2b6ee22130
of Szeged, Hungary. The commit includes: - Flash layer, which gives a common API to access flash devices - NAND controller subsystem for the flash layer - An example OMAP driver which is used on BeagleBoard or alike ARM boards
233 lines
6.8 KiB
C
233 lines
6.8 KiB
C
/* $NetBSD: hamming.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2008, Atmel Corporation
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the disclaimer below.
|
|
*
|
|
* Atmel's name may not be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
|
|
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: hamming.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <lib/libkern/libkern.h>
|
|
#include "hamming.h"
|
|
|
|
/**
|
|
* Calculates the 22-bit hamming code for a 256-bytes block of data.
|
|
* \param data Data buffer to calculate code for.
|
|
* \param code Pointer to a buffer where the code should be stored.
|
|
*/
|
|
void
|
|
hamming_compute_256(const uint8_t *data, uint8_t *code)
|
|
{
|
|
unsigned int i;
|
|
uint8_t column_sum = 0;
|
|
uint8_t even_line_code = 0;
|
|
uint8_t odd_line_code = 0;
|
|
uint8_t even_column_code = 0;
|
|
uint8_t odd_column_code = 0;
|
|
|
|
/*-
|
|
* Xor all bytes together to get the column sum;
|
|
* At the same time, calculate the even and odd line codes
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
column_sum ^= data[i];
|
|
|
|
/*-
|
|
* If the xor sum of the byte is 0, then this byte has no
|
|
* incidence on the computed code; so check if the sum is 1.
|
|
*/
|
|
if ((popcount(data[i]) & 1) == 1) {
|
|
/*-
|
|
* Parity groups are formed by forcing a particular
|
|
* index bit to 0 (even) or 1 (odd).
|
|
* Example on one byte:
|
|
*
|
|
* bits (dec) 7 6 5 4 3 2 1 0
|
|
* (bin) 111 110 101 100 011 010 001 000
|
|
* '---'---'---'----------.
|
|
* |
|
|
* groups P4' ooooooooooooooo eeeeeeeeeeeeeee P4 |
|
|
* P2' ooooooo eeeeeee ooooooo eeeeeee P2 |
|
|
* P1' ooo eee ooo eee ooo eee ooo eee P1 |
|
|
* |
|
|
* We can see that: |
|
|
* - P4 -> bit 2 of index is 0 --------------------'
|
|
* - P4' -> bit 2 of index is 1.
|
|
* - P2 -> bit 1 of index if 0.
|
|
* - etc...
|
|
* We deduce that a bit position has an impact on all
|
|
* even Px if the log2(x)nth bit of its index is 0
|
|
* ex: log2(4) = 2,
|
|
* bit2 of the index must be 0 (-> 0 1 2 3)
|
|
* and on all odd Px' if the log2(x)nth bit
|
|
* of its index is 1
|
|
* ex: log2(2) = 1,
|
|
* bit1 of the index must be 1 (-> 0 1 4 5)
|
|
*
|
|
* As such, we calculate all the possible Px and Px'
|
|
* values at the same time in two variables,
|
|
* even_line_code and odd_line_code, such as
|
|
* even_line_code bits: P128 P64 P32
|
|
* P16 P8 P4 P2 P1
|
|
* odd_line_code bits: P128' P64' P32' P16'
|
|
* P8' P4' P2' P1'
|
|
*/
|
|
even_line_code ^= (255 - i);
|
|
odd_line_code ^= i;
|
|
}
|
|
}
|
|
|
|
/*-
|
|
* At this point, we have the line parities, and the column sum.
|
|
* First, We must caculate the parity group values on the column sum.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (column_sum & 1) {
|
|
even_column_code ^= (7 - i);
|
|
odd_column_code ^= i;
|
|
}
|
|
column_sum >>= 1;
|
|
}
|
|
|
|
/*-
|
|
* Now, we must interleave the parity values,
|
|
* to obtain the following layout:
|
|
* Code[0] = Line1
|
|
* Code[1] = Line2
|
|
* Code[2] = Column
|
|
* Line = Px' Px P(x-1)- P(x-1) ...
|
|
* Column = P4' P4 P2' P2 P1' P1 PadBit PadBit
|
|
*/
|
|
code[0] = 0;
|
|
code[1] = 0;
|
|
code[2] = 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
code[0] <<= 2;
|
|
code[1] <<= 2;
|
|
code[2] <<= 2;
|
|
|
|
/* Line 1 */
|
|
if ((odd_line_code & 0x80) != 0) {
|
|
|
|
code[0] |= 2;
|
|
}
|
|
if ((even_line_code & 0x80) != 0) {
|
|
|
|
code[0] |= 1;
|
|
}
|
|
|
|
/* Line 2 */
|
|
if ((odd_line_code & 0x08) != 0) {
|
|
|
|
code[1] |= 2;
|
|
}
|
|
if ((even_line_code & 0x08) != 0) {
|
|
|
|
code[1] |= 1;
|
|
}
|
|
|
|
/* Column */
|
|
if ((odd_column_code & 0x04) != 0) {
|
|
|
|
code[2] |= 2;
|
|
}
|
|
if ((even_column_code & 0x04) != 0) {
|
|
|
|
code[2] |= 1;
|
|
}
|
|
|
|
odd_line_code <<= 1;
|
|
even_line_code <<= 1;
|
|
odd_column_code <<= 1;
|
|
even_column_code <<= 1;
|
|
}
|
|
|
|
/* Invert codes (linux compatibility) */
|
|
code[0] = ~code[0];
|
|
code[1] = ~code[1];
|
|
code[2] = ~code[2];
|
|
}
|
|
|
|
/**
|
|
* Verifies and corrects a 256-bytes block of data using the given 22-bits
|
|
* hamming code.
|
|
* Returns 0 if there is no error, otherwise returns a HAMMING_ERROR code.
|
|
* param data Data buffer to check.
|
|
* \param original_code Hamming code to use for verifying the data.
|
|
*/
|
|
uint8_t
|
|
hamming_correct_256(uint8_t *data, const uint8_t *original_code,
|
|
const uint8_t *computed_code)
|
|
{
|
|
/* Calculate new code */
|
|
/* we allocate 4 bytes so we can use popcount32 in one step */
|
|
uint8_t correction_code[4];
|
|
|
|
/* this byte should remain zero all the time */
|
|
correction_code[3] = 0;
|
|
|
|
/* Xor both codes together */
|
|
correction_code[0] = computed_code[0] ^ original_code[0];
|
|
correction_code[1] = computed_code[1] ^ original_code[1];
|
|
correction_code[2] = computed_code[2] ^ original_code[2];
|
|
|
|
/* If all bytes are 0, there is no error */
|
|
if (*(uint32_t *)correction_code == 0) {
|
|
return 0;
|
|
}
|
|
/* If there is a single bit error, there are 11 bits set to 1 */
|
|
if (popcount32(*(uint32_t *)correction_code) == 11) {
|
|
/* Get byte and bit indexes */
|
|
uint8_t byte = correction_code[0] & 0x80;
|
|
byte |= (correction_code[0] << 1) & 0x40;
|
|
byte |= (correction_code[0] << 2) & 0x20;
|
|
byte |= (correction_code[0] << 3) & 0x10;
|
|
|
|
byte |= (correction_code[1] >> 4) & 0x08;
|
|
byte |= (correction_code[1] >> 3) & 0x04;
|
|
byte |= (correction_code[1] >> 2) & 0x02;
|
|
byte |= (correction_code[1] >> 1) & 0x01;
|
|
|
|
uint8_t bit = (correction_code[2] >> 5) & 0x04;
|
|
bit |= (correction_code[2] >> 4) & 0x02;
|
|
bit |= (correction_code[2] >> 3) & 0x01;
|
|
|
|
/* Correct bit */
|
|
data[byte] ^= (1 << bit);
|
|
|
|
return HAMMING_ERROR_SINGLEBIT;
|
|
}
|
|
/* Check if ECC has been corrupted */
|
|
if (popcount32(*(uint32_t *)correction_code) == 1) {
|
|
return HAMMING_ERROR_ECC;
|
|
} else {
|
|
/* Otherwise, this is a multi-bit error */
|
|
return HAMMING_ERROR_MULTIPLEBITS;
|
|
}
|
|
}
|
|
|