */
static void
atppc_ecp_sync(struct device *dev)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
int i;
int s;
u_int8_t r;
s = splatppc();
ATPPC_LOCK(atppc);
/*
* Only wait for FIFO to empty if mode is chipset is ECP-capable AND
* the mode is either ECP or Fast Centronics.
*/
r = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
r &= 0xe0;
if (!(atppc->sc_has & ATPPC_HAS_ECP) || ((r != ATPPC_ECR_ECP)
&& (r != ATPPC_ECR_FIFO))) {
goto end;
}
/* Wait for FIFO to empty */
for (i = 0; i < ((MAXBUSYWAIT/hz) * 1000000); i += 100) {
r = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (r & ATPPC_FIFO_EMPTY) {
goto end;
}
delay(100); /* Supposed to be a 100 usec delay */
}
ATPPC_DPRINTF(("%s: ECP sync failed, data still in FIFO.\n",
dev->dv_xname));
end:
ATPPC_UNLOCK(atppc);
splx(s);
return;
}
/* Execute a microsequence to handle fast I/O operations. */
static int
atppc_exec_microseq(struct device *dev, struct ppbus_microseq **p_msq)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
struct ppbus_microseq *mi = *p_msq;
char cc, *p;
int i, iter, len;
int error;
int s;
register int reg;
register unsigned char mask;
register int accum = 0;
register char *ptr = NULL;
struct ppbus_microseq *stack = NULL;
s = splatppc();
ATPPC_LOCK(atppc);
/* microsequence registers are equivalent to PC-like port registers */
#define r_reg(register,atppc) bus_space_read_1((atppc)->sc_iot, \
(atppc)->sc_ioh, (register))
#define w_reg(register, atppc, byte) bus_space_write_1((atppc)->sc_iot, \
(atppc)->sc_ioh, (register), (byte))
/* Loop until microsequence execution finishes (ending op code) */
for (;;) {
switch (mi->opcode) {
case MS_OP_RSET:
cc = r_reg(mi->arg[0].i, atppc);
atppc_barrier_r(atppc);
cc &= (char)mi->arg[2].i; /* clear mask */
cc |= (char)mi->arg[1].i; /* assert mask */
w_reg(mi->arg[0].i, atppc, cc);
atppc_barrier_w(atppc);
mi++;
break;
case MS_OP_RASSERT_P:
reg = mi->arg[1].i;
ptr = atppc->sc_ptr;
if ((len = mi->arg[0].i) == MS_ACCUM) {
accum = atppc->sc_accum;
for (; accum; accum--) {
w_reg(reg, atppc, *ptr++);
atppc_barrier_w(atppc);
}
atppc->sc_accum = accum;
} else {
for (i = 0; i < len; i++) {
w_reg(reg, atppc, *ptr++);
atppc_barrier_w(atppc);
}
}
atppc->sc_ptr = ptr;
mi++;
break;
case MS_OP_RFETCH_P:
reg = mi->arg[1].i;
mask = (char)mi->arg[2].i;
ptr = atppc->sc_ptr;
if ((len = mi->arg[0].i) == MS_ACCUM) {
accum = atppc->sc_accum;
for (; accum; accum--) {
*ptr++ = r_reg(reg, atppc) & mask;
atppc_barrier_r(atppc);
}
atppc->sc_accum = accum;
} else {
for (i = 0; i < len; i++) {
*ptr++ = r_reg(reg, atppc) & mask;
atppc_barrier_r(atppc);
}
}
atppc->sc_ptr = ptr;
mi++;
break;
case MS_OP_RFETCH:
*((char *)mi->arg[2].p) = r_reg(mi->arg[0].i, atppc) &
(char)mi->arg[1].i;
atppc_barrier_r(atppc);
mi++;
break;
case MS_OP_RASSERT:
case MS_OP_DELAY:
/* let's suppose the next instr. is the same */
do {
for (;mi->opcode == MS_OP_RASSERT; mi++) {
w_reg(mi->arg[0].i, atppc,
(char)mi->arg[1].i);
atppc_barrier_w(atppc);
}
for (;mi->opcode == MS_OP_DELAY; mi++) {
delay(mi->arg[0].i);
}
} while (mi->opcode == MS_OP_RASSERT);
break;
case MS_OP_ADELAY:
if (mi->arg[0].i) {
tsleep(atppc, PPBUSPRI, "atppcdelay",
mi->arg[0].i * (hz/1000));
}
mi++;
break;
case MS_OP_TRIG:
reg = mi->arg[0].i;
iter = mi->arg[1].i;
p = (char *)mi->arg[2].p;
/* XXX delay limited to 255 us */
for (i = 0; i < iter; i++) {
w_reg(reg, atppc, *p++);
atppc_barrier_w(atppc);
delay((unsigned char)*p++);
}
mi++;
break;
case MS_OP_SET:
atppc->sc_accum = mi->arg[0].i;
mi++;
break;
case MS_OP_DBRA:
if (--atppc->sc_accum > 0) {
mi += mi->arg[0].i;
}
mi++;
break;
case MS_OP_BRSET:
cc = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((cc & (char)mi->arg[0].i) == (char)mi->arg[0].i) {
mi += mi->arg[1].i;
}
mi++;
break;
case MS_OP_BRCLEAR:
cc = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((cc & (char)mi->arg[0].i) == 0) {
mi += mi->arg[1].i;
}
mi++;
break;
case MS_OP_BRSTAT:
cc = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((cc & ((char)mi->arg[0].i | (char)mi->arg[1].i)) ==
(char)mi->arg[0].i) {
mi += mi->arg[2].i;
}
mi++;
break;
case MS_OP_C_CALL:
/*
* If the C call returns !0 then end the microseq.
* The current state of ptr is passed to the C function
*/
if ((error = mi->arg[0].f(mi->arg[1].p,
atppc->sc_ptr))) {
ATPPC_UNLOCK(atppc);
splx(s);
return (error);
}
mi++;
break;
case MS_OP_PTR:
atppc->sc_ptr = (char *)mi->arg[0].p;
mi++;
break;
case MS_OP_CALL:
if (stack) {
panic("%s - %s: too much calls", dev->dv_xname,
__func__);
}
if (mi->arg[0].p) {
/* store state of the actual microsequence */
stack = mi;
/* jump to the new microsequence */
mi = (struct ppbus_microseq *)mi->arg[0].p;
} else {
mi++;
}
break;
case MS_OP_SUBRET:
/* retrieve microseq and pc state before the call */
mi = stack;
/* reset the stack */
stack = 0;
/* XXX return code */
mi++;
break;
case MS_OP_PUT:
case MS_OP_GET:
case MS_OP_RET:
/*
* Can't return to atppc level during the execution
* of a submicrosequence.
*/
if (stack) {
panic("%s: cannot return to atppc level",
__func__);
}
/* update pc for atppc level of execution */
*p_msq = mi;
ATPPC_UNLOCK(atppc);
splx(s);
return (0);
break;
default:
panic("%s: unknown microsequence "
"opcode 0x%x", __func__, mi->opcode);
break;
}
}
/* Should not be reached! */
#ifdef ATPPC_DEBUG
panic("%s: unexpected code reached!\n", __func__);
#endif
}
/* General I/O routine */
static u_int8_t
atppc_io(struct device *dev, int iop, u_char *addr, int cnt, u_char byte)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
u_int8_t val = 0;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
switch (iop) {
case PPBUS_OUTSB_EPP:
bus_space_write_multi_1(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, addr, cnt);
break;
case PPBUS_OUTSW_EPP:
bus_space_write_multi_2(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int16_t *)addr, cnt);
break;
case PPBUS_OUTSL_EPP:
bus_space_write_multi_4(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int32_t *)addr, cnt);
break;
case PPBUS_INSB_EPP:
bus_space_read_multi_1(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, addr, cnt);
break;
case PPBUS_INSW_EPP:
bus_space_read_multi_2(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int16_t *)addr, cnt);
break;
case PPBUS_INSL_EPP:
bus_space_read_multi_4(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int32_t *)addr, cnt);
break;
case PPBUS_RDTR:
val = (atppc_r_dtr(atppc));
break;
case PPBUS_RSTR:
val = (atppc_r_str(atppc));
break;
case PPBUS_RCTR:
val = (atppc_r_ctr(atppc));
break;
case PPBUS_REPP_A:
val = (atppc_r_eppA(atppc));
break;
case PPBUS_REPP_D:
val = (atppc_r_eppD(atppc));
break;
case PPBUS_RECR:
val = (atppc_r_ecr(atppc));
break;
case PPBUS_RFIFO:
val = (atppc_r_fifo(atppc));
break;
case PPBUS_WDTR:
atppc_w_dtr(atppc, byte);
break;
case PPBUS_WSTR:
atppc_w_str(atppc, byte);
break;
case PPBUS_WCTR:
atppc_w_ctr(atppc, byte);
break;
case PPBUS_WEPP_A:
atppc_w_eppA(atppc, byte);
break;
case PPBUS_WEPP_D:
atppc_w_eppD(atppc, byte);
break;
case PPBUS_WECR:
atppc_w_ecr(atppc, byte);
break;
case PPBUS_WFIFO:
atppc_w_fifo(atppc, byte);
break;
default:
panic("%s(%s): unknown I/O operation", dev->dv_xname,
__func__);
break;
}
atppc_barrier(atppc);
ATPPC_UNLOCK(atppc);
splx(s);
return val;
}
/* Read "instance variables" of atppc device */
static int
atppc_read_ivar(struct device *dev, int index, unsigned int *val)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
int rval = 0;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
switch(index) {
case PPBUS_IVAR_EPP_PROTO:
if (atppc->sc_epp == ATPPC_EPP_1_9)
*val = PPBUS_EPP_1_9;
else if (atppc->sc_epp == ATPPC_EPP_1_7)
*val = PPBUS_EPP_1_7;
/* XXX what if not using EPP ? */
break;
case PPBUS_IVAR_INTR:
*val = ((atppc->sc_use & ATPPC_USE_INTR) != 0);
break;
case PPBUS_IVAR_DMA:
*val = ((atppc->sc_use & ATPPC_USE_DMA) != 0);
break;
default:
rval = ENODEV;
}
ATPPC_UNLOCK(atppc);
splx(s);
return rval;
}
/* Write "instance varaibles" of atppc device */
static int
atppc_write_ivar(struct device *dev, int index, unsigned int *val)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
int rval = 0;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
switch(index) {
case PPBUS_IVAR_EPP_PROTO:
if (*val == PPBUS_EPP_1_9 || *val == PPBUS_EPP_1_7)
atppc->sc_epp = *val;
else
rval = EINVAL;
break;
case PPBUS_IVAR_INTR:
if (*val == 0)
atppc->sc_use &= ~ATPPC_USE_INTR;
else if (atppc->sc_has & ATPPC_HAS_INTR)
atppc->sc_use |= ATPPC_USE_INTR;
else
rval = ENODEV;
break;
case PPBUS_IVAR_DMA:
if (*val == 0)
atppc->sc_use &= ~ATPPC_USE_DMA;
else if (atppc->sc_has & ATPPC_HAS_DMA)
atppc->sc_use |= ATPPC_USE_DMA;
else
rval = ENODEV;
break;
default:
rval = ENODEV;
}
ATPPC_UNLOCK(atppc);
splx(s);
return rval;
}
/* Add a handler routine to be called by the interrupt handler */
static int
atppc_add_handler(struct device *dev, void (*handler)(void *), void *arg)
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
struct atppc_handler_node *callback;
int rval = 0;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
if (handler == NULL) {
ATPPC_DPRINTF(("%s(%s): attempt to register NULL handler.\n",
__func__, dev->dv_xname));
rval = EINVAL;
} else {
callback = malloc(sizeof(struct atppc_handler_node), M_DEVBUF,
M_NOWAIT);
if (callback) {
callback->func = handler;
callback->arg = arg;
SLIST_INSERT_HEAD(&(atppc->sc_handler_listhead),
callback, entries);
} else {
rval = ENOMEM;
}
}
ATPPC_UNLOCK(atppc);
splx(s);
return rval;
}
/* Remove a handler added by atppc_add_handler() */
static int
atppc_remove_handler(struct device *dev, void (*handler)(void *))
{
struct atppc_softc *atppc = (struct atppc_softc *)dev;
struct atppc_handler_node *callback;
int rval = EINVAL;
int s;
s = splatppc();
ATPPC_LOCK(atppc);
if (SLIST_EMPTY(&(atppc->sc_handler_listhead)))
panic("%s(%s): attempt to remove handler from empty list.\n",
__func__, dev->dv_xname);
/* Search list for handler */
SLIST_FOREACH(callback, &(atppc->sc_handler_listhead), entries) {
if (callback->func == handler) {
SLIST_REMOVE(&(atppc->sc_handler_listhead), callback,
atppc_handler_node, entries);
free(callback, M_DEVBUF);
rval = 0;
break;
}
}
ATPPC_UNLOCK(atppc);
splx(s);
return rval;
}
/* Utility functions */
/*
* Functions that read bytes from port into buffer: called from interrupt
* handler depending on current chipset mode and cause of interrupt. Return
* value: number of bytes moved.
*/
/* Only the lower 4 bits of the final value are valid */
#define nibble2char(s) ((((s) & ~nACK) >> 3) | (~(s) & nBUSY) >> 4)
/* Read bytes in nibble mode */
static void
atppc_nibble_read(struct atppc_softc *atppc)
{
int i;
u_int8_t nibble[2];
u_int8_t ctr;
u_int8_t str;
/* Enable interrupts if needed */
if (atppc->sc_use & ATPPC_USE_INTR) {
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
if (!(ctr & IRQENABLE)) {
ctr |= IRQENABLE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
}
}
while (atppc->sc_inbstart < (atppc->sc_inb + atppc->sc_inb_nbytes)) {
/* Check if device has data to send in idle phase */
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & nDATAVAIL) {
return;
}
/* Nibble-mode handshake transfer */
for (i = 0; i < 2; i++) {
/* Event 7 - ready to take data (HOSTBUSY low) */
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
ctr |= HOSTBUSY;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Event 8 - peripheral writes the first nibble */
/* Event 9 - peripheral set nAck low */
atppc->sc_inerr = atppc_poll_str(atppc, 0, PTRCLK);
if (atppc->sc_inerr)
return;
/* read nibble */
nibble[i] = atppc_r_str(atppc);
/* Event 10 - ack, nibble received */
ctr &= ~HOSTBUSY;
atppc_w_ctr(atppc, ctr);
/* Event 11 - wait ack from peripherial */
if (atppc->sc_use & ATPPC_USE_INTR)
atppc->sc_inerr = atppc_wait_interrupt(atppc,
atppc->sc_inb, ATPPC_IRQ_nACK);
else
atppc->sc_inerr = atppc_poll_str(atppc, PTRCLK,
PTRCLK);
if (atppc->sc_inerr)
return;
}
/* Store byte transfered */
*(atppc->sc_inbstart) = ((nibble2char(nibble[1]) << 4) & 0xf0) |
(nibble2char(nibble[0]) & 0x0f);
atppc->sc_inbstart++;
}
}
/* Read bytes in bidirectional mode */
static void
atppc_byte_read(struct atppc_softc * const atppc)
{
u_int8_t ctr;
u_int8_t str;
/* Check direction bit */
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
if (!(ctr & PCD)) {
ATPPC_DPRINTF(("%s: byte-mode read attempted without direction "
"bit set.", atppc->sc_dev.dv_xname));
atppc->sc_inerr = ENODEV;
return;
}
/* Enable interrupts if needed */
if (atppc->sc_use & ATPPC_USE_INTR) {
if (!(ctr & IRQENABLE)) {
ctr |= IRQENABLE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
}
}
/* Byte-mode handshake transfer */
while (atppc->sc_inbstart < (atppc->sc_inb + atppc->sc_inb_nbytes)) {
/* Check if device has data to send */
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & nDATAVAIL) {
return;
}
/* Event 7 - ready to take data (nAUTO low) */
ctr |= HOSTBUSY;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Event 9 - peripheral set nAck low */
atppc->sc_inerr = atppc_poll_str(atppc, 0, PTRCLK);
if (atppc->sc_inerr)
return;
/* Store byte transfered */
*(atppc->sc_inbstart) = atppc_r_dtr(atppc);
atppc_barrier_r(atppc);
/* Event 10 - data received, can't accept more */
ctr &= ~HOSTBUSY;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Event 11 - peripheral ack */
if (atppc->sc_use & ATPPC_USE_INTR)
atppc->sc_inerr = atppc_wait_interrupt(atppc,
atppc->sc_inb, ATPPC_IRQ_nACK);
else
atppc->sc_inerr = atppc_poll_str(atppc, PTRCLK, PTRCLK);
if (atppc->sc_inerr)
return;
/* Event 16 - strobe */
str |= HOSTCLK;
atppc_w_str(atppc, str);
atppc_barrier_w(atppc);
DELAY(1);
str &= ~HOSTCLK;
atppc_w_str(atppc, str);
atppc_barrier_w(atppc);
/* Update counter */
atppc->sc_inbstart++;
}
}
/* Read bytes in EPP mode */
static void
atppc_epp_read(struct atppc_softc * atppc)
{
if (atppc->sc_epp == ATPPC_EPP_1_9) {
{
uint8_t str;
int i;
atppc_reset_epp_timeout((struct device *)atppc);
for (i = 0; i < atppc->sc_inb_nbytes; i++) {
*(atppc->sc_inbstart) = atppc_r_eppD(atppc);
atppc_barrier_r(atppc);
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & TIMEOUT) {
atppc->sc_inerr = EIO;
break;
}
atppc->sc_inbstart++;
}
}
} else {
/* Read data block from EPP data register */
atppc_r_eppD_multi(atppc, atppc->sc_inbstart,
atppc->sc_inb_nbytes);
atppc_barrier_r(atppc);
/* Update buffer position, byte count and counter */
atppc->sc_inbstart += atppc->sc_inb_nbytes;
}
return;
}
/* Read bytes in ECP mode */
static void
atppc_ecp_read(struct atppc_softc *atppc)
{
u_int8_t ecr;
u_int8_t ctr;
u_int8_t str;
const unsigned char ctr_sav = atppc_r_ctr(atppc);
const unsigned char ecr_sav = atppc_r_ecr(atppc);
unsigned int worklen;
/* Check direction bit */
ctr = ctr_sav;
atppc_barrier_r(atppc);
if (!(ctr & PCD)) {
ATPPC_DPRINTF(("%s: ecp-mode read attempted without direction "
"bit set.", atppc->sc_dev.dv_xname));
atppc->sc_inerr = ENODEV;
goto end;
}
/* Clear device request if any */
if (atppc->sc_use & ATPPC_USE_INTR)
atppc->sc_irqstat &= ~ATPPC_IRQ_nFAULT;
while (atppc->sc_inbstart < (atppc->sc_inb + atppc->sc_inb_nbytes)) {
ecr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (ecr & ATPPC_FIFO_EMPTY) {
/* Check for invalid state */
if (ecr & ATPPC_FIFO_FULL) {
atppc_ecp_read_error(atppc, worklen);
break;
}
/* Check if device has data to send */
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & nDATAVAIL) {
break;
}
if (atppc->sc_use & ATPPC_USE_INTR) {
/* Enable interrupts */
ecr &= ~ATPPC_SERVICE_INTR;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for FIFO to fill */
atppc->sc_inerr = atppc_wait_interrupt(atppc,
atppc->sc_inb, ATPPC_IRQ_FIFO);
if (atppc->sc_inerr)
break;
} else {
DELAY(1);
}
continue;
}
else if (ecr & ATPPC_FIFO_FULL) {
/* Transfer sc_fifo bytes */
worklen = atppc->sc_fifo;
}
else if (ecr & ATPPC_SERVICE_INTR) {
/* Transfer sc_rthr bytes */
worklen = atppc->sc_rthr;
} else {
/* At least one byte is in the FIFO */
worklen = 1;
}
if ((atppc->sc_use & ATPPC_USE_INTR) &&
(atppc->sc_use & ATPPC_USE_DMA)) {
atppc_ecp_read_dma(atppc, &worklen, ecr);
} else {
atppc_ecp_read_pio(atppc, &worklen, ecr);
}
if (atppc->sc_inerr) {
atppc_ecp_read_error(atppc, worklen);
break;
}
/* Update counter */
atppc->sc_inbstart += worklen;
}
end:
atppc_w_ctr(atppc, ctr_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
}
/* Read bytes in ECP mode using DMA transfers */
static void
atppc_ecp_read_dma(struct atppc_softc *atppc, unsigned int *length,
unsigned char ecr)
{
/* Limit transfer to maximum DMA size and start it */
*length = min(*length, atppc->sc_dma_maxsize);
atppc->sc_dmastat = ATPPC_DMA_INIT;
atppc->sc_dma_start(atppc, atppc->sc_inbstart, *length,
ATPPC_DMA_MODE_READ);
atppc->sc_dmastat = ATPPC_DMA_STARTED;
/* Enable interrupts, DMA */
ecr &= ~ATPPC_SERVICE_INTR;
ecr |= ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for DMA completion */
atppc->sc_inerr = atppc_wait_interrupt(atppc, atppc->sc_inb,
ATPPC_IRQ_DMA);
if (atppc->sc_inerr)
return;
/* Get register value recorded by interrupt handler */
ecr = atppc->sc_ecr_intr;
/* Clear DMA programming */
atppc->sc_dma_finish(atppc);
atppc->sc_dmastat = ATPPC_DMA_COMPLETE;
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
}
/* Read bytes in ECP mode using PIO transfers */
static void
atppc_ecp_read_pio(struct atppc_softc *atppc, unsigned int *length,
unsigned char ecr)
{
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Read from FIFO */
atppc_r_fifo_multi(atppc, atppc->sc_inbstart, *length);
}
/* Handle errors for ECP reads */
static void
atppc_ecp_read_error(struct atppc_softc *atppc, const unsigned int worklen)
{
unsigned char ecr = atppc_r_ecr(atppc);
/* Abort DMA if not finished */
if (atppc->sc_dmastat == ATPPC_DMA_STARTED) {
atppc->sc_dma_abort(atppc);
ATPPC_DPRINTF(("%s: DMA interrupted.\n", __func__));
}
/* Check for invalid states */
if ((ecr & ATPPC_FIFO_EMPTY) && (ecr & ATPPC_FIFO_FULL)) {
ATPPC_DPRINTF(("%s: FIFO full+empty bits set.\n", __func__));
ATPPC_DPRINTF(("%s: reseting FIFO.\n", __func__));
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
}
}
/*
* Functions that write bytes to port from buffer: called from atppc_write()
* function depending on current chipset mode. Returns number of bytes moved.
*/
/* Write bytes in std/bidirectional mode */
static void
atppc_std_write(struct atppc_softc * const atppc)
{
unsigned int timecount;
unsigned char ctr;
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
/* Enable interrupts if needed */
if (atppc->sc_use & ATPPC_USE_INTR) {
if (!(ctr & IRQENABLE)) {
ctr |= IRQENABLE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
}
}
while (atppc->sc_outbstart < (atppc->sc_outb + atppc->sc_outb_nbytes)) {
/* Wait for peripheral to become ready for MAXBUSYWAIT */
atppc->sc_outerr = atppc_poll_str(atppc, SPP_READY, SPP_MASK);
if (atppc->sc_outerr)
return;
/* Put data in data register */
atppc_w_dtr(atppc, *(atppc->sc_outbstart));
atppc_barrier_w(atppc);
DELAY(1);
/* Pulse strobe to indicate valid data on lines */
ctr |= STROBE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
DELAY(1);
ctr &= ~STROBE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Wait for nACK for MAXBUSYWAIT */
timecount = 0;
if (atppc->sc_use & ATPPC_USE_INTR) {
atppc->sc_outerr = atppc_wait_interrupt(atppc,
atppc->sc_outb, ATPPC_IRQ_nACK);
if (atppc->sc_outerr)
return;
} else {
/* Try to catch the pulsed acknowledgement */
atppc->sc_outerr = atppc_poll_str(atppc, 0, nACK);
if (atppc->sc_outerr)
return;
atppc->sc_outerr = atppc_poll_str(atppc, nACK, nACK);
if (atppc->sc_outerr)
return;
}
/* Update buffer position, byte count and counter */
atppc->sc_outbstart++;
}
}
/* Write bytes in EPP mode */
static void
atppc_epp_write(struct atppc_softc *atppc)
{
if (atppc->sc_epp == ATPPC_EPP_1_9) {
{
uint8_t str;
int i;
atppc_reset_epp_timeout((struct device *)atppc);
for (i = 0; i < atppc->sc_outb_nbytes; i++) {
atppc_w_eppD(atppc, *(atppc->sc_outbstart));
atppc_barrier_w(atppc);
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & TIMEOUT) {
atppc->sc_outerr = EIO;
break;
}
atppc->sc_outbstart++;
}
}
} else {
/* Write data block to EPP data register */
atppc_w_eppD_multi(atppc, atppc->sc_outbstart,
atppc->sc_outb_nbytes);
atppc_barrier_w(atppc);
/* Update buffer position, byte count and counter */
atppc->sc_outbstart += atppc->sc_outb_nbytes;
}
return;
}
/* Write bytes in ECP/Fast Centronics mode */
static void
atppc_fifo_write(struct atppc_softc * const atppc)
{
unsigned char ctr;
unsigned char ecr;
const unsigned char ctr_sav = atppc_r_ctr(atppc);
const unsigned char ecr_sav = atppc_r_ecr(atppc);
ctr = ctr_sav;
ecr = ecr_sav;
atppc_barrier_r(atppc);
/* Reset and flush FIFO */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
/* Disable nAck interrupts and initialize port bits */
ctr &= ~(IRQENABLE | STROBE | AUTOFEED);
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Restore mode */
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* DMA or Programmed IO */
if ((atppc->sc_use & ATPPC_USE_DMA) &&
(atppc->sc_use & ATPPC_USE_INTR)) {
atppc_fifo_write_dma(atppc, ecr, ctr);
} else {
atppc_fifo_write_pio(atppc, ecr, ctr);
}
/* Restore original register values */
atppc_w_ctr(atppc, ctr_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
}
static void
atppc_fifo_write_dma(struct atppc_softc * const atppc, unsigned char ecr,
unsigned char ctr)
{
unsigned int len;
unsigned int worklen;
for (len = (atppc->sc_outb + atppc->sc_outb_nbytes) -
atppc->sc_outbstart; len > 0; len = (atppc->sc_outb +
atppc->sc_outb_nbytes) - atppc->sc_outbstart) {
/* Wait for device to become ready */
atppc->sc_outerr = atppc_poll_str(atppc, SPP_READY, SPP_MASK);
if (atppc->sc_outerr)
return;
/* Reset chipset for next DMA transfer */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Limit transfer to maximum DMA size and start it */
worklen = min(len, atppc->sc_dma_maxsize);
atppc->sc_dmastat = ATPPC_DMA_INIT;
atppc->sc_dma_start(atppc, atppc->sc_outbstart,
worklen, ATPPC_DMA_MODE_WRITE);
atppc->sc_dmastat = ATPPC_DMA_STARTED;
/* Enable interrupts, DMA */
ecr &= ~ATPPC_SERVICE_INTR;
ecr |= ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for DMA completion */
atppc->sc_outerr = atppc_wait_interrupt(atppc, atppc->sc_outb,
ATPPC_IRQ_DMA);
if (atppc->sc_outerr) {
atppc_fifo_write_error(atppc, worklen);
return;
}
/* Get register value recorded by interrupt handler */
ecr = atppc->sc_ecr_intr;
/* Clear DMA programming */
atppc->sc_dma_finish(atppc);
atppc->sc_dmastat = ATPPC_DMA_COMPLETE;
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for FIFO to empty */
for (;;) {
if (ecr & ATPPC_FIFO_EMPTY) {
if (ecr & ATPPC_FIFO_FULL) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc, worklen);
return;
} else {
break;
}
}
/* Enable service interrupt */
ecr &= ~ATPPC_SERVICE_INTR;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
atppc->sc_outerr = atppc_wait_interrupt(atppc,
atppc->sc_outb, ATPPC_IRQ_FIFO);
if (atppc->sc_outerr) {
atppc_fifo_write_error(atppc, worklen);
return;
}
/* Get register value recorded by interrupt handler */
ecr = atppc->sc_ecr_intr;
}
/* Update pointer */
atppc->sc_outbstart += worklen;
}
}
static void
atppc_fifo_write_pio(struct atppc_softc * const atppc, unsigned char ecr,
unsigned char ctr)
{
unsigned int len;
unsigned int worklen;
unsigned int timecount;
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
for (len = (atppc->sc_outb + atppc->sc_outb_nbytes) -
atppc->sc_outbstart; len > 0; len = (atppc->sc_outb +
atppc->sc_outb_nbytes) - atppc->sc_outbstart) {
/* Wait for device to become ready */
atppc->sc_outerr = atppc_poll_str(atppc, SPP_READY, SPP_MASK);
if (atppc->sc_outerr)
return;
/* Limit transfer to minimum of space in FIFO and buffer */
worklen = min(len, atppc->sc_fifo);
/* Write to FIFO */
atppc_w_fifo_multi(atppc, atppc->sc_outbstart, worklen);
timecount = 0;
if (atppc->sc_use & ATPPC_USE_INTR) {
ecr = atppc_r_ecr(atppc);
atppc_barrier_w(atppc);
/* Wait for interrupt */
for (;;) {
if (ecr & ATPPC_FIFO_EMPTY) {
if (ecr & ATPPC_FIFO_FULL) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc,
worklen);
return;
} else {
break;
}
}
/* Enable service interrupt */
ecr &= ~ATPPC_SERVICE_INTR;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
atppc->sc_outerr = atppc_wait_interrupt(atppc,
atppc->sc_outb, ATPPC_IRQ_FIFO);
if (atppc->sc_outerr) {
atppc_fifo_write_error(atppc, worklen);
return;
}
/* Get ECR value saved by interrupt handler */
ecr = atppc->sc_ecr_intr;
}
} else {
for (; timecount < ((MAXBUSYWAIT/hz)*1000000);
timecount++) {
ecr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (ecr & ATPPC_FIFO_EMPTY) {
if (ecr & ATPPC_FIFO_FULL) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc,
worklen);
return;
} else {
break;
}
}
DELAY(1);
}
if (((timecount*hz)/1000000) >= MAXBUSYWAIT) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc, worklen);
return;
}
}
/* Update pointer */
atppc->sc_outbstart += worklen;
}
}
static void
atppc_fifo_write_error(struct atppc_softc * const atppc,
const unsigned int worklen)
{
unsigned char ecr = atppc_r_ecr(atppc);
/* Abort DMA if not finished */
if (atppc->sc_dmastat == ATPPC_DMA_STARTED) {
atppc->sc_dma_abort(atppc);
ATPPC_DPRINTF(("%s: DMA interrupted.\n", __func__));
}
/* Check for invalid states */
if ((ecr & ATPPC_FIFO_EMPTY) && (ecr & ATPPC_FIFO_FULL)) {
ATPPC_DPRINTF(("%s: FIFO full+empty bits set.\n", __func__));
} else if (!(ecr & ATPPC_FIFO_EMPTY)) {
unsigned char ctr = atppc_r_ctr(atppc);
int bytes_left;
int i;
ATPPC_DPRINTF(("%s(%s): FIFO not empty.\n", __func__,
atppc->sc_dev.dv_xname));
/* Drive strobe low to stop data transfer */
ctr &= ~STROBE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Determine how many bytes remain in FIFO */
for (i = 0; i < atppc->sc_fifo; i++) {
atppc_w_fifo(atppc, (unsigned char)i);
ecr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (ecr & ATPPC_FIFO_FULL)
break;
}
bytes_left = (atppc->sc_fifo) - (i + 1);
ATPPC_DPRINTF(("%s: %d bytes left in FIFO.\n", __func__,
bytes_left));
/* Update counter */
atppc->sc_outbstart += (worklen - bytes_left);
} else {
/* Update counter */
atppc->sc_outbstart += worklen;
}
ATPPC_DPRINTF(("%s: reseting FIFO.\n", __func__));
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
}
/*
* Poll status register using mask and status for MAXBUSYWAIT.
* Returns 0 if device ready, error value otherwise.
*/
static int
atppc_poll_str(const struct atppc_softc * const atppc, const u_int8_t status,
const u_int8_t mask)
{
unsigned int timecount;
u_int8_t str;
int error = EIO;
/* Wait for str to have status for MAXBUSYWAIT */
for (timecount = 0; timecount < ((MAXBUSYWAIT/hz)*1000000);
timecount++) {
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((str & mask) == status) {
error = 0;
break;
}
DELAY(1);
}
return error;
}
/* Wait for interrupt for MAXBUSYWAIT: returns 0 if acknowledge received. */
static int
atppc_wait_interrupt(struct atppc_softc * const atppc, const caddr_t where,
const u_int8_t irqstat)
{
int error = EIO;
atppc->sc_irqstat &= ~irqstat;
/* Wait for interrupt for MAXBUSYWAIT */
error = ltsleep(where, PPBUSPRI | PCATCH, __func__, MAXBUSYWAIT,
ATPPC_SC_LOCK(atppc));
if (!(error) && (atppc->sc_irqstat & irqstat)) {
atppc->sc_irqstat &= ~irqstat;
error = 0;
}
return error;
}