NetBSD/sys/nfs/nfs_subs.c

2471 lines
58 KiB
C

/* $NetBSD: nfs_subs.c,v 1.216 2009/03/15 17:20:10 cegger Exp $ */
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
*/
/*
* Copyright 2000 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Frank van der Linden for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.216 2009/03/15 17:20:10 cegger Exp $");
#ifdef _KERNEL_OPT
#include "fs_nfs.h"
#include "opt_nfs.h"
#endif
/*
* These functions support the macros and help fiddle mbuf chains for
* the nfs op functions. They do things like create the rpc header and
* copy data between mbuf chains and uio lists.
*/
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/namei.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/filedesc.h>
#include <sys/time.h>
#include <sys/dirent.h>
#include <sys/once.h>
#include <sys/kauth.h>
#include <sys/atomic.h>
#include <uvm/uvm_extern.h>
#include <nfs/rpcv2.h>
#include <nfs/nfsproto.h>
#include <nfs/nfsnode.h>
#include <nfs/nfs.h>
#include <nfs/xdr_subs.h>
#include <nfs/nfsm_subs.h>
#include <nfs/nfsmount.h>
#include <nfs/nfsrtt.h>
#include <nfs/nfs_var.h>
#include <miscfs/specfs/specdev.h>
#include <netinet/in.h>
static u_int32_t nfs_xid;
/*
* Data items converted to xdr at startup, since they are constant
* This is kinda hokey, but may save a little time doing byte swaps
*/
u_int32_t nfs_xdrneg1;
u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
rpc_auth_kerb;
u_int32_t nfs_prog, nfs_true, nfs_false;
/* And other global data */
const nfstype nfsv2_type[9] =
{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
const nfstype nfsv3_type[9] =
{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
const enum vtype nv2tov_type[8] =
{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
const enum vtype nv3tov_type[8] =
{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
int nfs_ticks;
int nfs_commitsize;
/* NFS client/server stats. */
struct nfsstats nfsstats;
/*
* Mapping of old NFS Version 2 RPC numbers to generic numbers.
*/
const int nfsv3_procid[NFS_NPROCS] = {
NFSPROC_NULL,
NFSPROC_GETATTR,
NFSPROC_SETATTR,
NFSPROC_NOOP,
NFSPROC_LOOKUP,
NFSPROC_READLINK,
NFSPROC_READ,
NFSPROC_NOOP,
NFSPROC_WRITE,
NFSPROC_CREATE,
NFSPROC_REMOVE,
NFSPROC_RENAME,
NFSPROC_LINK,
NFSPROC_SYMLINK,
NFSPROC_MKDIR,
NFSPROC_RMDIR,
NFSPROC_READDIR,
NFSPROC_FSSTAT,
NFSPROC_NOOP,
NFSPROC_NOOP,
NFSPROC_NOOP,
NFSPROC_NOOP,
NFSPROC_NOOP
};
/*
* and the reverse mapping from generic to Version 2 procedure numbers
*/
const int nfsv2_procid[NFS_NPROCS] = {
NFSV2PROC_NULL,
NFSV2PROC_GETATTR,
NFSV2PROC_SETATTR,
NFSV2PROC_LOOKUP,
NFSV2PROC_NOOP,
NFSV2PROC_READLINK,
NFSV2PROC_READ,
NFSV2PROC_WRITE,
NFSV2PROC_CREATE,
NFSV2PROC_MKDIR,
NFSV2PROC_SYMLINK,
NFSV2PROC_CREATE,
NFSV2PROC_REMOVE,
NFSV2PROC_RMDIR,
NFSV2PROC_RENAME,
NFSV2PROC_LINK,
NFSV2PROC_READDIR,
NFSV2PROC_NOOP,
NFSV2PROC_STATFS,
NFSV2PROC_NOOP,
NFSV2PROC_NOOP,
NFSV2PROC_NOOP,
NFSV2PROC_NOOP,
};
/*
* Maps errno values to nfs error numbers.
* Use NFSERR_IO as the catch all for ones not specifically defined in
* RFC 1094.
*/
static const u_char nfsrv_v2errmap[ELAST] = {
NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
NFSERR_IO, NFSERR_IO,
};
/*
* Maps errno values to nfs error numbers.
* Although it is not obvious whether or not NFS clients really care if
* a returned error value is in the specified list for the procedure, the
* safest thing to do is filter them appropriately. For Version 2, the
* X/Open XNFS document is the only specification that defines error values
* for each RPC (The RFC simply lists all possible error values for all RPCs),
* so I have decided to not do this for Version 2.
* The first entry is the default error return and the rest are the valid
* errors for that RPC in increasing numeric order.
*/
static const short nfsv3err_null[] = {
0,
0,
};
static const short nfsv3err_getattr[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_setattr[] = {
NFSERR_IO,
NFSERR_PERM,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_INVAL,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOT_SYNC,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_lookup[] = {
NFSERR_IO,
NFSERR_NOENT,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_NOTDIR,
NFSERR_NAMETOL,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_access[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_readlink[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_INVAL,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_read[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_NXIO,
NFSERR_ACCES,
NFSERR_INVAL,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
NFSERR_JUKEBOX,
0,
};
static const short nfsv3err_write[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_INVAL,
NFSERR_FBIG,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
NFSERR_JUKEBOX,
0,
};
static const short nfsv3err_create[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_EXIST,
NFSERR_NOTDIR,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_NAMETOL,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_mkdir[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_EXIST,
NFSERR_NOTDIR,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_NAMETOL,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_symlink[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_EXIST,
NFSERR_NOTDIR,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_NAMETOL,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_mknod[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_EXIST,
NFSERR_NOTDIR,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_NAMETOL,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
NFSERR_BADTYPE,
0,
};
static const short nfsv3err_remove[] = {
NFSERR_IO,
NFSERR_NOENT,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_NOTDIR,
NFSERR_ROFS,
NFSERR_NAMETOL,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_rmdir[] = {
NFSERR_IO,
NFSERR_NOENT,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_EXIST,
NFSERR_NOTDIR,
NFSERR_INVAL,
NFSERR_ROFS,
NFSERR_NAMETOL,
NFSERR_NOTEMPTY,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_rename[] = {
NFSERR_IO,
NFSERR_NOENT,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_EXIST,
NFSERR_XDEV,
NFSERR_NOTDIR,
NFSERR_ISDIR,
NFSERR_INVAL,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_MLINK,
NFSERR_NAMETOL,
NFSERR_NOTEMPTY,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_link[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_EXIST,
NFSERR_XDEV,
NFSERR_NOTDIR,
NFSERR_INVAL,
NFSERR_NOSPC,
NFSERR_ROFS,
NFSERR_MLINK,
NFSERR_NAMETOL,
NFSERR_DQUOT,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_NOTSUPP,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_readdir[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_NOTDIR,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_BAD_COOKIE,
NFSERR_TOOSMALL,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_readdirplus[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_ACCES,
NFSERR_NOTDIR,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_BAD_COOKIE,
NFSERR_NOTSUPP,
NFSERR_TOOSMALL,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_fsstat[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_fsinfo[] = {
NFSERR_STALE,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_pathconf[] = {
NFSERR_STALE,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short nfsv3err_commit[] = {
NFSERR_IO,
NFSERR_IO,
NFSERR_STALE,
NFSERR_BADHANDLE,
NFSERR_SERVERFAULT,
0,
};
static const short * const nfsrv_v3errmap[] = {
nfsv3err_null,
nfsv3err_getattr,
nfsv3err_setattr,
nfsv3err_lookup,
nfsv3err_access,
nfsv3err_readlink,
nfsv3err_read,
nfsv3err_write,
nfsv3err_create,
nfsv3err_mkdir,
nfsv3err_symlink,
nfsv3err_mknod,
nfsv3err_remove,
nfsv3err_rmdir,
nfsv3err_rename,
nfsv3err_link,
nfsv3err_readdir,
nfsv3err_readdirplus,
nfsv3err_fsstat,
nfsv3err_fsinfo,
nfsv3err_pathconf,
nfsv3err_commit,
};
extern struct nfsrtt nfsrtt;
u_long nfsdirhashmask;
int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
/*
* Create the header for an rpc request packet
* The hsiz is the size of the rest of the nfs request header.
* (just used to decide if a cluster is a good idea)
*/
struct mbuf *
nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
{
struct mbuf *mb;
char *bpos;
mb = m_get(M_WAIT, MT_DATA);
MCLAIM(mb, &nfs_mowner);
if (hsiz >= MINCLSIZE)
m_clget(mb, M_WAIT);
mb->m_len = 0;
bpos = mtod(mb, void *);
/* Finally, return values */
*bposp = bpos;
return (mb);
}
/*
* Build the RPC header and fill in the authorization info.
* The authorization string argument is only used when the credentials
* come from outside of the kernel.
* Returns the head of the mbuf list.
*/
struct mbuf *
nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
int auth_type, int auth_len, char *auth_str, int verf_len,
char *verf_str, struct mbuf *mrest, int mrest_len,
struct mbuf **mbp, uint32_t *xidp)
{
struct mbuf *mb;
u_int32_t *tl;
char *bpos;
int i;
struct mbuf *mreq;
int siz, grpsiz, authsiz;
authsiz = nfsm_rndup(auth_len);
mb = m_gethdr(M_WAIT, MT_DATA);
MCLAIM(mb, &nfs_mowner);
if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
m_clget(mb, M_WAIT);
} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
} else {
MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
}
mb->m_len = 0;
mreq = mb;
bpos = mtod(mb, void *);
/*
* First the RPC header.
*/
nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
*tl++ = *xidp = nfs_getxid();
*tl++ = rpc_call;
*tl++ = rpc_vers;
*tl++ = txdr_unsigned(NFS_PROG);
if (nmflag & NFSMNT_NFSV3)
*tl++ = txdr_unsigned(NFS_VER3);
else
*tl++ = txdr_unsigned(NFS_VER2);
if (nmflag & NFSMNT_NFSV3)
*tl++ = txdr_unsigned(procid);
else
*tl++ = txdr_unsigned(nfsv2_procid[procid]);
/*
* And then the authorization cred.
*/
*tl++ = txdr_unsigned(auth_type);
*tl = txdr_unsigned(authsiz);
switch (auth_type) {
case RPCAUTH_UNIX:
nfsm_build(tl, u_int32_t *, auth_len);
*tl++ = 0; /* stamp ?? */
*tl++ = 0; /* NULL hostname */
*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
grpsiz = (auth_len >> 2) - 5;
*tl++ = txdr_unsigned(grpsiz);
for (i = 0; i < grpsiz; i++)
*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
break;
case RPCAUTH_KERB4:
siz = auth_len;
while (siz > 0) {
if (M_TRAILINGSPACE(mb) == 0) {
struct mbuf *mb2;
mb2 = m_get(M_WAIT, MT_DATA);
MCLAIM(mb2, &nfs_mowner);
if (siz >= MINCLSIZE)
m_clget(mb2, M_WAIT);
mb->m_next = mb2;
mb = mb2;
mb->m_len = 0;
bpos = mtod(mb, void *);
}
i = min(siz, M_TRAILINGSPACE(mb));
memcpy(bpos, auth_str, i);
mb->m_len += i;
auth_str += i;
bpos += i;
siz -= i;
}
if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
for (i = 0; i < siz; i++)
*bpos++ = '\0';
mb->m_len += siz;
}
break;
};
/*
* And the verifier...
*/
nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
if (verf_str) {
*tl++ = txdr_unsigned(RPCAUTH_KERB4);
*tl = txdr_unsigned(verf_len);
siz = verf_len;
while (siz > 0) {
if (M_TRAILINGSPACE(mb) == 0) {
struct mbuf *mb2;
mb2 = m_get(M_WAIT, MT_DATA);
MCLAIM(mb2, &nfs_mowner);
if (siz >= MINCLSIZE)
m_clget(mb2, M_WAIT);
mb->m_next = mb2;
mb = mb2;
mb->m_len = 0;
bpos = mtod(mb, void *);
}
i = min(siz, M_TRAILINGSPACE(mb));
memcpy(bpos, verf_str, i);
mb->m_len += i;
verf_str += i;
bpos += i;
siz -= i;
}
if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
for (i = 0; i < siz; i++)
*bpos++ = '\0';
mb->m_len += siz;
}
} else {
*tl++ = txdr_unsigned(RPCAUTH_NULL);
*tl = 0;
}
mb->m_next = mrest;
mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
mreq->m_pkthdr.rcvif = (struct ifnet *)0;
*mbp = mb;
return (mreq);
}
/*
* copies mbuf chain to the uio scatter/gather list
*/
int
nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
{
char *mbufcp, *uiocp;
int xfer, left, len;
struct mbuf *mp;
long uiosiz, rem;
int error = 0;
mp = *mrep;
mbufcp = *dpos;
len = mtod(mp, char *) + mp->m_len - mbufcp;
rem = nfsm_rndup(siz)-siz;
while (siz > 0) {
if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
return (EFBIG);
left = uiop->uio_iov->iov_len;
uiocp = uiop->uio_iov->iov_base;
if (left > siz)
left = siz;
uiosiz = left;
while (left > 0) {
while (len == 0) {
mp = mp->m_next;
if (mp == NULL)
return (EBADRPC);
mbufcp = mtod(mp, void *);
len = mp->m_len;
}
xfer = (left > len) ? len : left;
error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
uiocp, xfer);
if (error) {
return error;
}
left -= xfer;
len -= xfer;
mbufcp += xfer;
uiocp += xfer;
uiop->uio_offset += xfer;
uiop->uio_resid -= xfer;
}
if (uiop->uio_iov->iov_len <= siz) {
uiop->uio_iovcnt--;
uiop->uio_iov++;
} else {
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + uiosiz;
uiop->uio_iov->iov_len -= uiosiz;
}
siz -= uiosiz;
}
*dpos = mbufcp;
*mrep = mp;
if (rem > 0) {
if (len < rem)
error = nfs_adv(mrep, dpos, rem, len);
else
*dpos += rem;
}
return (error);
}
/*
* copies a uio scatter/gather list to an mbuf chain.
* NOTE: can ony handle iovcnt == 1
*/
int
nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
{
char *uiocp;
struct mbuf *mp, *mp2;
int xfer, left, mlen;
int uiosiz, clflg, rem;
char *cp;
int error;
#ifdef DIAGNOSTIC
if (uiop->uio_iovcnt != 1)
panic("nfsm_uiotombuf: iovcnt != 1");
#endif
if (siz > MLEN) /* or should it >= MCLBYTES ?? */
clflg = 1;
else
clflg = 0;
rem = nfsm_rndup(siz)-siz;
mp = mp2 = *mq;
while (siz > 0) {
left = uiop->uio_iov->iov_len;
uiocp = uiop->uio_iov->iov_base;
if (left > siz)
left = siz;
uiosiz = left;
while (left > 0) {
mlen = M_TRAILINGSPACE(mp);
if (mlen == 0) {
mp = m_get(M_WAIT, MT_DATA);
MCLAIM(mp, &nfs_mowner);
if (clflg)
m_clget(mp, M_WAIT);
mp->m_len = 0;
mp2->m_next = mp;
mp2 = mp;
mlen = M_TRAILINGSPACE(mp);
}
xfer = (left > mlen) ? mlen : left;
cp = mtod(mp, char *) + mp->m_len;
error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
xfer);
if (error) {
/* XXX */
}
mp->m_len += xfer;
left -= xfer;
uiocp += xfer;
uiop->uio_offset += xfer;
uiop->uio_resid -= xfer;
}
uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
uiosiz;
uiop->uio_iov->iov_len -= uiosiz;
siz -= uiosiz;
}
if (rem > 0) {
if (rem > M_TRAILINGSPACE(mp)) {
mp = m_get(M_WAIT, MT_DATA);
MCLAIM(mp, &nfs_mowner);
mp->m_len = 0;
mp2->m_next = mp;
}
cp = mtod(mp, char *) + mp->m_len;
for (left = 0; left < rem; left++)
*cp++ = '\0';
mp->m_len += rem;
*bpos = cp;
} else
*bpos = mtod(mp, char *) + mp->m_len;
*mq = mp;
return (0);
}
/*
* Get at least "siz" bytes of correctly aligned data.
* When called the mbuf pointers are not necessarily correct,
* dsosp points to what ought to be in m_data and left contains
* what ought to be in m_len.
* This is used by the macros nfsm_dissect and nfsm_dissecton for tough
* cases. (The macros use the vars. dpos and dpos2)
*/
int
nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
{
struct mbuf *m1, *m2;
struct mbuf *havebuf = NULL;
char *src = *dposp;
char *dst;
int len;
#ifdef DEBUG
if (left < 0)
panic("nfsm_disct: left < 0");
#endif
m1 = *mdp;
/*
* Skip through the mbuf chain looking for an mbuf with
* some data. If the first mbuf found has enough data
* and it is correctly aligned return it.
*/
while (left == 0) {
havebuf = m1;
*mdp = m1 = m1->m_next;
if (m1 == NULL)
return (EBADRPC);
src = mtod(m1, void *);
left = m1->m_len;
/*
* If we start a new mbuf and it is big enough
* and correctly aligned just return it, don't
* do any pull up.
*/
if (left >= siz && nfsm_aligned(src)) {
*cp2 = src;
*dposp = src + siz;
return (0);
}
}
if ((m1->m_flags & M_EXT) != 0) {
if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
/*
* If the first mbuf with data has external data
* and there is a previous mbuf with some trailing
* space, use it to move the data into.
*/
m2 = m1;
*mdp = m1 = havebuf;
*cp2 = mtod(m1, char *) + m1->m_len;
} else if (havebuf) {
/*
* If the first mbuf has a external data
* and there is no previous empty mbuf
* allocate a new mbuf and move the external
* data to the new mbuf. Also make the first
* mbuf look empty.
*/
m2 = m1;
*mdp = m1 = m_get(M_WAIT, MT_DATA);
MCLAIM(m1, m2->m_owner);
if ((m2->m_flags & M_PKTHDR) != 0) {
/* XXX MOVE */
M_COPY_PKTHDR(m1, m2);
m_tag_delete_chain(m2, NULL);
m2->m_flags &= ~M_PKTHDR;
}
if (havebuf) {
havebuf->m_next = m1;
}
m1->m_next = m2;
MRESETDATA(m1);
m1->m_len = 0;
m2->m_data = src;
m2->m_len = left;
*cp2 = mtod(m1, char *);
} else {
struct mbuf **nextp = &m1->m_next;
m1->m_len -= left;
do {
m2 = m_get(M_WAIT, MT_DATA);
MCLAIM(m2, m1->m_owner);
if (left >= MINCLSIZE) {
MCLGET(m2, M_WAIT);
}
m2->m_next = *nextp;
*nextp = m2;
nextp = &m2->m_next;
len = (m2->m_flags & M_EXT) != 0 ?
MCLBYTES : MLEN;
if (len > left) {
len = left;
}
memcpy(mtod(m2, char *), src, len);
m2->m_len = len;
src += len;
left -= len;
} while (left > 0);
*mdp = m1 = m1->m_next;
m2 = m1->m_next;
*cp2 = mtod(m1, char *);
}
} else {
/*
* If the first mbuf has no external data
* move the data to the front of the mbuf.
*/
MRESETDATA(m1);
dst = mtod(m1, char *);
if (dst != src) {
memmove(dst, src, left);
}
m1->m_len = left;
m2 = m1->m_next;
*cp2 = m1->m_data;
}
*dposp = *cp2 + siz;
/*
* Loop through mbufs pulling data up into first mbuf until
* the first mbuf is full or there is no more data to
* pullup.
*/
dst = mtod(m1, char *) + m1->m_len;
while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
if ((len = min(len, m2->m_len)) != 0) {
memcpy(dst, mtod(m2, char *), len);
}
m1->m_len += len;
dst += len;
m2->m_data += len;
m2->m_len -= len;
m2 = m2->m_next;
}
if (m1->m_len < siz)
return (EBADRPC);
return (0);
}
/*
* Advance the position in the mbuf chain.
*/
int
nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
{
struct mbuf *m;
int s;
m = *mdp;
s = left;
while (s < offs) {
offs -= s;
m = m->m_next;
if (m == NULL)
return (EBADRPC);
s = m->m_len;
}
*mdp = m;
*dposp = mtod(m, char *) + offs;
return (0);
}
/*
* Copy a string into mbufs for the hard cases...
*/
int
nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
{
struct mbuf *m1 = NULL, *m2;
long left, xfer, len, tlen;
u_int32_t *tl;
int putsize;
putsize = 1;
m2 = *mb;
left = M_TRAILINGSPACE(m2);
if (left > 0) {
tl = ((u_int32_t *)(*bpos));
*tl++ = txdr_unsigned(siz);
putsize = 0;
left -= NFSX_UNSIGNED;
m2->m_len += NFSX_UNSIGNED;
if (left > 0) {
memcpy((void *) tl, cp, left);
siz -= left;
cp += left;
m2->m_len += left;
left = 0;
}
}
/* Loop around adding mbufs */
while (siz > 0) {
m1 = m_get(M_WAIT, MT_DATA);
MCLAIM(m1, &nfs_mowner);
if (siz > MLEN)
m_clget(m1, M_WAIT);
m1->m_len = NFSMSIZ(m1);
m2->m_next = m1;
m2 = m1;
tl = mtod(m1, u_int32_t *);
tlen = 0;
if (putsize) {
*tl++ = txdr_unsigned(siz);
m1->m_len -= NFSX_UNSIGNED;
tlen = NFSX_UNSIGNED;
putsize = 0;
}
if (siz < m1->m_len) {
len = nfsm_rndup(siz);
xfer = siz;
if (xfer < len)
*(tl+(xfer>>2)) = 0;
} else {
xfer = len = m1->m_len;
}
memcpy((void *) tl, cp, xfer);
m1->m_len = len+tlen;
siz -= xfer;
cp += xfer;
}
*mb = m1;
*bpos = mtod(m1, char *) + m1->m_len;
return (0);
}
/*
* Directory caching routines. They work as follows:
* - a cache is maintained per VDIR nfsnode.
* - for each offset cookie that is exported to userspace, and can
* thus be thrown back at us as an offset to VOP_READDIR, store
* information in the cache.
* - cached are:
* - cookie itself
* - blocknumber (essentially just a search key in the buffer cache)
* - entry number in block.
* - offset cookie of block in which this entry is stored
* - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
* - entries are looked up in a hash table
* - also maintained is an LRU list of entries, used to determine
* which ones to delete if the cache grows too large.
* - if 32 <-> 64 translation mode is requested for a filesystem,
* the cache also functions as a translation table
* - in the translation case, invalidating the cache does not mean
* flushing it, but just marking entries as invalid, except for
* the <64bit cookie, 32bitcookie> pair which is still valid, to
* still be able to use the cache as a translation table.
* - 32 bit cookies are uniquely created by combining the hash table
* entry value, and one generation count per hash table entry,
* incremented each time an entry is appended to the chain.
* - the cache is invalidated each time a direcory is modified
* - sanity checks are also done; if an entry in a block turns
* out not to have a matching cookie, the cache is invalidated
* and a new block starting from the wanted offset is fetched from
* the server.
* - directory entries as read from the server are extended to contain
* the 64bit and, optionally, the 32bit cookies, for sanity checking
* the cache and exporting them to userspace through the cookie
* argument to VOP_READDIR.
*/
u_long
nfs_dirhash(off_t off)
{
int i;
char *cp = (char *)&off;
u_long sum = 0L;
for (i = 0 ; i < sizeof (off); i++)
sum += *cp++;
return sum;
}
#define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
#define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
#define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
#define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
void
nfs_initdircache(struct vnode *vp)
{
struct nfsnode *np = VTONFS(vp);
struct nfsdirhashhead *dircache;
dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
&nfsdirhashmask);
NFSDC_LOCK(np);
if (np->n_dircache == NULL) {
np->n_dircachesize = 0;
np->n_dircache = dircache;
dircache = NULL;
TAILQ_INIT(&np->n_dirchain);
}
NFSDC_UNLOCK(np);
if (dircache)
hashdone(dircache, HASH_LIST, nfsdirhashmask);
}
void
nfs_initdirxlatecookie(struct vnode *vp)
{
struct nfsnode *np = VTONFS(vp);
unsigned *dirgens;
KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
NFSDC_LOCK(np);
if (np->n_dirgens == NULL) {
np->n_dirgens = dirgens;
dirgens = NULL;
}
NFSDC_UNLOCK(np);
if (dirgens)
kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
}
static const struct nfsdircache dzero;
static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
static void nfs_putdircache_unlocked(struct nfsnode *,
struct nfsdircache *);
static void
nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
{
NFSDC_ASSERT_LOCKED(np);
KASSERT(ndp != &dzero);
if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
return;
TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
LIST_REMOVE(ndp, dc_hash);
LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
nfs_putdircache_unlocked(np, ndp);
}
void
nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
{
int ref;
if (ndp == &dzero)
return;
KASSERT(ndp->dc_refcnt > 0);
NFSDC_LOCK(np);
ref = --ndp->dc_refcnt;
NFSDC_UNLOCK(np);
if (ref == 0)
kmem_free(ndp, sizeof(*ndp));
}
static void
nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
{
int ref;
NFSDC_ASSERT_LOCKED(np);
if (ndp == &dzero)
return;
KASSERT(ndp->dc_refcnt > 0);
ref = --ndp->dc_refcnt;
if (ref == 0)
kmem_free(ndp, sizeof(*ndp));
}
struct nfsdircache *
nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
{
struct nfsdirhashhead *ndhp;
struct nfsdircache *ndp = NULL;
struct nfsnode *np = VTONFS(vp);
unsigned ent;
/*
* Zero is always a valid cookie.
*/
if (off == 0)
/* XXXUNCONST */
return (struct nfsdircache *)__UNCONST(&dzero);
if (!np->n_dircache)
return NULL;
/*
* We use a 32bit cookie as search key, directly reconstruct
* the hashentry. Else use the hashfunction.
*/
if (do32) {
ent = (u_int32_t)off >> 24;
if (ent >= NFS_DIRHASHSIZ)
return NULL;
ndhp = &np->n_dircache[ent];
} else {
ndhp = NFSDIRHASH(np, off);
}
if (hashent)
*hashent = (int)(ndhp - np->n_dircache);
NFSDC_LOCK(np);
if (do32) {
LIST_FOREACH(ndp, ndhp, dc_hash) {
if (ndp->dc_cookie32 == (u_int32_t)off) {
/*
* An invalidated entry will become the
* start of a new block fetched from
* the server.
*/
if (ndp->dc_flags & NFSDC_INVALID) {
ndp->dc_blkcookie = ndp->dc_cookie;
ndp->dc_entry = 0;
ndp->dc_flags &= ~NFSDC_INVALID;
}
break;
}
}
} else {
LIST_FOREACH(ndp, ndhp, dc_hash) {
if (ndp->dc_cookie == off)
break;
}
}
if (ndp != NULL)
ndp->dc_refcnt++;
NFSDC_UNLOCK(np);
return ndp;
}
struct nfsdircache *
nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
daddr_t blkno)
{
struct nfsnode *np = VTONFS(vp);
struct nfsdirhashhead *ndhp;
struct nfsdircache *ndp = NULL;
struct nfsdircache *newndp = NULL;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int hashent = 0, gen, overwrite; /* XXX: GCC */
/*
* XXX refuse entries for offset 0. amd(8) erroneously sets
* cookie 0 for the '.' entry, making this necessary. This
* isn't so bad, as 0 is a special case anyway.
*/
if (off == 0)
/* XXXUNCONST */
return (struct nfsdircache *)__UNCONST(&dzero);
if (!np->n_dircache)
/*
* XXX would like to do this in nfs_nget but vtype
* isn't known at that time.
*/
nfs_initdircache(vp);
if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
nfs_initdirxlatecookie(vp);
retry:
ndp = nfs_searchdircache(vp, off, 0, &hashent);
NFSDC_LOCK(np);
if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
/*
* Overwriting an old entry. Check if it's the same.
* If so, just return. If not, remove the old entry.
*/
if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
goto done;
nfs_unlinkdircache(np, ndp);
nfs_putdircache_unlocked(np, ndp);
ndp = NULL;
}
ndhp = &np->n_dircache[hashent];
if (!ndp) {
if (newndp == NULL) {
NFSDC_UNLOCK(np);
newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
newndp->dc_refcnt = 1;
LIST_NEXT(newndp, dc_hash) = (void *)-1;
goto retry;
}
ndp = newndp;
newndp = NULL;
overwrite = 0;
if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
/*
* We're allocating a new entry, so bump the
* generation number.
*/
KASSERT(np->n_dirgens);
gen = ++np->n_dirgens[hashent];
if (gen == 0) {
np->n_dirgens[hashent]++;
gen++;
}
ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
}
} else
overwrite = 1;
ndp->dc_cookie = off;
ndp->dc_blkcookie = blkoff;
ndp->dc_entry = en;
ndp->dc_flags = 0;
if (overwrite)
goto done;
/*
* If the maximum directory cookie cache size has been reached
* for this node, take one off the front. The idea is that
* directories are typically read front-to-back once, so that
* the oldest entries can be thrown away without much performance
* loss.
*/
if (np->n_dircachesize == NFS_MAXDIRCACHE) {
nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
} else
np->n_dircachesize++;
KASSERT(ndp->dc_refcnt == 1);
LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
ndp->dc_refcnt++;
done:
KASSERT(ndp->dc_refcnt > 0);
NFSDC_UNLOCK(np);
if (newndp)
nfs_putdircache(np, newndp);
return ndp;
}
void
nfs_invaldircache(struct vnode *vp, int flags)
{
struct nfsnode *np = VTONFS(vp);
struct nfsdircache *ndp = NULL;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
#ifdef DIAGNOSTIC
if (vp->v_type != VDIR)
panic("nfs: invaldircache: not dir");
#endif
if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
np->n_flag &= ~NEOFVALID;
if (!np->n_dircache)
return;
NFSDC_LOCK(np);
if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
KASSERT(!forcefree || ndp->dc_refcnt == 1);
nfs_unlinkdircache(np, ndp);
}
np->n_dircachesize = 0;
if (forcefree && np->n_dirgens) {
kmem_free(np->n_dirgens,
NFS_DIRHASHSIZ * sizeof(unsigned));
np->n_dirgens = NULL;
}
} else {
TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
ndp->dc_flags |= NFSDC_INVALID;
}
NFSDC_UNLOCK(np);
}
/*
* Called once before VFS init to initialize shared and
* server-specific data structures.
*/
static int
nfs_init0(void)
{
nfsrtt.pos = 0;
rpc_vers = txdr_unsigned(RPC_VER2);
rpc_call = txdr_unsigned(RPC_CALL);
rpc_reply = txdr_unsigned(RPC_REPLY);
rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
rpc_autherr = txdr_unsigned(RPC_AUTHERR);
rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
nfs_prog = txdr_unsigned(NFS_PROG);
nfs_true = txdr_unsigned(true);
nfs_false = txdr_unsigned(false);
nfs_xdrneg1 = txdr_unsigned(-1);
nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
if (nfs_ticks < 1)
nfs_ticks = 1;
nfs_xid = arc4random();
nfsdreq_init();
/*
* Initialize reply list and start timer
*/
TAILQ_INIT(&nfs_reqq);
nfs_timer_init();
MOWNER_ATTACH(&nfs_mowner);
#ifdef NFS
/* Initialize the kqueue structures */
nfs_kqinit();
/* Initialize the iod structures */
nfs_iodinit();
#endif
return 0;
}
/*
* This is disgusting, but it must support both modular and monolothic
* configurations. For monolithic builds NFSSERVER may not imply NFS.
*
* Yuck.
*/
void
nfs_init(void)
{
static ONCE_DECL(nfs_init_once);
RUN_ONCE(&nfs_init_once, nfs_init0);
}
void
nfs_fini(void)
{
#ifdef NFS
nfs_kqfini();
nfs_iodfini();
#endif
nfsdreq_fini();
nfs_timer_fini();
MOWNER_DETACH(&nfs_mowner);
}
#ifdef NFS
/*
* Called once at VFS init to initialize client-specific data structures.
*/
void
nfs_vfs_init(void)
{
/* Initialize NFS server / client shared data. */
nfs_init();
nfs_node_init();
nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
}
void
nfs_vfs_done(void)
{
nfs_node_done();
}
/*
* Attribute cache routines.
* nfs_loadattrcache() - loads or updates the cache contents from attributes
* that are on the mbuf list
* nfs_getattrcache() - returns valid attributes if found in cache, returns
* error otherwise
*/
/*
* Load the attribute cache (that lives in the nfsnode entry) with
* the values on the mbuf list and
* Iff vap not NULL
* copy the attributes to *vaper
*/
int
nfsm_loadattrcache(struct vnode **vpp, struct mbuf **mdp, char **dposp, struct vattr *vaper, int flags)
{
int32_t t1;
char *cp2;
int error = 0;
struct mbuf *md;
int v3 = NFS_ISV3(*vpp);
md = *mdp;
t1 = (mtod(md, char *) + md->m_len) - *dposp;
error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
if (error)
return (error);
return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
}
int
nfs_loadattrcache(struct vnode **vpp, struct nfs_fattr *fp, struct vattr *vaper, int flags)
{
struct vnode *vp = *vpp;
struct vattr *vap;
int v3 = NFS_ISV3(vp);
enum vtype vtyp;
u_short vmode;
struct timespec mtime;
struct timespec ctime;
int32_t rdev;
struct nfsnode *np;
extern int (**spec_nfsv2nodeop_p)(void *);
uid_t uid;
gid_t gid;
if (v3) {
vtyp = nfsv3tov_type(fp->fa_type);
vmode = fxdr_unsigned(u_short, fp->fa_mode);
rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
} else {
vtyp = nfsv2tov_type(fp->fa_type);
vmode = fxdr_unsigned(u_short, fp->fa_mode);
if (vtyp == VNON || vtyp == VREG)
vtyp = IFTOVT(vmode);
rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
ctime.tv_sec = fxdr_unsigned(u_int32_t,
fp->fa2_ctime.nfsv2_sec);
ctime.tv_nsec = 0;
/*
* Really ugly NFSv2 kludge.
*/
if (vtyp == VCHR && rdev == 0xffffffff)
vtyp = VFIFO;
}
vmode &= ALLPERMS;
/*
* If v_type == VNON it is a new node, so fill in the v_type,
* n_mtime fields. Check to see if it represents a special
* device, and if so, check for a possible alias. Once the
* correct vnode has been obtained, fill in the rest of the
* information.
*/
np = VTONFS(vp);
if (vp->v_type == VNON) {
vp->v_type = vtyp;
if (vp->v_type == VFIFO) {
extern int (**fifo_nfsv2nodeop_p)(void *);
vp->v_op = fifo_nfsv2nodeop_p;
} else if (vp->v_type == VREG) {
mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
} else if (vp->v_type == VCHR || vp->v_type == VBLK) {
vp->v_op = spec_nfsv2nodeop_p;
spec_node_init(vp, (dev_t)rdev);
}
np->n_mtime = mtime;
}
uid = fxdr_unsigned(uid_t, fp->fa_uid);
gid = fxdr_unsigned(gid_t, fp->fa_gid);
vap = np->n_vattr;
/*
* Invalidate access cache if uid, gid, mode or ctime changed.
*/
if (np->n_accstamp != -1 &&
(gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
|| timespeccmp(&ctime, &vap->va_ctime, !=)))
np->n_accstamp = -1;
vap->va_type = vtyp;
vap->va_mode = vmode;
vap->va_rdev = (dev_t)rdev;
vap->va_mtime = mtime;
vap->va_ctime = ctime;
vap->va_birthtime.tv_sec = VNOVAL;
vap->va_birthtime.tv_nsec = VNOVAL;
vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
switch (vtyp) {
case VDIR:
vap->va_blocksize = NFS_DIRFRAGSIZ;
break;
case VBLK:
vap->va_blocksize = BLKDEV_IOSIZE;
break;
case VCHR:
vap->va_blocksize = MAXBSIZE;
break;
default:
vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
fxdr_unsigned(int32_t, fp->fa2_blocksize);
break;
}
if (v3) {
vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
vap->va_uid = uid;
vap->va_gid = gid;
vap->va_size = fxdr_hyper(&fp->fa3_size);
vap->va_bytes = fxdr_hyper(&fp->fa3_used);
vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
vap->va_flags = 0;
vap->va_filerev = 0;
} else {
vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
vap->va_uid = uid;
vap->va_gid = gid;
vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
* NFS_FABLKSIZE;
vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
vap->va_flags = 0;
vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
vap->va_filerev = 0;
}
if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
return EFBIG;
}
if (vap->va_size != np->n_size) {
if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
vap->va_size = np->n_size;
} else {
np->n_size = vap->va_size;
if (vap->va_type == VREG) {
/*
* we can't free pages if NAC_NOTRUNC because
* the pages can be owned by ourselves.
*/
if (flags & NAC_NOTRUNC) {
np->n_flag |= NTRUNCDELAYED;
} else {
genfs_node_wrlock(vp);
mutex_enter(&vp->v_interlock);
(void)VOP_PUTPAGES(vp, 0,
0, PGO_SYNCIO | PGO_CLEANIT |
PGO_FREE | PGO_ALLPAGES);
uvm_vnp_setsize(vp, np->n_size);
genfs_node_unlock(vp);
}
}
}
}
np->n_attrstamp = time_second;
if (vaper != NULL) {
memcpy((void *)vaper, (void *)vap, sizeof(*vap));
if (np->n_flag & NCHG) {
if (np->n_flag & NACC)
vaper->va_atime = np->n_atim;
if (np->n_flag & NUPD)
vaper->va_mtime = np->n_mtim;
}
}
return (0);
}
/*
* Check the time stamp
* If the cache is valid, copy contents to *vap and return 0
* otherwise return an error
*/
int
nfs_getattrcache(struct vnode *vp, struct vattr *vaper)
{
struct nfsnode *np = VTONFS(vp);
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
struct vattr *vap;
if (np->n_attrstamp == 0 ||
(time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
nfsstats.attrcache_misses++;
return (ENOENT);
}
nfsstats.attrcache_hits++;
vap = np->n_vattr;
if (vap->va_size != np->n_size) {
if (vap->va_type == VREG) {
if ((np->n_flag & NMODIFIED) != 0 &&
vap->va_size < np->n_size) {
vap->va_size = np->n_size;
} else {
np->n_size = vap->va_size;
}
genfs_node_wrlock(vp);
uvm_vnp_setsize(vp, np->n_size);
genfs_node_unlock(vp);
} else
np->n_size = vap->va_size;
}
memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
if (np->n_flag & NCHG) {
if (np->n_flag & NACC)
vaper->va_atime = np->n_atim;
if (np->n_flag & NUPD)
vaper->va_mtime = np->n_mtim;
}
return (0);
}
void
nfs_delayedtruncate(struct vnode *vp)
{
struct nfsnode *np = VTONFS(vp);
if (np->n_flag & NTRUNCDELAYED) {
np->n_flag &= ~NTRUNCDELAYED;
genfs_node_wrlock(vp);
mutex_enter(&vp->v_interlock);
(void)VOP_PUTPAGES(vp, 0,
0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
uvm_vnp_setsize(vp, np->n_size);
genfs_node_unlock(vp);
}
}
#define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
#define NFS_WCCKLUDGE(nmp, now) \
(((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
/*
* nfs_check_wccdata: check inaccurate wcc_data
*
* => return non-zero if we shouldn't trust the wcc_data.
* => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
*/
int
nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
struct timespec *mtime, bool docheck)
{
int error = 0;
#if !defined(NFS_V2_ONLY)
if (docheck) {
struct vnode *vp = NFSTOV(np);
struct nfsmount *nmp;
long now = time_second;
const struct timespec *omtime = &np->n_vattr->va_mtime;
const struct timespec *octime = &np->n_vattr->va_ctime;
const char *reason = NULL; /* XXX: gcc */
if (timespeccmp(omtime, mtime, <=)) {
reason = "mtime";
error = EINVAL;
}
if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
reason = "ctime";
error = EINVAL;
}
nmp = VFSTONFS(vp->v_mount);
if (error) {
/*
* despite of the fact that we've updated the file,
* timestamps of the file were not updated as we
* expected.
* it means that the server has incompatible
* semantics of timestamps or (more likely)
* the server time is not precise enough to
* track each modifications.
* in that case, we disable wcc processing.
*
* yes, strictly speaking, we should disable all
* caching. it's a compromise.
*/
mutex_enter(&nmp->nm_lock);
if (!NFS_WCCKLUDGE(nmp, now)) {
printf("%s: inaccurate wcc data (%s) detected,"
" disabling wcc"
" (ctime %u.%09u %u.%09u,"
" mtime %u.%09u %u.%09u)\n",
vp->v_mount->mnt_stat.f_mntfromname,
reason,
(unsigned int)octime->tv_sec,
(unsigned int)octime->tv_nsec,
(unsigned int)ctime->tv_sec,
(unsigned int)ctime->tv_nsec,
(unsigned int)omtime->tv_sec,
(unsigned int)omtime->tv_nsec,
(unsigned int)mtime->tv_sec,
(unsigned int)mtime->tv_nsec);
}
nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
nmp->nm_wcckludgetime = now;
mutex_exit(&nmp->nm_lock);
} else if (NFS_WCCKLUDGE(nmp, now)) {
error = EPERM; /* XXX */
} else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
mutex_enter(&nmp->nm_lock);
if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
printf("%s: re-enabling wcc\n",
vp->v_mount->mnt_stat.f_mntfromname);
nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
}
mutex_exit(&nmp->nm_lock);
}
}
#endif /* !defined(NFS_V2_ONLY) */
return error;
}
/*
* Heuristic to see if the server XDR encodes directory cookies or not.
* it is not supposed to, but a lot of servers may do this. Also, since
* most/all servers will implement V2 as well, it is expected that they
* may return just 32 bits worth of cookie information, so we need to
* find out in which 32 bits this information is available. We do this
* to avoid trouble with emulated binaries that can't handle 64 bit
* directory offsets.
*/
void
nfs_cookieheuristic(struct vnode *vp, int *flagp, struct lwp *l, kauth_cred_t cred)
{
struct uio auio;
struct iovec aiov;
char *tbuf, *cp;
struct dirent *dp;
off_t *cookies = NULL, *cop;
int error, eof, nc, len;
tbuf = malloc(NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
aiov.iov_base = tbuf;
aiov.iov_len = NFS_DIRFRAGSIZ;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_resid = NFS_DIRFRAGSIZ;
auio.uio_offset = 0;
UIO_SETUP_SYSSPACE(&auio);
error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
len = NFS_DIRFRAGSIZ - auio.uio_resid;
if (error || len == 0) {
free(tbuf, M_TEMP);
if (cookies)
free(cookies, M_TEMP);
return;
}
/*
* Find the first valid entry and look at its offset cookie.
*/
cp = tbuf;
for (cop = cookies; len > 0; len -= dp->d_reclen) {
dp = (struct dirent *)cp;
if (dp->d_fileno != 0 && len >= dp->d_reclen) {
if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
*flagp |= NFSMNT_SWAPCOOKIE;
nfs_invaldircache(vp, 0);
nfs_vinvalbuf(vp, 0, cred, l, 1);
}
break;
}
cop++;
cp += dp->d_reclen;
}
free(tbuf, M_TEMP);
free(cookies, M_TEMP);
}
#endif /* NFS */
/*
* A fiddled version of m_adj() that ensures null fill to a 32-bit
* boundary and only trims off the back end
*
* 1. trim off 'len' bytes as m_adj(mp, -len).
* 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
*/
void
nfs_zeropad(struct mbuf *mp, int len, int nul)
{
struct mbuf *m;
int count;
/*
* Trim from tail. Scan the mbuf chain,
* calculating its length and finding the last mbuf.
* If the adjustment only affects this mbuf, then just
* adjust and return. Otherwise, rescan and truncate
* after the remaining size.
*/
count = 0;
m = mp;
for (;;) {
count += m->m_len;
if (m->m_next == NULL)
break;
m = m->m_next;
}
KDASSERT(count >= len);
if (m->m_len >= len) {
m->m_len -= len;
} else {
count -= len;
/*
* Correct length for chain is "count".
* Find the mbuf with last data, adjust its length,
* and toss data from remaining mbufs on chain.
*/
for (m = mp; m; m = m->m_next) {
if (m->m_len >= count) {
m->m_len = count;
break;
}
count -= m->m_len;
}
KASSERT(m && m->m_next);
m_freem(m->m_next);
m->m_next = NULL;
}
KDASSERT(m->m_next == NULL);
/*
* zero-padding.
*/
if (nul > 0) {
char *cp;
int i;
if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
struct mbuf *n;
KDASSERT(MLEN >= nul);
n = m_get(M_WAIT, MT_DATA);
MCLAIM(n, &nfs_mowner);
n->m_len = nul;
n->m_next = NULL;
m->m_next = n;
cp = mtod(n, void *);
} else {
cp = mtod(m, char *) + m->m_len;
m->m_len += nul;
}
for (i = 0; i < nul; i++)
*cp++ = '\0';
}
return;
}
/*
* Make these functions instead of macros, so that the kernel text size
* doesn't get too big...
*/
void
nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
{
struct mbuf *mb = *mbp;
char *bpos = *bposp;
u_int32_t *tl;
if (before_ret) {
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = nfs_false;
} else {
nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
*tl++ = nfs_true;
txdr_hyper(before_vap->va_size, tl);
tl += 2;
txdr_nfsv3time(&(before_vap->va_mtime), tl);
tl += 2;
txdr_nfsv3time(&(before_vap->va_ctime), tl);
}
*bposp = bpos;
*mbp = mb;
nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
}
void
nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
{
struct mbuf *mb = *mbp;
char *bpos = *bposp;
u_int32_t *tl;
struct nfs_fattr *fp;
if (after_ret) {
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
*tl = nfs_false;
} else {
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
*tl++ = nfs_true;
fp = (struct nfs_fattr *)tl;
nfsm_srvfattr(nfsd, after_vap, fp);
}
*mbp = mb;
*bposp = bpos;
}
void
nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
{
fp->fa_nlink = txdr_unsigned(vap->va_nlink);
fp->fa_uid = txdr_unsigned(vap->va_uid);
fp->fa_gid = txdr_unsigned(vap->va_gid);
if (nfsd->nd_flag & ND_NFSV3) {
fp->fa_type = vtonfsv3_type(vap->va_type);
fp->fa_mode = vtonfsv3_mode(vap->va_mode);
txdr_hyper(vap->va_size, &fp->fa3_size);
txdr_hyper(vap->va_bytes, &fp->fa3_used);
fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
fp->fa3_fsid.nfsuquad[0] = 0;
fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
} else {
fp->fa_type = vtonfsv2_type(vap->va_type);
fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
fp->fa2_size = txdr_unsigned(vap->va_size);
fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
if (vap->va_type == VFIFO)
fp->fa2_rdev = 0xffffffff;
else
fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
}
}
/*
* This function compares two net addresses by family and returns true
* if they are the same host.
* If there is any doubt, return false.
* The AF_INET family is handled as a special case so that address mbufs
* don't need to be saved to store "struct in_addr", which is only 4 bytes.
*/
int
netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
{
struct sockaddr_in *inetaddr;
switch (family) {
case AF_INET:
inetaddr = mtod(nam, struct sockaddr_in *);
if (inetaddr->sin_family == AF_INET &&
inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
return (1);
break;
case AF_INET6:
{
struct sockaddr_in6 *sin6_1, *sin6_2;
sin6_1 = mtod(nam, struct sockaddr_in6 *);
sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
if (sin6_1->sin6_family == AF_INET6 &&
IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
return 1;
}
default:
break;
};
return (0);
}
/*
* The write verifier has changed (probably due to a server reboot), so all
* PG_NEEDCOMMIT pages will have to be written again. Since they are marked
* as dirty or are being written out just now, all this takes is clearing
* the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
* the mount point.
*/
void
nfs_clearcommit(struct mount *mp)
{
struct vnode *vp;
struct nfsnode *np;
struct vm_page *pg;
struct nfsmount *nmp = VFSTONFS(mp);
rw_enter(&nmp->nm_writeverflock, RW_WRITER);
mutex_enter(&mntvnode_lock);
TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
KASSERT(vp->v_mount == mp);
if (vp->v_type != VREG)
continue;
np = VTONFS(vp);
np->n_pushlo = np->n_pushhi = np->n_pushedlo =
np->n_pushedhi = 0;
np->n_commitflags &=
~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
mutex_enter(&vp->v_uobj.vmobjlock);
TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
pg->flags &= ~PG_NEEDCOMMIT;
}
mutex_exit(&vp->v_uobj.vmobjlock);
}
mutex_exit(&mntvnode_lock);
mutex_enter(&nmp->nm_lock);
nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
mutex_exit(&nmp->nm_lock);
rw_exit(&nmp->nm_writeverflock);
}
void
nfs_merge_commit_ranges(struct vnode *vp)
{
struct nfsnode *np = VTONFS(vp);
KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
np->n_pushedlo = np->n_pushlo;
np->n_pushedhi = np->n_pushhi;
np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
} else {
if (np->n_pushlo < np->n_pushedlo)
np->n_pushedlo = np->n_pushlo;
if (np->n_pushhi > np->n_pushedhi)
np->n_pushedhi = np->n_pushhi;
}
np->n_pushlo = np->n_pushhi = 0;
np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
#ifdef NFS_DEBUG_COMMIT
printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
(unsigned)np->n_pushedhi);
#endif
}
int
nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
{
struct nfsnode *np = VTONFS(vp);
off_t lo, hi;
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
return 0;
lo = off;
hi = lo + len;
return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
}
int
nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
{
struct nfsnode *np = VTONFS(vp);
off_t lo, hi;
if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
return 0;
lo = off;
hi = lo + len;
return (lo >= np->n_pushlo && hi <= np->n_pushhi);
}
void
nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
{
struct nfsnode *np = VTONFS(vp);
off_t lo, hi;
lo = off;
hi = lo + len;
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
np->n_pushedlo = lo;
np->n_pushedhi = hi;
np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
} else {
if (hi > np->n_pushedhi)
np->n_pushedhi = hi;
if (lo < np->n_pushedlo)
np->n_pushedlo = lo;
}
#ifdef NFS_DEBUG_COMMIT
printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
(unsigned)np->n_pushedhi);
#endif
}
void
nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
{
struct nfsnode *np = VTONFS(vp);
off_t lo, hi;
if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
return;
lo = off;
hi = lo + len;
if (lo > np->n_pushedhi || hi < np->n_pushedlo)
return;
if (lo <= np->n_pushedlo)
np->n_pushedlo = hi;
else if (hi >= np->n_pushedhi)
np->n_pushedhi = lo;
else {
/*
* XXX There's only one range. If the deleted range
* is in the middle, pick the largest of the
* contiguous ranges that it leaves.
*/
if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
np->n_pushedhi = lo;
else
np->n_pushedlo = hi;
}
#ifdef NFS_DEBUG_COMMIT
printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
(unsigned)np->n_pushedhi);
#endif
}
void
nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
{
struct nfsnode *np = VTONFS(vp);
off_t lo, hi;
lo = off;
hi = lo + len;
if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
np->n_pushlo = lo;
np->n_pushhi = hi;
np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
} else {
if (lo < np->n_pushlo)
np->n_pushlo = lo;
if (hi > np->n_pushhi)
np->n_pushhi = hi;
}
#ifdef NFS_DEBUG_COMMIT
printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
(unsigned)np->n_pushhi);
#endif
}
void
nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
{
struct nfsnode *np = VTONFS(vp);
off_t lo, hi;
if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
return;
lo = off;
hi = lo + len;
if (lo > np->n_pushhi || hi < np->n_pushlo)
return;
if (lo <= np->n_pushlo)
np->n_pushlo = hi;
else if (hi >= np->n_pushhi)
np->n_pushhi = lo;
else {
/*
* XXX There's only one range. If the deleted range
* is in the middle, pick the largest of the
* contiguous ranges that it leaves.
*/
if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
np->n_pushhi = lo;
else
np->n_pushlo = hi;
}
#ifdef NFS_DEBUG_COMMIT
printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
(unsigned)np->n_pushhi);
#endif
}
/*
* Map errnos to NFS error numbers. For Version 3 also filter out error
* numbers not specified for the associated procedure.
*/
int
nfsrv_errmap(struct nfsrv_descript *nd, int err)
{
const short *defaulterrp, *errp;
if (nd->nd_flag & ND_NFSV3) {
if (nd->nd_procnum <= NFSPROC_COMMIT) {
errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
while (*++errp) {
if (*errp == err)
return (err);
else if (*errp > err)
break;
}
return ((int)*defaulterrp);
} else
return (err & 0xffff);
}
if (err <= ELAST)
return ((int)nfsrv_v2errmap[err - 1]);
return (NFSERR_IO);
}
u_int32_t
nfs_getxid(void)
{
u_int32_t newxid;
/* get next xid. skip 0 */
do {
newxid = atomic_inc_32_nv(&nfs_xid);
} while (__predict_false(newxid == 0));
return txdr_unsigned(newxid);
}
/*
* assign a new xid for existing request.
* used for NFSERR_JUKEBOX handling.
*/
void
nfs_renewxid(struct nfsreq *req)
{
u_int32_t xid;
int off;
xid = nfs_getxid();
if (req->r_nmp->nm_sotype == SOCK_STREAM)
off = sizeof(u_int32_t); /* RPC record mark */
else
off = 0;
m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
req->r_xid = xid;
}
#if defined(NFS)
/*
* Set the attribute timeout based on how recently the file has been modified.
*/
time_t
nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
{
time_t timeo;
if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
return 0;
if (((np)->n_flag & NMODIFIED) != 0)
return NFS_MINATTRTIMO;
timeo = (time_second - np->n_mtime.tv_sec) / 10;
timeo = max(timeo, NFS_MINATTRTIMO);
timeo = min(timeo, NFS_MAXATTRTIMO);
return timeo;
}
#endif /* defined(NFS) */