NetBSD/sys/kern/sched_4bsd.c
rmind 5c71a4d49f Implementation of processor-sets, affinity and POSIX real-time extensions.
Add schedctl(8) - a program to control scheduling of processes and threads.

Notes:
- This is supported only by SCHED_M2;
- Migration of LWP mechanism will be revisited;

Proposed on: <tech-kern>. Reviewed by: <ad>.
2008-01-15 03:37:10 +00:00

808 lines
21 KiB
C

/* $NetBSD: sched_4bsd.c,v 1.12 2008/01/15 03:37:11 rmind Exp $ */
/*-
* Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
* Daniel Sieger.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.12 2008/01/15 03:37:11 rmind Exp $");
#include "opt_ddb.h"
#include "opt_lockdebug.h"
#include "opt_perfctrs.h"
#define __MUTEX_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/cpu.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/signalvar.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/kauth.h>
#include <sys/lockdebug.h>
#include <sys/kmem.h>
#include <sys/intr.h>
#include <uvm/uvm_extern.h>
/*
* Run queues.
*
* We maintain bitmasks of non-empty queues in order speed up finding
* the first runnable process. Since there can be (by definition) few
* real time LWPs in the the system, we maintain them on a linked list,
* sorted by priority.
*/
#define PPB_SHIFT 5
#define PPB_MASK 31
#define NUM_Q (NPRI_KERNEL + NPRI_USER)
#define NUM_PPB (1 << PPB_SHIFT)
#define NUM_B (NUM_Q / NUM_PPB)
typedef struct runqueue {
TAILQ_HEAD(, lwp) rq_fixedpri; /* realtime, kthread */
u_int rq_count; /* total # jobs */
uint32_t rq_bitmap[NUM_B]; /* bitmap of queues */
TAILQ_HEAD(, lwp) rq_queue[NUM_Q]; /* user+kernel */
} runqueue_t;
static runqueue_t global_queue;
static void updatepri(struct lwp *);
static void resetpriority(struct lwp *);
fixpt_t decay_cpu(fixpt_t, fixpt_t);
extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
/* The global scheduler state */
kmutex_t runqueue_lock;
/* Number of hardclock ticks per sched_tick() */
static int rrticks;
const int schedppq = 1;
/*
* Force switch among equal priority processes every 100ms.
* Called from hardclock every hz/10 == rrticks hardclock ticks.
*
* There's no need to lock anywhere in this routine, as it's
* CPU-local and runs at IPL_SCHED (called from clock interrupt).
*/
/* ARGSUSED */
void
sched_tick(struct cpu_info *ci)
{
struct schedstate_percpu *spc = &ci->ci_schedstate;
spc->spc_ticks = rrticks;
if (CURCPU_IDLE_P())
return;
if (spc->spc_flags & SPCF_SEENRR) {
/*
* The process has already been through a roundrobin
* without switching and may be hogging the CPU.
* Indicate that the process should yield.
*/
spc->spc_flags |= SPCF_SHOULDYIELD;
} else
spc->spc_flags |= SPCF_SEENRR;
cpu_need_resched(ci, 0);
}
/*
* Why PRIO_MAX - 2? From setpriority(2):
*
* prio is a value in the range -20 to 20. The default priority is
* 0; lower priorities cause more favorable scheduling. A value of
* 19 or 20 will schedule a process only when nothing at priority <=
* 0 is runnable.
*
* This gives estcpu influence over 18 priority levels, and leaves nice
* with 40 levels. One way to think about it is that nice has 20 levels
* either side of estcpu's 18.
*/
#define ESTCPU_SHIFT 11
#define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
#define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
#define ESTCPULIM(e) min((e), ESTCPU_MAX)
/*
* Constants for digital decay and forget:
* 90% of (l_estcpu) usage in 5 * loadav time
* 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
* Note that, as ps(1) mentions, this can let percentages
* total over 100% (I've seen 137.9% for 3 processes).
*
* Note that hardclock updates l_estcpu and l_cpticks independently.
*
* We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
* That is, the system wants to compute a value of decay such
* that the following for loop:
* for (i = 0; i < (5 * loadavg); i++)
* l_estcpu *= decay;
* will compute
* l_estcpu *= 0.1;
* for all values of loadavg:
*
* Mathematically this loop can be expressed by saying:
* decay ** (5 * loadavg) ~= .1
*
* The system computes decay as:
* decay = (2 * loadavg) / (2 * loadavg + 1)
*
* We wish to prove that the system's computation of decay
* will always fulfill the equation:
* decay ** (5 * loadavg) ~= .1
*
* If we compute b as:
* b = 2 * loadavg
* then
* decay = b / (b + 1)
*
* We now need to prove two things:
* 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
* 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
*
* Facts:
* For x close to zero, exp(x) =~ 1 + x, since
* exp(x) = 0! + x**1/1! + x**2/2! + ... .
* therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
* For x close to zero, ln(1+x) =~ x, since
* ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
* therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
* ln(.1) =~ -2.30
*
* Proof of (1):
* Solve (factor)**(power) =~ .1 given power (5*loadav):
* solving for factor,
* ln(factor) =~ (-2.30/5*loadav), or
* factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
* exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
*
* Proof of (2):
* Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
* solving for power,
* power*ln(b/(b+1)) =~ -2.30, or
* power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
*
* Actual power values for the implemented algorithm are as follows:
* loadav: 1 2 3 4
* power: 5.68 10.32 14.94 19.55
*/
/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
#define loadfactor(loadav) (2 * (loadav))
fixpt_t
decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
{
if (estcpu == 0) {
return 0;
}
#if !defined(_LP64)
/* avoid 64bit arithmetics. */
#define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
return estcpu * loadfac / (loadfac + FSCALE);
}
#endif /* !defined(_LP64) */
return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
}
/*
* For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
* sleeping for at least seven times the loadfactor will decay l_estcpu to
* less than (1 << ESTCPU_SHIFT).
*
* note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
*/
static fixpt_t
decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
{
if ((n << FSHIFT) >= 7 * loadfac) {
return 0;
}
while (estcpu != 0 && n > 1) {
estcpu = decay_cpu(loadfac, estcpu);
n--;
}
return estcpu;
}
/*
* sched_pstats_hook:
*
* Periodically called from sched_pstats(); used to recalculate priorities.
*/
void
sched_pstats_hook(struct lwp *l)
{
fixpt_t loadfac;
int sleeptm;
/*
* If the LWP has slept an entire second, stop recalculating
* its priority until it wakes up.
*/
if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
l->l_stat == LSSUSPENDED) {
l->l_slptime++;
sleeptm = 1;
} else {
sleeptm = 0x7fffffff;
}
if (l->l_slptime <= sleeptm) {
loadfac = 2 * (averunnable.ldavg[0]);
l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
resetpriority(l);
}
}
/*
* Recalculate the priority of a process after it has slept for a while.
*/
static void
updatepri(struct lwp *l)
{
fixpt_t loadfac;
KASSERT(lwp_locked(l, NULL));
KASSERT(l->l_slptime > 1);
loadfac = loadfactor(averunnable.ldavg[0]);
l->l_slptime--; /* the first time was done in sched_pstats */
l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
resetpriority(l);
}
static void
runqueue_init(runqueue_t *rq)
{
int i;
for (i = 0; i < NUM_Q; i++)
TAILQ_INIT(&rq->rq_queue[i]);
for (i = 0; i < NUM_B; i++)
rq->rq_bitmap[i] = 0;
TAILQ_INIT(&rq->rq_fixedpri);
rq->rq_count = 0;
}
static void
runqueue_enqueue(runqueue_t *rq, struct lwp *l)
{
pri_t pri;
lwp_t *l2;
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
pri = lwp_eprio(l);
rq->rq_count++;
if (pri >= PRI_KTHREAD) {
TAILQ_FOREACH(l2, &rq->rq_fixedpri, l_runq) {
if (lwp_eprio(l2) < pri) {
TAILQ_INSERT_BEFORE(l2, l, l_runq);
return;
}
}
TAILQ_INSERT_TAIL(&rq->rq_fixedpri, l, l_runq);
return;
}
rq->rq_bitmap[pri >> PPB_SHIFT] |=
(0x80000000U >> (pri & PPB_MASK));
TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
}
static void
runqueue_dequeue(runqueue_t *rq, struct lwp *l)
{
pri_t pri;
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
pri = lwp_eprio(l);
rq->rq_count--;
if (pri >= PRI_KTHREAD) {
TAILQ_REMOVE(&rq->rq_fixedpri, l, l_runq);
return;
}
TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
if (TAILQ_EMPTY(&rq->rq_queue[pri]))
rq->rq_bitmap[pri >> PPB_SHIFT] ^=
(0x80000000U >> (pri & PPB_MASK));
}
#if (NUM_B != 3) || (NUM_Q != 96)
#error adjust runqueue_nextlwp
#endif
static struct lwp *
runqueue_nextlwp(runqueue_t *rq)
{
pri_t pri;
KASSERT(rq->rq_count != 0);
if (!TAILQ_EMPTY(&rq->rq_fixedpri))
return TAILQ_FIRST(&rq->rq_fixedpri);
if (rq->rq_bitmap[2] != 0)
pri = 96 - ffs(rq->rq_bitmap[2]);
else if (rq->rq_bitmap[1] != 0)
pri = 64 - ffs(rq->rq_bitmap[1]);
else
pri = 32 - ffs(rq->rq_bitmap[0]);
return TAILQ_FIRST(&rq->rq_queue[pri]);
}
#if defined(DDB)
static void
runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
lwp_t *l;
int i;
printf("PID\tLID\tPRI\tIPRI\tEPRI\tLWP\t\t NAME\n");
TAILQ_FOREACH(l, &rq->rq_fixedpri, l_runq) {
(*pr)("%d\t%d\%d\t%d\t%d\t%016lx %s\n",
l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
(int)l->l_inheritedprio, lwp_eprio(l),
(long)l, l->l_proc->p_comm);
}
for (i = NUM_Q - 1; i >= 0; i--) {
TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
(*pr)("%d\t%d\t%d\t%d\t%d\t%016lx %s\n",
l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
(int)l->l_inheritedprio, lwp_eprio(l),
(long)l, l->l_proc->p_comm);
}
}
printf("CPUIDX\tRESCHED\tCURPRI\tFLAGS\n");
for (CPU_INFO_FOREACH(cii, ci)) {
printf("%d\t%d\t%d\t%04x\n", (int)ci->ci_index,
(int)ci->ci_want_resched,
(int)ci->ci_schedstate.spc_curpriority,
(int)ci->ci_schedstate.spc_flags);
}
printf("NEXTLWP\n%016lx\n", (long)sched_nextlwp());
}
#endif /* defined(DDB) */
/*
* Initialize the (doubly-linked) run queues
* to be empty.
*/
void
sched_rqinit()
{
runqueue_init(&global_queue);
mutex_init(&runqueue_lock, MUTEX_DEFAULT, IPL_SCHED);
/* Initialize the lock pointer for lwp0 */
lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
}
void
sched_cpuattach(struct cpu_info *ci)
{
runqueue_t *rq;
ci->ci_schedstate.spc_mutex = &runqueue_lock;
rq = kmem_zalloc(sizeof(*rq), KM_SLEEP);
runqueue_init(rq);
ci->ci_schedstate.spc_sched_info = rq;
}
void
sched_setup()
{
rrticks = hz / 10;
}
void
sched_setrunnable(struct lwp *l)
{
if (l->l_slptime > 1)
updatepri(l);
}
bool
sched_curcpu_runnable_p(void)
{
struct schedstate_percpu *spc;
struct cpu_info *ci;
int bits;
ci = curcpu();
spc = &ci->ci_schedstate;
#ifndef __HAVE_FAST_SOFTINTS
bits = ci->ci_data.cpu_softints;
bits |= ((runqueue_t *)spc->spc_sched_info)->rq_count;
#else
bits = ((runqueue_t *)spc->spc_sched_info)->rq_count;
#endif
if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
bits |= global_queue.rq_count;
return bits != 0;
}
void
sched_nice(struct proc *p, int n)
{
struct lwp *l;
KASSERT(mutex_owned(&p->p_smutex));
p->p_nice = n;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
lwp_lock(l);
resetpriority(l);
lwp_unlock(l);
}
}
/*
* Recompute the priority of an LWP. Arrange to reschedule if
* the resulting priority is better than that of the current LWP.
*/
static void
resetpriority(struct lwp *l)
{
pri_t pri;
struct proc *p = l->l_proc;
KASSERT(lwp_locked(l, NULL));
if (l->l_class != SCHED_OTHER)
return;
/* See comments above ESTCPU_SHIFT definition. */
pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
pri = imax(pri, 0);
if (pri != l->l_priority)
lwp_changepri(l, pri);
}
/*
* We adjust the priority of the current process. The priority of a process
* gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
* is increased here. The formula for computing priorities (in kern_synch.c)
* will compute a different value each time l_estcpu increases. This can
* cause a switch, but unless the priority crosses a PPQ boundary the actual
* queue will not change. The CPU usage estimator ramps up quite quickly
* when the process is running (linearly), and decays away exponentially, at
* a rate which is proportionally slower when the system is busy. The basic
* principle is that the system will 90% forget that the process used a lot
* of CPU time in 5 * loadav seconds. This causes the system to favor
* processes which haven't run much recently, and to round-robin among other
* processes.
*/
void
sched_schedclock(struct lwp *l)
{
if (l->l_class != SCHED_OTHER)
return;
KASSERT(!CURCPU_IDLE_P());
l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
lwp_lock(l);
resetpriority(l);
lwp_unlock(l);
}
/*
* sched_proc_fork:
*
* Inherit the parent's scheduler history.
*/
void
sched_proc_fork(struct proc *parent, struct proc *child)
{
lwp_t *pl;
KASSERT(mutex_owned(&parent->p_smutex));
pl = LIST_FIRST(&parent->p_lwps);
child->p_estcpu_inherited = pl->l_estcpu;
child->p_forktime = sched_pstats_ticks;
}
/*
* sched_proc_exit:
*
* Chargeback parents for the sins of their children.
*/
void
sched_proc_exit(struct proc *parent, struct proc *child)
{
fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
fixpt_t estcpu;
lwp_t *pl, *cl;
/* XXX Only if parent != init?? */
mutex_enter(&parent->p_smutex);
pl = LIST_FIRST(&parent->p_lwps);
cl = LIST_FIRST(&child->p_lwps);
estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
sched_pstats_ticks - child->p_forktime);
if (cl->l_estcpu > estcpu) {
lwp_lock(pl);
pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
lwp_unlock(pl);
}
mutex_exit(&parent->p_smutex);
}
void
sched_enqueue(struct lwp *l, bool ctxswitch)
{
if (__predict_false(l->l_target_cpu != NULL)) {
/* Global mutex is used - just change the CPU */
l->l_cpu = l->l_target_cpu;
l->l_target_cpu = NULL;
}
if ((l->l_flag & LW_BOUND) != 0)
runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
else
runqueue_enqueue(&global_queue, l);
}
/*
* XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
* drop of the effective priority level from kernel to user needs to be
* moved here from userret(). The assignment in userret() is currently
* done unlocked.
*/
void
sched_dequeue(struct lwp *l)
{
if ((l->l_flag & LW_BOUND) != 0)
runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
else
runqueue_dequeue(&global_queue, l);
}
struct lwp *
sched_nextlwp(void)
{
struct schedstate_percpu *spc;
runqueue_t *rq;
lwp_t *l1, *l2;
spc = &curcpu()->ci_schedstate;
/* For now, just pick the highest priority LWP. */
rq = spc->spc_sched_info;
l1 = NULL;
if (rq->rq_count != 0)
l1 = runqueue_nextlwp(rq);
rq = &global_queue;
if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
rq->rq_count == 0)
return l1;
l2 = runqueue_nextlwp(rq);
if (l1 == NULL)
return l2;
if (l2 == NULL)
return l1;
if (lwp_eprio(l2) > lwp_eprio(l1))
return l2;
else
return l1;
}
struct cpu_info *
sched_takecpu(struct lwp *l)
{
return l->l_cpu;
}
void
sched_wakeup(struct lwp *l)
{
}
void
sched_slept(struct lwp *l)
{
}
void
sched_lwp_fork(struct lwp *l1, struct lwp *l2)
{
l2->l_estcpu = l1->l_estcpu;
}
void
sched_lwp_exit(struct lwp *l)
{
}
void
sched_lwp_collect(struct lwp *t)
{
lwp_t *l;
/* Absorb estcpu value of collected LWP. */
l = curlwp;
lwp_lock(l);
l->l_estcpu += t->l_estcpu;
lwp_unlock(l);
}
/*
* Sysctl nodes and initialization.
*/
static int
sysctl_sched_rtts(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int rttsms = hztoms(rrticks);
node = *rnode;
node.sysctl_data = &rttsms;
return sysctl_lookup(SYSCTLFN_CALL(&node));
}
SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
{
const struct sysctlnode *node = NULL;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sched",
SYSCTL_DESCR("Scheduler options"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
KASSERT(node != NULL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "name", NULL,
NULL, 0, __UNCONST("4.4BSD"), 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "rtts",
SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
sysctl_sched_rtts, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_READWRITE,
CTLTYPE_INT, "timesoftints",
SYSCTL_DESCR("Track CPU time for soft interrupts"),
NULL, 0, &softint_timing, 0,
CTL_CREATE, CTL_EOL);
}
#if defined(DDB)
void
sched_print_runqueue(void (*pr)(const char *, ...))
{
runqueue_print(&global_queue, pr);
}
#endif /* defined(DDB) */