412 lines
11 KiB
C
412 lines
11 KiB
C
/*
|
|
* Copyright (c) 1989 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Landon Curt Noll.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef lint
|
|
char copyright[] =
|
|
"@(#) Copyright (c) 1989 The Regents of the University of California.\n\
|
|
All rights reserved.\n";
|
|
#endif /* not lint */
|
|
|
|
#ifndef lint
|
|
/*static char sccsid[] = "from: @(#)primes.c 5.4 (Berkeley) 6/1/90";*/
|
|
static char rcsid[] = "$Id: primes.c,v 1.3 1994/03/01 01:07:48 cgd Exp $";
|
|
#endif /* not lint */
|
|
|
|
/*
|
|
* primes - generate a table of primes between two values
|
|
*
|
|
* By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
|
|
*
|
|
* chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
|
|
*
|
|
* usage:
|
|
* primes [start [stop]]
|
|
*
|
|
* Print primes >= start and < stop. If stop is omitted,
|
|
* the value 4294967295 (2^32-1) is assumed. If start is
|
|
* omitted, start is read from standard input.
|
|
*
|
|
* Prints "ouch" if start or stop is bogus.
|
|
*
|
|
* validation check: there are 664579 primes between 0 and 10^7
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <memory.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include "primes.h"
|
|
|
|
/*
|
|
* Eratosthenes sieve table
|
|
*
|
|
* We only sieve the odd numbers. The base of our sieve windows are always
|
|
* odd. If the base of table is 1, table[i] represents 2*i-1. After the
|
|
* sieve, table[i] == 1 if and only iff 2*i-1 is prime.
|
|
*
|
|
* We make TABSIZE large to reduce the overhead of inner loop setup.
|
|
*/
|
|
char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
|
|
|
|
/*
|
|
* prime[i] is the (i-1)th prime.
|
|
*
|
|
* We are able to sieve 2^32-1 because this byte table yields all primes
|
|
* up to 65537 and 65537^2 > 2^32-1.
|
|
*/
|
|
extern ubig prime[];
|
|
extern ubig *pr_limit; /* largest prime in the prime array */
|
|
|
|
/*
|
|
* To avoid excessive sieves for small factors, we use the table below to
|
|
* setup our sieve blocks. Each element represents a odd number starting
|
|
* with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
|
|
*/
|
|
extern char pattern[];
|
|
extern int pattern_size; /* length of pattern array */
|
|
|
|
#define MAX_LINE 255 /* max line allowed on stdin */
|
|
|
|
char *read_num_buf(); /* read a number buffer */
|
|
void primes(); /* print the primes in range */
|
|
char *program; /* our name */
|
|
|
|
main(argc, argv)
|
|
int argc; /* arg count */
|
|
char *argv[]; /* args */
|
|
{
|
|
char buf[MAX_LINE+1]; /* input buffer */
|
|
char *ret; /* return result */
|
|
ubig start; /* where to start generating */
|
|
ubig stop; /* don't generate at or above this value */
|
|
|
|
/*
|
|
* parse args
|
|
*/
|
|
program = argv[0];
|
|
start = 0;
|
|
stop = BIG;
|
|
if (argc == 3) {
|
|
/* convert low and high args */
|
|
if (read_num_buf(NULL, argv[1]) == NULL) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
if (read_num_buf(NULL, argv[2]) == NULL) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
if (sscanf(argv[1], "%lu", &start) != 1) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
if (sscanf(argv[2], "%lu", &stop) != 1) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
|
|
} else if (argc == 2) {
|
|
/* convert low arg */
|
|
if (read_num_buf(NULL, argv[1]) == NULL) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
if (sscanf(argv[1], "%lu", &start) != 1) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
|
|
} else {
|
|
/* read input until we get a good line */
|
|
if (read_num_buf(stdin, buf) != NULL) {
|
|
|
|
/* convert the buffer */
|
|
if (sscanf(buf, "%lu", &start) != 1) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
} else {
|
|
exit(0);
|
|
}
|
|
}
|
|
if (start > stop) {
|
|
fprintf(stderr, "%s: ouch\n", program);
|
|
exit(1);
|
|
}
|
|
primes(start, stop);
|
|
exit(0);
|
|
}
|
|
|
|
/*
|
|
* read_num_buf - read a number buffer from a stream
|
|
*
|
|
* Read a number on a line of the form:
|
|
*
|
|
* ^[ \t]*\(+?[0-9][0-9]\)*.*$
|
|
*
|
|
* where ? is a 1-or-0 operator and the number is within \( \).
|
|
*
|
|
* If does not match the above pattern, it is ignored and a new
|
|
* line is read. If the number is too large or small, we will
|
|
* print ouch and read a new line.
|
|
*
|
|
* We have to be very careful on how we check the magnitude of the
|
|
* input. We can not use numeric checks because of the need to
|
|
* check values against maximum numeric values.
|
|
*
|
|
* This routine will return a line containing a ascii number between
|
|
* 0 and BIG, or it will return NULL.
|
|
*
|
|
* If the stream is NULL then buf will be processed as if were
|
|
* a single line stream.
|
|
*
|
|
* returns:
|
|
* char * pointer to leading digit or +
|
|
* NULL EOF or error
|
|
*/
|
|
char *
|
|
read_num_buf(input, buf)
|
|
FILE *input; /* input stream or NULL */
|
|
char *buf; /* input buffer */
|
|
{
|
|
static char limit[MAX_LINE+1]; /* ascii value of BIG */
|
|
static int limit_len; /* digit count of limit */
|
|
int len; /* digits in input (excluding +/-) */
|
|
char *s; /* line start marker */
|
|
char *d; /* first digit, skip +/- */
|
|
char *p; /* scan pointer */
|
|
char *z; /* zero scan pointer */
|
|
|
|
/* form the ascii value of BIG if needed */
|
|
if (!isascii(limit[0]) || !isdigit(limit[0])) {
|
|
sprintf(limit, "%lu", BIG);
|
|
limit_len = strlen(limit);
|
|
}
|
|
|
|
/*
|
|
* the search for a good line
|
|
*/
|
|
if (input != NULL && fgets(buf, MAX_LINE, input) == NULL) {
|
|
/* error or EOF */
|
|
return NULL;
|
|
}
|
|
do {
|
|
|
|
/* ignore leading whitespace */
|
|
for (s=buf; *s && s < buf+MAX_LINE; ++s) {
|
|
if (!isascii(*s) || !isspace(*s)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* object if - */
|
|
if (*s == '-') {
|
|
fprintf(stderr, "%s: ouch for minuses\n", program);
|
|
continue;
|
|
}
|
|
|
|
/* skip over any leading + */
|
|
if (*s == '+') {
|
|
d = s+1;
|
|
} else {
|
|
d = s;
|
|
}
|
|
|
|
/* note leading zeros */
|
|
for (z=d; *z && z < buf+MAX_LINE; ++z) {
|
|
if (*z != '0') {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* scan for the first non-digit/non-plus/non-minus */
|
|
for (p=d; *p && p < buf+MAX_LINE; ++p) {
|
|
if (!isascii(*p) || !isdigit(*p)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* ignore empty lines */
|
|
if (p == d) {
|
|
continue;
|
|
}
|
|
*p = '\0';
|
|
|
|
/* object if too many digits */
|
|
len = strlen(z);
|
|
len = (len<=0) ? 1 : len;
|
|
/* accept if digit count is below limit */
|
|
if (len < limit_len) {
|
|
/* we have good input */
|
|
return s;
|
|
|
|
/* reject very large numbers */
|
|
} else if (len > limit_len) {
|
|
fprintf(stderr, "%s: %s too big\n", program, z);
|
|
continue;
|
|
|
|
/* carefully check against near limit numbers */
|
|
} else if (strcmp(z, limit) > 0) {
|
|
fprintf(stderr, "%s: %s a bit too big\n", program, z);
|
|
continue;
|
|
}
|
|
/* number is near limit, but is under it */
|
|
return s;
|
|
} while (input != NULL && fgets(buf, MAX_LINE, input) != NULL);
|
|
|
|
/* error or EOF */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* primes - sieve and print primes from start up to and but not including stop
|
|
*/
|
|
void
|
|
primes(start, stop)
|
|
ubig start; /* where to start generating */
|
|
ubig stop; /* don't generate at or above this value */
|
|
{
|
|
register char *q; /* sieve spot */
|
|
register ubig factor; /* index and factor */
|
|
register char *tab_lim; /* the limit to sieve on the table */
|
|
register ubig *p; /* prime table pointer */
|
|
register ubig fact_lim; /* highest prime for current block */
|
|
|
|
/*
|
|
* NetBSD has no problems with handling conversion
|
|
* between doubles and unsigned long, so we can go
|
|
* all the way to BIG.
|
|
*/
|
|
if (start < 3) {
|
|
start = (ubig)2;
|
|
}
|
|
if (stop < 3) {
|
|
stop = (ubig)2;
|
|
}
|
|
if (stop <= start) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* be sure that the values are odd, or 2
|
|
*/
|
|
if (start != 2 && (start&0x1) == 0) {
|
|
++start;
|
|
}
|
|
if (stop != 2 && (stop&0x1) == 0) {
|
|
++stop;
|
|
}
|
|
|
|
/*
|
|
* quick list of primes <= pr_limit
|
|
*/
|
|
if (start <= *pr_limit) {
|
|
/* skip primes up to the start value */
|
|
for (p = &prime[0], factor = prime[0];
|
|
factor < stop && p <= pr_limit;
|
|
factor = *(++p)) {
|
|
if (factor >= start) {
|
|
printf("%u\n", factor);
|
|
}
|
|
}
|
|
/* return early if we are done */
|
|
if (p <= pr_limit) {
|
|
return;
|
|
}
|
|
start = *pr_limit+2;
|
|
}
|
|
|
|
/*
|
|
* we shall sieve a bytemap window, note primes and move the window
|
|
* upward until we pass the stop point
|
|
*/
|
|
while (start < stop) {
|
|
/*
|
|
* factor out 3, 5, 7, 11 and 13
|
|
*/
|
|
/* initial pattern copy */
|
|
factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
|
|
memcpy(table, &pattern[factor], pattern_size-factor);
|
|
/* main block pattern copies */
|
|
for (fact_lim=pattern_size-factor;
|
|
fact_lim+pattern_size<=TABSIZE;
|
|
fact_lim+=pattern_size) {
|
|
memcpy(&table[fact_lim], pattern, pattern_size);
|
|
}
|
|
/* final block pattern copy */
|
|
memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
|
|
|
|
/*
|
|
* sieve for primes 17 and higher
|
|
*/
|
|
/* note highest useful factor and sieve spot */
|
|
if (stop-start > TABSIZE+TABSIZE) {
|
|
tab_lim = &table[TABSIZE]; /* sieve it all */
|
|
fact_lim = (int)sqrt(
|
|
(double)(start)+TABSIZE+TABSIZE+1.0);
|
|
} else {
|
|
tab_lim = &table[(stop-start)/2]; /* partial sieve */
|
|
fact_lim = (int)sqrt((double)(stop)+1.0);
|
|
}
|
|
/* sieve for factors >= 17 */
|
|
factor = 17; /* 17 is first prime to use */
|
|
p = &prime[7]; /* 19 is next prime, pi(19)=7 */
|
|
do {
|
|
/* determine the factor's initial sieve point */
|
|
q = (char *)(start%factor); /* temp storage for mod */
|
|
if ((int)q & 0x1) {
|
|
q = &table[(factor-(int)q)/2];
|
|
} else {
|
|
q = &table[q ? factor-((int)q/2) : 0];
|
|
}
|
|
/* sive for our current factor */
|
|
for ( ; q < tab_lim; q += factor) {
|
|
*q = '\0'; /* sieve out a spot */
|
|
}
|
|
} while ((factor=(ubig)(*(p++))) <= fact_lim);
|
|
|
|
/*
|
|
* print generated primes
|
|
*/
|
|
for (q = table; q < tab_lim; ++q, start+=2) {
|
|
if (*q) {
|
|
printf("%u\n", start);
|
|
}
|
|
}
|
|
}
|
|
}
|