NetBSD/sys/dev/pci/if_nfe.c

1785 lines
44 KiB
C

/* $NetBSD: if_nfe.c,v 1.3 2006/03/26 00:34:14 chs Exp $ */
/* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
/*-
* Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.3 2006/03/26 00:34:14 chs Exp $");
#include "opt_inet.h"
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/if_arp.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#if NVLAN > 0
#include <net/if_types.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_nfereg.h>
#include <dev/pci/if_nfevar.h>
int nfe_match(struct device *, struct cfdata *, void *);
void nfe_attach(struct device *, struct device *, void *);
void nfe_power(int, void *);
void nfe_miibus_statchg(struct device *);
int nfe_miibus_readreg(struct device *, int, int);
void nfe_miibus_writereg(struct device *, int, int, int);
int nfe_intr(void *);
int nfe_ioctl(struct ifnet *, u_long, caddr_t);
void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
void nfe_rxeof(struct nfe_softc *);
void nfe_txeof(struct nfe_softc *);
int nfe_encap(struct nfe_softc *, struct mbuf *);
void nfe_start(struct ifnet *);
void nfe_watchdog(struct ifnet *);
int nfe_init(struct ifnet *);
void nfe_stop(struct ifnet *, int);
struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
void nfe_jfree(struct mbuf *, caddr_t, size_t, void *);
int nfe_jpool_alloc(struct nfe_softc *);
void nfe_jpool_free(struct nfe_softc *);
int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
int nfe_ifmedia_upd(struct ifnet *);
void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
void nfe_setmulti(struct nfe_softc *);
void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
void nfe_tick(void *);
CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
/*#define NFE_NO_JUMBO*/
#ifdef NFE_DEBUG
int nfedebug = 0;
#define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
#define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/* deal with naming differences */
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
#define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
#define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
#define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
#define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
#ifdef _LP64
#define __LP64__ 1
#endif
const struct nfe_product {
pci_vendor_id_t vendor;
pci_product_id_t product;
} nfe_devices[] = {
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }
};
int
nfe_match(struct device *dev, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
const struct nfe_product *np;
int i;
for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
np = &nfe_devices[i];
if (PCI_VENDOR(pa->pa_id) == np->vendor &&
PCI_PRODUCT(pa->pa_id) == np->product)
return 1;
}
return 0;
}
void
nfe_attach(struct device *parent, struct device *self, void *aux)
{
struct nfe_softc *sc = (struct nfe_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp;
bus_size_t memsize;
pcireg_t memtype;
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
&sc->sc_memh, NULL, &memsize) == 0)
break;
/* FALLTHROUGH */
default:
printf(": could not map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
printf(": could not map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
if (sc->sc_ih == NULL) {
printf(": could not establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(": %s", intrstr);
sc->sc_dmat = pa->pa_dmat;
nfe_get_macaddr(sc, sc->sc_enaddr);
printf(", address %s\n", ether_sprintf(sc->sc_enaddr));
sc->sc_flags = 0;
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
sc->sc_flags |= NFE_40BIT_ADDR;
break;
case PCI_PRODUCT_NVIDIA_CK804_LAN1:
case PCI_PRODUCT_NVIDIA_CK804_LAN2:
case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
NFE_HW_VLAN;
break;
}
#ifndef NFE_NO_JUMBO
/* enable jumbo frames for adapters that support it */
if (sc->sc_flags & NFE_JUMBO_SUP)
sc->sc_flags |= NFE_USE_JUMBO;
#endif
/*
* Allocate Tx and Rx rings.
*/
if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
printf("%s: could not allocate Tx ring\n",
sc->sc_dev.dv_xname);
return;
}
if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
printf("%s: could not allocate Rx ring\n",
sc->sc_dev.dv_xname);
nfe_free_tx_ring(sc, &sc->txq);
return;
}
ifp = &sc->sc_ethercom.ec_if;
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nfe_ioctl;
ifp->if_start = nfe_start;
ifp->if_watchdog = nfe_watchdog;
ifp->if_init = nfe_init;
ifp->if_baudrate = IF_Gbps(1);
IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
#if NVLAN > 0
if (sc->sc_flags & NFE_HW_VLAN)
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
#endif
#ifdef NFE_CSUM
if (sc->sc_flags & NFE_HW_CSUM) {
ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
IFCAP_CSUM_UDPv4;
}
#endif
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = nfe_miibus_readreg;
sc->sc_mii.mii_writereg = nfe_miibus_writereg;
sc->sc_mii.mii_statchg = nfe_miibus_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
nfe_ifmedia_sts);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
callout_init(&sc->sc_tick_ch);
callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
sc->sc_powerhook = powerhook_establish(nfe_power, sc);
}
void
nfe_power(int why, void *arg)
{
struct nfe_softc *sc = arg;
struct ifnet *ifp;
if (why == PWR_RESUME) {
ifp = &sc->sc_ethercom.ec_if;
if (ifp->if_flags & IFF_UP) {
ifp->if_flags &= ~IFF_RUNNING;
nfe_init(ifp);
if (ifp->if_flags & IFF_RUNNING)
nfe_start(ifp);
}
}
}
void
nfe_miibus_statchg(struct device *dev)
{
struct nfe_softc *sc = (struct nfe_softc *)dev;
struct mii_data *mii = &sc->sc_mii;
uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
phy = NFE_READ(sc, NFE_PHY_IFACE);
phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
seed = NFE_READ(sc, NFE_RNDSEED);
seed &= ~NFE_SEED_MASK;
if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
phy |= NFE_PHY_HDX; /* half-duplex */
misc |= NFE_MISC1_HDX;
}
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T: /* full-duplex only */
link |= NFE_MEDIA_1000T;
seed |= NFE_SEED_1000T;
phy |= NFE_PHY_1000T;
break;
case IFM_100_TX:
link |= NFE_MEDIA_100TX;
seed |= NFE_SEED_100TX;
phy |= NFE_PHY_100TX;
break;
case IFM_10_T:
link |= NFE_MEDIA_10T;
seed |= NFE_SEED_10T;
break;
}
NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
NFE_WRITE(sc, NFE_PHY_IFACE, phy);
NFE_WRITE(sc, NFE_MISC1, misc);
NFE_WRITE(sc, NFE_LINKSPEED, link);
}
int
nfe_miibus_readreg(struct device *dev, int phy, int reg)
{
struct nfe_softc *sc = (struct nfe_softc *)dev;
uint32_t val;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
for (ntries = 0; ntries < 1000; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
if (ntries == 1000) {
DPRINTFN(2, ("%s: timeout waiting for PHY\n",
sc->sc_dev.dv_xname));
return 0;
}
if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
DPRINTFN(2, ("%s: could not read PHY\n",
sc->sc_dev.dv_xname));
return 0;
}
val = NFE_READ(sc, NFE_PHY_DATA);
if (val != 0xffffffff && val != 0)
sc->mii_phyaddr = phy;
DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
sc->sc_dev.dv_xname, phy, reg, val));
return val;
}
void
nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
{
struct nfe_softc *sc = (struct nfe_softc *)dev;
uint32_t ctl;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_DATA, val);
ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
NFE_WRITE(sc, NFE_PHY_CTL, ctl);
for (ntries = 0; ntries < 1000; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
#ifdef NFE_DEBUG
if (nfedebug >= 2 && ntries == 1000)
printf("could not write to PHY\n");
#endif
}
int
nfe_intr(void *arg)
{
struct nfe_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t r;
if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
return 0; /* not for us */
NFE_WRITE(sc, NFE_IRQ_STATUS, r);
DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
if (r & NFE_IRQ_LINK) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
}
if (ifp->if_flags & IFF_RUNNING) {
/* check Rx ring */
nfe_rxeof(sc);
/* check Tx ring */
nfe_txeof(sc);
}
return 1;
}
int
nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct nfe_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
nfe_init(ifp);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(ifp, ifa);
break;
#endif
default:
break;
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN ||
((sc->sc_flags & NFE_USE_JUMBO) &&
ifr->ifr_mtu > ETHERMTU_JUMBO) ||
(!(sc->sc_flags & NFE_USE_JUMBO) &&
ifr->ifr_mtu > ETHERMTU))
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu)
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
/*
* If only the PROMISC or ALLMULTI flag changes, then
* don't do a full re-init of the chip, just update
* the Rx filter.
*/
if ((ifp->if_flags & IFF_RUNNING) &&
((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
nfe_setmulti(sc);
else
nfe_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
nfe_stop(ifp, 1);
}
sc->sc_if_flags = ifp->if_flags;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
nfe_setmulti(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
nfe_setmulti(sc);
error = 0;
}
break;
}
splx(s);
return error;
}
void
nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(caddr_t)desc32 - (caddr_t)sc->txq.desc32,
sizeof (struct nfe_desc32), ops);
}
void
nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(caddr_t)desc64 - (caddr_t)sc->txq.desc64,
sizeof (struct nfe_desc64), ops);
}
void
nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
{
if (end > start) {
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
(caddr_t)&sc->txq.desc32[end] -
(caddr_t)&sc->txq.desc32[start], ops);
return;
}
/* sync from 'start' to end of ring */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
(caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
(caddr_t)&sc->txq.desc32[start], ops);
/* sync from start of ring to 'end' */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
(caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
}
void
nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
{
if (end > start) {
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
(caddr_t)&sc->txq.desc64[end] -
(caddr_t)&sc->txq.desc64[start], ops);
return;
}
/* sync from 'start' to end of ring */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
(caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
(caddr_t)&sc->txq.desc64[start], ops);
/* sync from start of ring to 'end' */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
(caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
}
void
nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
(caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
sizeof (struct nfe_desc32), ops);
}
void
nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
(caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
sizeof (struct nfe_desc64), ops);
}
void
nfe_rxeof(struct nfe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct nfe_jbuf *jbuf;
struct mbuf *m, *mnew;
bus_addr_t physaddr;
uint16_t flags;
int error, len;
desc32 = NULL;
desc64 = NULL;
for (;;) {
data = &sc->rxq.data[sc->rxq.cur];
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[sc->rxq.cur];
nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
flags = le16toh(desc64->flags);
len = le16toh(desc64->length) & 0x3fff;
} else {
desc32 = &sc->rxq.desc32[sc->rxq.cur];
nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
flags = le16toh(desc32->flags);
len = le16toh(desc32->length) & 0x3fff;
}
if (flags & NFE_RX_READY)
break;
if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_RX_VALID_V1))
goto skip;
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
} else {
if (!(flags & NFE_RX_VALID_V2))
goto skip;
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
}
if (flags & NFE_RX_ERROR) {
ifp->if_ierrors++;
goto skip;
}
/*
* Try to allocate a new mbuf for this ring element and load
* it before processing the current mbuf. If the ring element
* cannot be loaded, drop the received packet and reuse the
* old mbuf. In the unlikely case that the old mbuf can't be
* reloaded either, explicitly panic.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
if (sc->sc_flags & NFE_USE_JUMBO) {
if ((jbuf = nfe_jalloc(sc)) == NULL) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip;
}
MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
BUS_DMASYNC_POSTREAD);
physaddr = jbuf->physaddr;
} else {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(mnew, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
/* very unlikely that it will fail.. */
panic("%s: could not load old rx mbuf",
sc->sc_dev.dv_xname);
}
ifp->if_ierrors++;
goto skip;
}
physaddr = data->map->dm_segs[0].ds_addr;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
/* finalize mbuf */
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = ifp;
#ifdef notyet
if (sc->sc_flags & NFE_HW_CSUM) {
if (flags & NFE_RX_IP_CSUMOK)
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
if (flags & NFE_RX_UDP_CSUMOK)
m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
if (flags & NFE_RX_TCP_CSUMOK)
m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
}
#elif defined(NFE_CSUM)
if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
#endif
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
ifp->if_ipackets++;
(*ifp->if_input)(ifp, m);
/* update mapping address in h/w descriptor */
if (sc->sc_flags & NFE_40BIT_ADDR) {
#if defined(__LP64__)
desc64->physaddr[0] = htole32(physaddr >> 32);
#endif
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
} else {
desc32->physaddr = htole32(physaddr);
}
skip: if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64->length = htole16(sc->rxq.bufsz);
desc64->flags = htole16(NFE_RX_READY);
nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
} else {
desc32->length = htole16(sc->rxq.bufsz);
desc32->flags = htole16(NFE_RX_READY);
nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
}
sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
}
}
void
nfe_txeof(struct nfe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_tx_data *data = NULL;
uint16_t flags;
while (sc->txq.next != sc->txq.cur) {
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[sc->txq.next];
nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
flags = le16toh(desc64->flags);
} else {
desc32 = &sc->txq.desc32[sc->txq.next];
nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
flags = le16toh(desc32->flags);
}
if (flags & NFE_TX_VALID)
break;
data = &sc->txq.data[sc->txq.next];
if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
goto skip;
if ((flags & NFE_TX_ERROR_V1) != 0) {
printf("%s: tx v1 error 0x%04x\n",
sc->sc_dev.dv_xname, flags);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
} else {
if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
goto skip;
if ((flags & NFE_TX_ERROR_V2) != 0) {
printf("%s: tx v2 error 0x%04x\n",
sc->sc_dev.dv_xname, flags);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
}
if (data->m == NULL) { /* should not get there */
printf("%s: last fragment bit w/o associated mbuf!\n",
sc->sc_dev.dv_xname);
goto skip;
}
/* last fragment of the mbuf chain transmitted */
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->active);
m_freem(data->m);
data->m = NULL;
ifp->if_timer = 0;
skip: sc->txq.queued--;
sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
}
if (data != NULL) { /* at least one slot freed */
ifp->if_flags &= ~IFF_OACTIVE;
nfe_start(ifp);
}
}
int
nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_tx_data *data;
bus_dmamap_t map;
uint16_t flags = NFE_TX_VALID;
#if NVLAN > 0
struct m_tag *mtag;
uint32_t vtag = 0;
#endif
int error, i;
desc32 = NULL;
desc64 = NULL;
data = NULL;
map = sc->txq.data[sc->txq.cur].map;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
return error;
}
if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
bus_dmamap_unload(sc->sc_dmat, map);
return ENOBUFS;
}
#if NVLAN > 0
/* setup h/w VLAN tagging */
if (sc->sc_ethercom.ec_nvlans) {
mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
}
#endif
#ifdef NFE_CSUM
if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
flags |= NFE_TX_IP_CSUM;
if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
flags |= NFE_TX_TCP_CSUM;
#endif
for (i = 0; i < map->dm_nsegs; i++) {
data = &sc->txq.data[sc->txq.cur];
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[sc->txq.cur];
#if defined(__LP64__)
desc64->physaddr[0] =
htole32(map->dm_segs[i].ds_addr >> 32);
#endif
desc64->physaddr[1] =
htole32(map->dm_segs[i].ds_addr & 0xffffffff);
desc64->length = htole16(map->dm_segs[i].ds_len - 1);
desc64->flags = htole16(flags);
#if NVLAN > 0
desc64->vtag = htole32(vtag);
#endif
} else {
desc32 = &sc->txq.desc32[sc->txq.cur];
desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
desc32->length = htole16(map->dm_segs[i].ds_len - 1);
desc32->flags = htole16(flags);
}
/* csum flags and vtag belong to the first fragment only */
if (map->dm_nsegs > 1) {
flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
#if NVLAN > 0
vtag = 0;
#endif
}
sc->txq.queued++;
sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
}
/* the whole mbuf chain has been DMA mapped, fix last descriptor */
if (sc->sc_flags & NFE_40BIT_ADDR) {
flags |= NFE_TX_LASTFRAG_V2;
desc64->flags = htole16(flags);
} else {
if (sc->sc_flags & NFE_JUMBO_SUP)
flags |= NFE_TX_LASTFRAG_V2;
else
flags |= NFE_TX_LASTFRAG_V1;
desc32->flags = htole16(flags);
}
data->m = m0;
data->active = map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
return 0;
}
void
nfe_start(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
int old = sc->txq.cur;
struct mbuf *m0;
for (;;) {
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (nfe_encap(sc, m0) != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* packet put in h/w queue, remove from s/w queue */
IFQ_DEQUEUE(&ifp->if_snd, m0);
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif
}
if (sc->txq.cur == old) /* nothing sent */
return;
if (sc->sc_flags & NFE_40BIT_ADDR)
nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
else
nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
/* kick Tx */
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
void
nfe_watchdog(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
ifp->if_flags &= ~IFF_RUNNING;
nfe_init(ifp);
ifp->if_oerrors++;
}
int
nfe_init(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
uint32_t tmp;
if (ifp->if_flags & IFF_RUNNING)
return 0;
nfe_stop(ifp, 0);
NFE_WRITE(sc, NFE_TX_UNK, 0);
NFE_WRITE(sc, NFE_STATUS, 0);
sc->rxtxctl = NFE_RXTX_BIT2;
if (sc->sc_flags & NFE_40BIT_ADDR)
sc->rxtxctl |= NFE_RXTX_V3MAGIC;
else if (sc->sc_flags & NFE_JUMBO_SUP)
sc->rxtxctl |= NFE_RXTX_V2MAGIC;
#ifdef NFE_CSUM
if (sc->sc_flags & NFE_HW_CSUM)
sc->rxtxctl |= NFE_RXTX_RXCSUM;
#endif
#if NVLAN > 0
/*
* Although the adapter is capable of stripping VLAN tags from received
* frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
* purpose. This will be done in software by our network stack.
*/
if (sc->sc_flags & NFE_HW_VLAN)
sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
#endif
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
#if NVLAN
if (sc->sc_flags & NFE_HW_VLAN)
NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
#endif
NFE_WRITE(sc, NFE_SETUP_R6, 0);
/* set MAC address */
nfe_set_macaddr(sc, sc->sc_enaddr);
/* tell MAC where rings are in memory */
#ifdef __LP64__
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
#endif
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
#ifdef __LP64__
NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
#endif
NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
NFE_WRITE(sc, NFE_RING_SIZE,
(NFE_RX_RING_COUNT - 1) << 16 |
(NFE_TX_RING_COUNT - 1));
NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
/* force MAC to wakeup */
tmp = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
DELAY(10);
tmp = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
#if 1
/* configure interrupts coalescing/mitigation */
NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
#else
/* no interrupt mitigation: one interrupt per packet */
NFE_WRITE(sc, NFE_IMTIMER, 970);
#endif
NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
sc->rxtxctl &= ~NFE_RXTX_BIT2;
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
/* set Rx filter */
nfe_setmulti(sc);
nfe_ifmedia_upd(ifp);
/* enable Rx */
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
/* enable Tx */
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
/* enable interrupts */
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return 0;
}
void
nfe_stop(struct ifnet *ifp, int disable)
{
struct nfe_softc *sc = ifp->if_softc;
callout_stop(&sc->sc_tick_ch);
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
mii_down(&sc->sc_mii);
/* abort Tx */
NFE_WRITE(sc, NFE_TX_CTL, 0);
/* disable Rx */
NFE_WRITE(sc, NFE_RX_CTL, 0);
/* disable interrupts */
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
/* reset Tx and Rx rings */
nfe_reset_tx_ring(sc, &sc->txq);
nfe_reset_rx_ring(sc, &sc->rxq);
}
int
nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct nfe_jbuf *jbuf;
void **desc;
bus_addr_t physaddr;
int i, nsegs, error, descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = (void **)&ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = (void **)&ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->cur = ring->next = 0;
ring->bufsz = MCLBYTES;
error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
printf("%s: could not create desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not map desc DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
bzero(*desc, NFE_RX_RING_COUNT * descsize);
ring->physaddr = ring->map->dm_segs[0].ds_addr;
if (sc->sc_flags & NFE_USE_JUMBO) {
ring->bufsz = NFE_JBYTES;
if ((error = nfe_jpool_alloc(sc)) != 0) {
printf("%s: could not allocate jumbo frames\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &sc->rxq.data[i];
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
if (sc->sc_flags & NFE_USE_JUMBO) {
if ((jbuf = nfe_jalloc(sc)) == NULL) {
printf("%s: could not allocate jumbo buffer\n",
sc->sc_dev.dv_xname);
goto fail;
}
MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
sc);
physaddr = jbuf->physaddr;
} else {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
if (error != 0) {
printf("%s: could not create DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
printf("%s: could not allocate mbuf cluster\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load rx buf DMA map",
sc->sc_dev.dv_xname);
goto fail;
}
physaddr = data->map->dm_segs[0].ds_addr;
}
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[i];
#if defined(__LP64__)
desc64->physaddr[0] = htole32(physaddr >> 32);
#endif
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
desc64->length = htole16(sc->rxq.bufsz);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->rxq.desc32[i];
desc32->physaddr = htole32(physaddr);
desc32->length = htole16(sc->rxq.bufsz);
desc32->flags = htole16(NFE_RX_READY);
}
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
return 0;
fail: nfe_free_rx_ring(sc, ring);
return error;
}
void
nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
int i;
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
if (sc->sc_flags & NFE_40BIT_ADDR) {
ring->desc64[i].length = htole16(ring->bufsz);
ring->desc64[i].flags = htole16(NFE_RX_READY);
} else {
ring->desc32[i].length = htole16(ring->bufsz);
ring->desc32[i].flags = htole16(NFE_RX_READY);
}
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
}
void
nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_rx_data *data;
void *desc;
int i, descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
if (desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
NFE_RX_RING_COUNT * descsize);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->map != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
if (data->m != NULL)
m_freem(data->m);
}
}
struct nfe_jbuf *
nfe_jalloc(struct nfe_softc *sc)
{
struct nfe_jbuf *jbuf;
jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
if (jbuf == NULL)
return NULL;
SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
return jbuf;
}
/*
* This is called automatically by the network stack when the mbuf is freed.
* Caution must be taken that the NIC might be reset by the time the mbuf is
* freed.
*/
void
nfe_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
{
struct nfe_softc *sc = arg;
struct nfe_jbuf *jbuf;
int i;
/* find the jbuf from the base pointer */
i = (buf - sc->rxq.jpool) / NFE_JBYTES;
if (i < 0 || i >= NFE_JPOOL_COUNT) {
printf("%s: request to free a buffer (%p) not managed by us\n",
sc->sc_dev.dv_xname, buf);
return;
}
jbuf = &sc->rxq.jbuf[i];
/* ..and put it back in the free list */
SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
if (m != NULL)
pool_cache_put(&mbpool_cache, m);
}
int
nfe_jpool_alloc(struct nfe_softc *sc)
{
struct nfe_rx_ring *ring = &sc->rxq;
struct nfe_jbuf *jbuf;
bus_addr_t physaddr;
caddr_t buf;
int i, nsegs, error;
/*
* Allocate a big chunk of DMA'able memory.
*/
error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
if (error != 0) {
printf("%s: could not create jumbo DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
&ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s could not allocate jumbo DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
&ring->jpool, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not map jumbo DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load jumbo DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
/* ..and split it into 9KB chunks */
SLIST_INIT(&ring->jfreelist);
buf = ring->jpool;
physaddr = ring->jmap->dm_segs[0].ds_addr;
for (i = 0; i < NFE_JPOOL_COUNT; i++) {
jbuf = &ring->jbuf[i];
jbuf->buf = buf;
jbuf->physaddr = physaddr;
SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
buf += NFE_JBYTES;
physaddr += NFE_JBYTES;
}
return 0;
fail: nfe_jpool_free(sc);
return error;
}
void
nfe_jpool_free(struct nfe_softc *sc)
{
struct nfe_rx_ring *ring = &sc->rxq;
if (ring->jmap != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->jmap);
bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
}
if (ring->jpool != NULL) {
bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
}
}
int
nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
int i, nsegs, error;
void **desc;
int descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = (void **)&ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = (void **)&ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
printf("%s: could not create desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not map desc DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
bzero(*desc, NFE_TX_RING_COUNT * descsize);
ring->physaddr = ring->map->dm_segs[0].ds_addr;
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
&ring->data[i].map);
if (error != 0) {
printf("%s: could not create DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
return 0;
fail: nfe_free_tx_ring(sc, ring);
return error;
}
void
nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
int i;
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
if (sc->sc_flags & NFE_40BIT_ADDR)
ring->desc64[i].flags = 0;
else
ring->desc32[i].flags = 0;
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->active);
m_freem(data->m);
data->m = NULL;
}
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = 0;
}
void
nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
void *desc;
int i, descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
if (desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
NFE_TX_RING_COUNT * descsize);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->active);
m_freem(data->m);
}
}
/* ..and now actually destroy the DMA mappings */
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->map == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
int
nfe_ifmedia_upd(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
struct mii_softc *miisc;
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
return mii_mediachg(mii);
}
void
nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nfe_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
void
nfe_setmulti(struct nfe_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
uint32_t filter = NFE_RXFILTER_MAGIC;
int i;
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
bzero(addr, ETHER_ADDR_LEN);
bzero(mask, ETHER_ADDR_LEN);
goto done;
}
bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
ifp->if_flags |= IFF_ALLMULTI;
bzero(addr, ETHER_ADDR_LEN);
bzero(mask, ETHER_ADDR_LEN);
goto done;
}
for (i = 0; i < ETHER_ADDR_LEN; i++) {
addr[i] &= enm->enm_addrlo[i];
mask[i] &= ~enm->enm_addrlo[i];
}
ETHER_NEXT_MULTI(step, enm);
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
mask[i] |= addr[i];
done:
addr[0] |= 0x01; /* make sure multicast bit is set */
NFE_WRITE(sc, NFE_MULTIADDR_HI,
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
NFE_WRITE(sc, NFE_MULTIADDR_LO,
addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MULTIMASK_HI,
mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
NFE_WRITE(sc, NFE_MULTIMASK_LO,
mask[5] << 8 | mask[4]);
filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
NFE_WRITE(sc, NFE_RXFILTER, filter);
}
void
nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = NFE_READ(sc, NFE_MACADDR_LO);
addr[0] = (tmp >> 8) & 0xff;
addr[1] = (tmp & 0xff);
tmp = NFE_READ(sc, NFE_MACADDR_HI);
addr[2] = (tmp >> 24) & 0xff;
addr[3] = (tmp >> 16) & 0xff;
addr[4] = (tmp >> 8) & 0xff;
addr[5] = (tmp & 0xff);
}
void
nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
{
NFE_WRITE(sc, NFE_MACADDR_LO,
addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MACADDR_HI,
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
}
void
nfe_tick(void *arg)
{
struct nfe_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}