2785 lines
76 KiB
C
2785 lines
76 KiB
C
/* $NetBSD: gem.c,v 1.102 2014/08/10 16:44:35 tls Exp $ */
|
|
|
|
/*
|
|
*
|
|
* Copyright (C) 2001 Eduardo Horvath.
|
|
* Copyright (c) 2001-2003 Thomas Moestl
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
|
|
* See `GEM Gigabit Ethernet ASIC Specification'
|
|
* http://www.sun.com/processors/manuals/ge.pdf
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.102 2014/08/10 16:44:35 tls Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
|
|
#include <dev/ic/gemreg.h>
|
|
#include <dev/ic/gemvar.h>
|
|
|
|
#define TRIES 10000
|
|
|
|
static void gem_inten(struct gem_softc *);
|
|
static void gem_start(struct ifnet *);
|
|
static void gem_stop(struct ifnet *, int);
|
|
int gem_ioctl(struct ifnet *, u_long, void *);
|
|
void gem_tick(void *);
|
|
void gem_watchdog(struct ifnet *);
|
|
void gem_rx_watchdog(void *);
|
|
void gem_pcs_start(struct gem_softc *sc);
|
|
void gem_pcs_stop(struct gem_softc *sc, int);
|
|
int gem_init(struct ifnet *);
|
|
void gem_init_regs(struct gem_softc *sc);
|
|
static int gem_ringsize(int sz);
|
|
static int gem_meminit(struct gem_softc *);
|
|
void gem_mifinit(struct gem_softc *);
|
|
static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
|
|
u_int32_t, u_int32_t);
|
|
void gem_reset(struct gem_softc *);
|
|
int gem_reset_rx(struct gem_softc *sc);
|
|
static void gem_reset_rxdma(struct gem_softc *sc);
|
|
static void gem_rx_common(struct gem_softc *sc);
|
|
int gem_reset_tx(struct gem_softc *sc);
|
|
int gem_disable_rx(struct gem_softc *sc);
|
|
int gem_disable_tx(struct gem_softc *sc);
|
|
static void gem_rxdrain(struct gem_softc *sc);
|
|
int gem_add_rxbuf(struct gem_softc *sc, int idx);
|
|
void gem_setladrf(struct gem_softc *);
|
|
|
|
/* MII methods & callbacks */
|
|
static int gem_mii_readreg(device_t, int, int);
|
|
static void gem_mii_writereg(device_t, int, int, int);
|
|
static void gem_mii_statchg(struct ifnet *);
|
|
|
|
static int gem_ifflags_cb(struct ethercom *);
|
|
|
|
void gem_statuschange(struct gem_softc *);
|
|
|
|
int gem_ser_mediachange(struct ifnet *);
|
|
void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
|
|
|
|
struct mbuf *gem_get(struct gem_softc *, int, int);
|
|
int gem_put(struct gem_softc *, int, struct mbuf *);
|
|
void gem_read(struct gem_softc *, int, int);
|
|
int gem_pint(struct gem_softc *);
|
|
int gem_eint(struct gem_softc *, u_int);
|
|
int gem_rint(struct gem_softc *);
|
|
int gem_tint(struct gem_softc *);
|
|
void gem_power(int, void *);
|
|
|
|
#ifdef GEM_DEBUG
|
|
static void gem_txsoft_print(const struct gem_softc *, int, int);
|
|
#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
|
|
printf x
|
|
#else
|
|
#define DPRINTF(sc, x) /* nothing */
|
|
#endif
|
|
|
|
#define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
|
|
|
|
int
|
|
gem_detach(struct gem_softc *sc, int flags)
|
|
{
|
|
int i;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the attach.
|
|
* Do this in reverse order and fall through.
|
|
*/
|
|
switch (sc->sc_att_stage) {
|
|
case GEM_ATT_BACKEND_2:
|
|
case GEM_ATT_BACKEND_1:
|
|
case GEM_ATT_FINISHED:
|
|
bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
|
|
gem_stop(&sc->sc_ethercom.ec_if, 1);
|
|
|
|
#ifdef GEM_COUNTERS
|
|
for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
|
|
evcnt_detach(&sc->sc_ev_rxhist[i]);
|
|
evcnt_detach(&sc->sc_ev_rxnobuf);
|
|
evcnt_detach(&sc->sc_ev_rxfull);
|
|
evcnt_detach(&sc->sc_ev_rxint);
|
|
evcnt_detach(&sc->sc_ev_txint);
|
|
#endif
|
|
evcnt_detach(&sc->sc_ev_intr);
|
|
|
|
rnd_detach_source(&sc->rnd_source);
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
|
|
|
|
callout_destroy(&sc->sc_tick_ch);
|
|
callout_destroy(&sc->sc_rx_watchdog);
|
|
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_MII:
|
|
sc->sc_att_stage = GEM_ATT_MII;
|
|
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_7:
|
|
for (i = 0; i < GEM_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmatag,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
}
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_6:
|
|
for (i = 0; i < GEM_TXQUEUELEN; i++) {
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmatag,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_5:
|
|
bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_4:
|
|
bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_3:
|
|
bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_2:
|
|
bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
|
|
sizeof(struct gem_control_data));
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_1:
|
|
bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_0:
|
|
sc->sc_att_stage = GEM_ATT_0;
|
|
/*FALLTHROUGH*/
|
|
case GEM_ATT_BACKEND_0:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
|
|
{
|
|
cfattach_t ca = device_cfattach(sc->sc_dev);
|
|
|
|
sc->sc_att_stage = stage;
|
|
(*ca->ca_detach)(sc->sc_dev, 0);
|
|
}
|
|
|
|
/*
|
|
* gem_attach:
|
|
*
|
|
* Attach a Gem interface to the system.
|
|
*/
|
|
void
|
|
gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
struct ifmedia_entry *ifm;
|
|
int i, error, phyaddr;
|
|
u_int32_t v;
|
|
char *nullbuf;
|
|
|
|
/* Make sure the chip is stopped. */
|
|
ifp->if_softc = sc;
|
|
gem_reset(sc);
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it. gem_control_data is 9216 bytes, we have space for
|
|
* the padding buffer in the bus_dmamem_alloc()'d memory.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmatag,
|
|
sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
|
|
0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate control data, error = %d\n",
|
|
error);
|
|
gem_partial_detach(sc, GEM_ATT_0);
|
|
return;
|
|
}
|
|
|
|
/* XXX should map this in with correct endianness */
|
|
if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
|
|
sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to map control data, error = %d\n", error);
|
|
gem_partial_detach(sc, GEM_ATT_1);
|
|
return;
|
|
}
|
|
|
|
nullbuf =
|
|
(char *)sc->sc_control_data + sizeof(struct gem_control_data);
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmatag,
|
|
sizeof(struct gem_control_data), 1,
|
|
sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create control data DMA map, error = %d\n",
|
|
error);
|
|
gem_partial_detach(sc, GEM_ATT_2);
|
|
return;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct gem_control_data), NULL,
|
|
0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to load control data DMA map, error = %d\n",
|
|
error);
|
|
gem_partial_detach(sc, GEM_ATT_3);
|
|
return;
|
|
}
|
|
|
|
memset(nullbuf, 0, ETHER_MIN_TX);
|
|
if ((error = bus_dmamap_create(sc->sc_dmatag,
|
|
ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create padding DMA map, error = %d\n", error);
|
|
gem_partial_detach(sc, GEM_ATT_4);
|
|
return;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
|
|
nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to load padding DMA map, error = %d\n", error);
|
|
gem_partial_detach(sc, GEM_ATT_5);
|
|
return;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Initialize the transmit job descriptors.
|
|
*/
|
|
SIMPLEQ_INIT(&sc->sc_txfreeq);
|
|
SIMPLEQ_INIT(&sc->sc_txdirtyq);
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < GEM_TXQUEUELEN; i++) {
|
|
struct gem_txsoft *txs;
|
|
|
|
txs = &sc->sc_txsoft[i];
|
|
txs->txs_mbuf = NULL;
|
|
if ((error = bus_dmamap_create(sc->sc_dmatag,
|
|
ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
|
|
ETHER_MAX_LEN_JUMBO, 0, 0,
|
|
&txs->txs_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create tx DMA map %d, error = %d\n",
|
|
i, error);
|
|
gem_partial_detach(sc, GEM_ATT_6);
|
|
return;
|
|
}
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < GEM_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create rx DMA map %d, error = %d\n",
|
|
i, error);
|
|
gem_partial_detach(sc, GEM_ATT_7);
|
|
return;
|
|
}
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
/* Initialize ifmedia structures and MII info */
|
|
mii->mii_ifp = ifp;
|
|
mii->mii_readreg = gem_mii_readreg;
|
|
mii->mii_writereg = gem_mii_writereg;
|
|
mii->mii_statchg = gem_mii_statchg;
|
|
|
|
sc->sc_ethercom.ec_mii = mii;
|
|
|
|
/*
|
|
* Initialization based on `GEM Gigabit Ethernet ASIC Specification'
|
|
* Section 3.2.1 `Initialization Sequence'.
|
|
* However, we can't assume SERDES or Serialink if neither
|
|
* GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
|
|
* being set, as both are set on Sun X1141A (with SERDES). So,
|
|
* we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
|
|
* Also, for variants that report 2 PHY's, we prefer the external
|
|
* PHY over the internal PHY, so we look for that first.
|
|
*/
|
|
gem_mifinit(sc);
|
|
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
|
|
ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
|
|
ether_mediastatus);
|
|
/* Look for external PHY */
|
|
if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
|
|
sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
|
|
bus_space_write_4(t, h, GEM_MIF_CONFIG,
|
|
sc->sc_mif_config);
|
|
switch (sc->sc_variant) {
|
|
case GEM_SUN_ERI:
|
|
phyaddr = GEM_PHYAD_EXTERNAL;
|
|
break;
|
|
default:
|
|
phyaddr = MII_PHY_ANY;
|
|
break;
|
|
}
|
|
mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
|
|
MII_OFFSET_ANY, MIIF_FORCEANEG);
|
|
}
|
|
#ifdef GEM_DEBUG
|
|
else
|
|
aprint_debug_dev(sc->sc_dev, "using external PHY\n");
|
|
#endif
|
|
/* Look for internal PHY if no external PHY was found */
|
|
if (LIST_EMPTY(&mii->mii_phys) &&
|
|
sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
|
|
sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
|
|
bus_space_write_4(t, h, GEM_MIF_CONFIG,
|
|
sc->sc_mif_config);
|
|
switch (sc->sc_variant) {
|
|
case GEM_SUN_ERI:
|
|
case GEM_APPLE_K2_GMAC:
|
|
phyaddr = GEM_PHYAD_INTERNAL;
|
|
break;
|
|
case GEM_APPLE_GMAC:
|
|
phyaddr = GEM_PHYAD_EXTERNAL;
|
|
break;
|
|
default:
|
|
phyaddr = MII_PHY_ANY;
|
|
break;
|
|
}
|
|
mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
|
|
MII_OFFSET_ANY, MIIF_FORCEANEG);
|
|
#ifdef GEM_DEBUG
|
|
if (!LIST_EMPTY(&mii->mii_phys))
|
|
aprint_debug_dev(sc->sc_dev,
|
|
"using internal PHY\n");
|
|
#endif
|
|
}
|
|
if (LIST_EMPTY(&mii->mii_phys)) {
|
|
/* No PHY attached */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"PHY probe failed\n");
|
|
gem_partial_detach(sc, GEM_ATT_MII);
|
|
return;
|
|
} else {
|
|
struct mii_softc *child;
|
|
|
|
/*
|
|
* Walk along the list of attached MII devices and
|
|
* establish an `MII instance' to `PHY number'
|
|
* mapping.
|
|
*/
|
|
LIST_FOREACH(child, &mii->mii_phys, mii_list) {
|
|
/*
|
|
* Note: we support just one PHY: the internal
|
|
* or external MII is already selected for us
|
|
* by the GEM_MIF_CONFIG register.
|
|
*/
|
|
if (child->mii_phy > 1 || child->mii_inst > 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cannot accommodate MII device"
|
|
" %s at PHY %d, instance %d\n",
|
|
device_xname(child->mii_dev),
|
|
child->mii_phy, child->mii_inst);
|
|
continue;
|
|
}
|
|
sc->sc_phys[child->mii_inst] = child->mii_phy;
|
|
}
|
|
|
|
if (sc->sc_variant != GEM_SUN_ERI)
|
|
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_MII);
|
|
|
|
/*
|
|
* XXX - we can really do the following ONLY if the
|
|
* PHY indeed has the auto negotiation capability!!
|
|
*/
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
} else {
|
|
ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
|
|
gem_ser_mediastatus);
|
|
/* SERDES or Serialink */
|
|
if (sc->sc_flags & GEM_SERDES) {
|
|
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_SERDES);
|
|
} else {
|
|
sc->sc_flags |= GEM_SERIAL;
|
|
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_SERIAL);
|
|
}
|
|
|
|
aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
|
|
sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
|
|
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
/* Check for FDX and HDX capabilities */
|
|
sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
|
|
if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
|
|
aprint_normal("1000baseSX-FDX, ");
|
|
}
|
|
if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
|
|
aprint_normal("1000baseSX-HDX, ");
|
|
}
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
sc->sc_mii_media = IFM_AUTO;
|
|
aprint_normal("auto\n");
|
|
|
|
gem_pcs_stop(sc, 1);
|
|
}
|
|
|
|
/*
|
|
* From this point forward, the attachment cannot fail. A failure
|
|
* before this point releases all resources that may have been
|
|
* allocated.
|
|
*/
|
|
|
|
/* Announce ourselves. */
|
|
aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
|
|
ether_sprintf(enaddr));
|
|
|
|
/* Get RX FIFO size */
|
|
sc->sc_rxfifosize = 64 *
|
|
bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
|
|
aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
|
|
|
|
/* Get TX FIFO size */
|
|
v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
|
|
aprint_normal(", %uKB TX fifo\n", v / 16);
|
|
|
|
/* Initialize ifnet structure. */
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags =
|
|
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
#if 0
|
|
/*
|
|
* The GEM hardware supports basic TCP checksum offloading only.
|
|
* Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
|
|
* have bugs in the receive checksum, so don't enable it for now.
|
|
*/
|
|
if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
|
|
(GEM_IS_APPLE(sc) &&
|
|
(sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
|
|
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
|
|
#endif
|
|
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
|
|
ifp->if_start = gem_start;
|
|
ifp->if_ioctl = gem_ioctl;
|
|
ifp->if_watchdog = gem_watchdog;
|
|
ifp->if_stop = gem_stop;
|
|
ifp->if_init = gem_init;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* If we support GigE media, we support jumbo frames too.
|
|
* Unless we are Apple.
|
|
*/
|
|
TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
|
|
IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
|
|
IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
|
|
IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
|
|
if (!GEM_IS_APPLE(sc))
|
|
sc->sc_ethercom.ec_capabilities
|
|
|= ETHERCAP_JUMBO_MTU;
|
|
sc->sc_flags |= GEM_GIGABIT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* claim 802.1q capability */
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
/* Attach the interface. */
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
|
|
|
|
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
|
|
RND_TYPE_NET, RND_FLAG_DEFAULT);
|
|
|
|
evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
|
|
NULL, device_xname(sc->sc_dev), "interrupts");
|
|
#ifdef GEM_COUNTERS
|
|
evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
|
|
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
|
|
#endif
|
|
|
|
callout_init(&sc->sc_tick_ch, 0);
|
|
callout_init(&sc->sc_rx_watchdog, 0);
|
|
callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
|
|
|
|
sc->sc_att_stage = GEM_ATT_FINISHED;
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
gem_tick(void *arg)
|
|
{
|
|
struct gem_softc *sc = arg;
|
|
int s;
|
|
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
|
|
/*
|
|
* We have to reset everything if we failed to get a
|
|
* PCS interrupt. Restarting the callout is handled
|
|
* in gem_pcs_start().
|
|
*/
|
|
gem_init(&sc->sc_ethercom.ec_if);
|
|
} else {
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
splx(s);
|
|
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
|
|
}
|
|
}
|
|
|
|
static int
|
|
gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
|
|
{
|
|
int i;
|
|
u_int32_t reg;
|
|
|
|
for (i = TRIES; i--; DELAY(100)) {
|
|
reg = bus_space_read_4(sc->sc_bustag, h, r);
|
|
if ((reg & clr) == 0 && (reg & set) == set)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
gem_reset(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h2;
|
|
int s;
|
|
|
|
s = splnet();
|
|
DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
|
|
gem_reset_rx(sc);
|
|
gem_reset_tx(sc);
|
|
|
|
/* Do a full reset */
|
|
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
|
|
if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
|
|
aprint_error_dev(sc->sc_dev, "cannot reset device\n");
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* gem_rxdrain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
static void
|
|
gem_rxdrain(struct gem_softc *sc)
|
|
{
|
|
struct gem_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < GEM_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the whole thing.
|
|
*/
|
|
static void
|
|
gem_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
struct gem_txsoft *txs;
|
|
|
|
DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
|
|
|
|
callout_halt(&sc->sc_tick_ch, NULL);
|
|
callout_halt(&sc->sc_rx_watchdog, NULL);
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
|
|
gem_pcs_stop(sc, disable);
|
|
else
|
|
mii_down(&sc->sc_mii);
|
|
|
|
/* XXX - Should we reset these instead? */
|
|
gem_disable_tx(sc);
|
|
gem_disable_rx(sc);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
|
|
txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
ifp->if_timer = 0;
|
|
|
|
if (disable)
|
|
gem_rxdrain(sc);
|
|
}
|
|
|
|
|
|
/*
|
|
* Reset the receiver
|
|
*/
|
|
int
|
|
gem_reset_rx(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
|
|
|
|
/*
|
|
* Resetting while DMA is in progress can cause a bus hang, so we
|
|
* disable DMA first.
|
|
*/
|
|
gem_disable_rx(sc);
|
|
bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
|
|
bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
|
|
/* Wait till it finishes */
|
|
if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
|
|
aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
|
|
/* Wait 5ms extra. */
|
|
delay(5000);
|
|
|
|
/* Finally, reset the ERX */
|
|
bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
|
|
bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
|
|
/* Wait till it finishes */
|
|
if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
|
|
aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Reset the receiver DMA engine.
|
|
*
|
|
* Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
|
|
* etc in order to reset the receiver DMA engine only and not do a full
|
|
* reset which amongst others also downs the link and clears the FIFOs.
|
|
*/
|
|
static void
|
|
gem_reset_rxdma(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
int i;
|
|
|
|
if (gem_reset_rx(sc) != 0) {
|
|
gem_init(ifp);
|
|
return;
|
|
}
|
|
for (i = 0; i < GEM_NRXDESC; i++)
|
|
if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
|
|
GEM_UPDATE_RXDESC(sc, i);
|
|
sc->sc_rxptr = 0;
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Reprogram Descriptor Ring Base Addresses */
|
|
/* NOTE: we use only 32-bit DMA addresses here. */
|
|
bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
|
|
bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
|
|
|
|
/* Redo ERX Configuration */
|
|
gem_rx_common(sc);
|
|
|
|
/* Give the reciever a swift kick */
|
|
bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
|
|
}
|
|
|
|
/*
|
|
* Common RX configuration for gem_init() and gem_reset_rxdma().
|
|
*/
|
|
static void
|
|
gem_rx_common(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
u_int32_t v;
|
|
|
|
/* Encode Receive Descriptor ring size: four possible values */
|
|
v = gem_ringsize(GEM_NRXDESC /*XXX*/);
|
|
|
|
/* Set receive h/w checksum offset */
|
|
#ifdef INET
|
|
v |= (ETHER_HDR_LEN + sizeof(struct ip) +
|
|
((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
|
|
ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
|
|
#endif
|
|
|
|
/* Enable RX DMA */
|
|
bus_space_write_4(t, h, GEM_RX_CONFIG,
|
|
v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
|
|
(2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
|
|
|
|
/*
|
|
* The following value is for an OFF Threshold of about 3/4 full
|
|
* and an ON Threshold of 1/4 full.
|
|
*/
|
|
bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
|
|
(3 * sc->sc_rxfifosize / 256) |
|
|
((sc->sc_rxfifosize / 256) << 12));
|
|
bus_space_write_4(t, h, GEM_RX_BLANKING,
|
|
(6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
|
|
}
|
|
|
|
/*
|
|
* Reset the transmitter
|
|
*/
|
|
int
|
|
gem_reset_tx(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
|
|
|
|
/*
|
|
* Resetting while DMA is in progress can cause a bus hang, so we
|
|
* disable DMA first.
|
|
*/
|
|
gem_disable_tx(sc);
|
|
bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
|
|
bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
|
|
/* Wait till it finishes */
|
|
if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
|
|
aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
|
|
/* Wait 5ms extra. */
|
|
delay(5000);
|
|
|
|
/* Finally, reset the ETX */
|
|
bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
|
|
bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
|
|
/* Wait till it finishes */
|
|
if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
|
|
aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* disable receiver.
|
|
*/
|
|
int
|
|
gem_disable_rx(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
u_int32_t cfg;
|
|
|
|
/* Flip the enable bit */
|
|
cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
|
|
cfg &= ~GEM_MAC_RX_ENABLE;
|
|
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
|
|
bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
|
|
/* Wait for it to finish */
|
|
return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
|
|
}
|
|
|
|
/*
|
|
* disable transmitter.
|
|
*/
|
|
int
|
|
gem_disable_tx(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
u_int32_t cfg;
|
|
|
|
/* Flip the enable bit */
|
|
cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
|
|
cfg &= ~GEM_MAC_TX_ENABLE;
|
|
bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
|
|
bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
|
|
/* Wait for it to finish */
|
|
return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
|
|
}
|
|
|
|
/*
|
|
* Initialize interface.
|
|
*/
|
|
int
|
|
gem_meminit(struct gem_softc *sc)
|
|
{
|
|
struct gem_rxsoft *rxs;
|
|
int i, error;
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
for (i = 0; i < GEM_NTXDESC; i++) {
|
|
sc->sc_txdescs[i].gd_flags = 0;
|
|
sc->sc_txdescs[i].gd_addr = 0;
|
|
}
|
|
GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->sc_txfree = GEM_NTXDESC-1;
|
|
sc->sc_txnext = 0;
|
|
sc->sc_txwin = 0;
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < GEM_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = gem_add_rxbuf(sc, i)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
gem_rxdrain(sc);
|
|
return (1);
|
|
}
|
|
} else
|
|
GEM_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
sc->sc_meminited = 1;
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
gem_ringsize(int sz)
|
|
{
|
|
switch (sz) {
|
|
case 32:
|
|
return GEM_RING_SZ_32;
|
|
case 64:
|
|
return GEM_RING_SZ_64;
|
|
case 128:
|
|
return GEM_RING_SZ_128;
|
|
case 256:
|
|
return GEM_RING_SZ_256;
|
|
case 512:
|
|
return GEM_RING_SZ_512;
|
|
case 1024:
|
|
return GEM_RING_SZ_1024;
|
|
case 2048:
|
|
return GEM_RING_SZ_2048;
|
|
case 4096:
|
|
return GEM_RING_SZ_4096;
|
|
case 8192:
|
|
return GEM_RING_SZ_8192;
|
|
default:
|
|
printf("gem: invalid Receive Descriptor ring size %d\n", sz);
|
|
return GEM_RING_SZ_32;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Start PCS
|
|
*/
|
|
void
|
|
gem_pcs_start(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
uint32_t v;
|
|
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
|
|
#endif
|
|
|
|
/*
|
|
* Set up. We must disable the MII before modifying the
|
|
* GEM_MII_ANAR register
|
|
*/
|
|
if (sc->sc_flags & GEM_SERDES) {
|
|
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_SERDES);
|
|
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
|
|
GEM_MII_SLINK_LOOPBACK);
|
|
} else {
|
|
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_SERIAL);
|
|
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
|
|
}
|
|
bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
|
|
v = bus_space_read_4(t, h, GEM_MII_ANAR);
|
|
v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
|
|
if (sc->sc_mii_media == IFM_AUTO)
|
|
v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
|
|
else if (sc->sc_mii_media == IFM_FDX) {
|
|
v |= GEM_MII_ANEG_FUL_DUPLX;
|
|
v &= ~GEM_MII_ANEG_HLF_DUPLX;
|
|
} else if (sc->sc_mii_media == IFM_HDX) {
|
|
v &= ~GEM_MII_ANEG_FUL_DUPLX;
|
|
v |= GEM_MII_ANEG_HLF_DUPLX;
|
|
}
|
|
|
|
/* Configure link. */
|
|
bus_space_write_4(t, h, GEM_MII_ANAR, v);
|
|
bus_space_write_4(t, h, GEM_MII_CONTROL,
|
|
GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
|
|
bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
|
|
gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
|
|
|
|
/* Start the 10 second timer */
|
|
callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Stop PCS
|
|
*/
|
|
void
|
|
gem_pcs_stop(struct gem_softc *sc, int disable)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
|
|
#endif
|
|
|
|
/* Tell link partner that we're going away */
|
|
bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
|
|
|
|
/*
|
|
* Disable PCS MII. The documentation suggests that setting
|
|
* GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
|
|
* negotiation will shut down the link. However, it appears
|
|
* that we also need to unset the datapath mode.
|
|
*/
|
|
bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
|
|
bus_space_write_4(t, h, GEM_MII_CONTROL,
|
|
GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
|
|
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
|
|
bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
|
|
|
|
if (disable) {
|
|
if (sc->sc_flags & GEM_SERDES)
|
|
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
|
|
GEM_MII_SLINK_POWER_OFF);
|
|
else
|
|
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
|
|
GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
|
|
}
|
|
|
|
sc->sc_flags &= ~GEM_LINK;
|
|
sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
|
|
sc->sc_mii.mii_media_status = IFM_AVALID;
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialization of interface; set up initialization block
|
|
* and transmit/receive descriptor rings.
|
|
*/
|
|
int
|
|
gem_init(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
int rc = 0, s;
|
|
u_int max_frame_size;
|
|
u_int32_t v;
|
|
|
|
s = splnet();
|
|
|
|
DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
|
|
/*
|
|
* Initialization sequence. The numbered steps below correspond
|
|
* to the sequence outlined in section 6.3.5.1 in the Ethernet
|
|
* Channel Engine manual (part of the PCIO manual).
|
|
* See also the STP2002-STQ document from Sun Microsystems.
|
|
*/
|
|
|
|
/* step 1 & 2. Reset the Ethernet Channel */
|
|
gem_stop(ifp, 0);
|
|
gem_reset(sc);
|
|
DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
|
|
|
|
/* Re-initialize the MIF */
|
|
gem_mifinit(sc);
|
|
|
|
/* Set up correct datapath for non-SERDES/Serialink */
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
|
|
sc->sc_variant != GEM_SUN_ERI)
|
|
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
|
|
GEM_MII_DATAPATH_MII);
|
|
|
|
/* Call MI reset function if any */
|
|
if (sc->sc_hwreset)
|
|
(*sc->sc_hwreset)(sc);
|
|
|
|
/* step 3. Setup data structures in host memory */
|
|
if (gem_meminit(sc) != 0)
|
|
return 1;
|
|
|
|
/* step 4. TX MAC registers & counters */
|
|
gem_init_regs(sc);
|
|
max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
|
|
max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
|
|
max_frame_size += ETHER_VLAN_ENCAP_LEN;
|
|
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
|
|
max_frame_size|/* burst size */(0x2000<<16));
|
|
|
|
/* step 5. RX MAC registers & counters */
|
|
gem_setladrf(sc);
|
|
|
|
/* step 6 & 7. Program Descriptor Ring Base Addresses */
|
|
/* NOTE: we use only 32-bit DMA addresses here. */
|
|
bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
|
|
bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
|
|
|
|
bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
|
|
bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
|
|
|
|
/* step 8. Global Configuration & Interrupt Mask */
|
|
gem_inten(sc);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_MASK,
|
|
GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
|
|
bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
|
|
bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
|
|
GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
|
|
|
|
/* step 9. ETX Configuration: use mostly default values */
|
|
|
|
/* Enable TX DMA */
|
|
v = gem_ringsize(GEM_NTXDESC /*XXX*/);
|
|
bus_space_write_4(t, h, GEM_TX_CONFIG,
|
|
v | GEM_TX_CONFIG_TXDMA_EN |
|
|
(((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
|
|
GEM_TX_CONFIG_TXFIFO_TH));
|
|
bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
|
|
|
|
/* step 10. ERX Configuration */
|
|
gem_rx_common(sc);
|
|
|
|
/* step 11. Configure Media */
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
|
|
(rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
|
|
goto out;
|
|
|
|
/* step 12. RX_MAC Configuration Register */
|
|
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
|
|
v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
|
|
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
|
|
|
|
/* step 14. Issue Transmit Pending command */
|
|
|
|
/* Call MI initialization function if any */
|
|
if (sc->sc_hwinit)
|
|
(*sc->sc_hwinit)(sc);
|
|
|
|
|
|
/* step 15. Give the reciever a swift kick */
|
|
bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
|
|
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
|
|
/* Configure PCS */
|
|
gem_pcs_start(sc);
|
|
else
|
|
/* Start the one second timer. */
|
|
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
|
|
|
|
sc->sc_flags &= ~GEM_LINK;
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_timer = 0;
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
out:
|
|
splx(s);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
gem_init_regs(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
const u_char *laddr = CLLADDR(ifp->if_sadl);
|
|
u_int32_t v;
|
|
|
|
/* These regs are not cleared on reset */
|
|
if (!sc->sc_inited) {
|
|
|
|
/* Load recommended values */
|
|
bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
|
|
bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
|
|
bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
|
|
|
|
bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
|
|
/* Max frame and max burst size */
|
|
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
|
|
ETHER_MAX_LEN | (0x2000<<16));
|
|
|
|
bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
|
|
bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
|
|
bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
|
|
bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
|
|
bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
|
|
((laddr[5]<<8)|laddr[4])&0x3ff);
|
|
|
|
/* Secondary MAC addr set to 0:0:0:0:0:0 */
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
|
|
|
|
/* MAC control addr set to 01:80:c2:00:00:01 */
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
|
|
|
|
/* MAC filter addr set to 0:0:0:0:0:0 */
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
|
|
|
|
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
|
|
|
|
sc->sc_inited = 1;
|
|
}
|
|
|
|
/* Counters need to be zeroed */
|
|
bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
|
|
|
|
/* Set XOFF PAUSE time. */
|
|
bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
|
|
|
|
/*
|
|
* Set the internal arbitration to "infinite" bursts of the
|
|
* maximum length of 31 * 64 bytes so DMA transfers aren't
|
|
* split up in cache line size chunks. This greatly improves
|
|
* especially RX performance.
|
|
* Enable silicon bug workarounds for the Apple variants.
|
|
*/
|
|
bus_space_write_4(t, h, GEM_CONFIG,
|
|
GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
|
|
((sc->sc_flags & GEM_PCI) ?
|
|
GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
|
|
GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
|
|
|
|
/*
|
|
* Set the station address.
|
|
*/
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
|
|
bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
|
|
|
|
/*
|
|
* Enable MII outputs. Enable GMII if there is a gigabit PHY.
|
|
*/
|
|
sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
|
|
v = GEM_MAC_XIF_TX_MII_ENA;
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
|
|
if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
|
|
v |= GEM_MAC_XIF_FDPLX_LED;
|
|
if (sc->sc_flags & GEM_GIGABIT)
|
|
v |= GEM_MAC_XIF_GMII_MODE;
|
|
}
|
|
} else {
|
|
v |= GEM_MAC_XIF_GMII_MODE;
|
|
}
|
|
bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
|
|
}
|
|
|
|
#ifdef GEM_DEBUG
|
|
static void
|
|
gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
|
|
{
|
|
int i;
|
|
|
|
for (i = firstdesc;; i = GEM_NEXTTX(i)) {
|
|
printf("descriptor %d:\t", i);
|
|
printf("gd_flags: 0x%016" PRIx64 "\t",
|
|
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
|
|
printf("gd_addr: 0x%016" PRIx64 "\n",
|
|
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
|
|
if (i == lastdesc)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
gem_start(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct gem_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
|
|
uint64_t flags = 0;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors and
|
|
* the first descriptor we'll use.
|
|
*/
|
|
ofree = sc->sc_txfree;
|
|
firsttx = sc->sc_txnext;
|
|
|
|
DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
|
|
device_xname(sc->sc_dev), ofree, firsttx));
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
|
|
sc->sc_txfree != 0) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the alloted number of segments, or we were
|
|
* short on resources. In this case, we'll copy and try
|
|
* again.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
|
|
(m0->m_pkthdr.len < ETHER_MIN_TX &&
|
|
dmamap->dm_nsegs == GEM_NTXSEGS)) {
|
|
if (m0->m_pkthdr.len > MCLBYTES) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate jumbo Tx cluster\n");
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
m_freem(m0);
|
|
continue;
|
|
}
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate Tx mbuf\n");
|
|
break;
|
|
}
|
|
MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate Tx cluster\n");
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
|
|
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to load Tx buffer, error = %d\n",
|
|
error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet.
|
|
*/
|
|
if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
|
|
(sc->sc_txfree - 1) : sc->sc_txfree)) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed to anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* back on the queue, and punt. Notify the upper
|
|
* layer that there are no more slots left.
|
|
*
|
|
* XXX We could allocate an mbuf and copy, but
|
|
* XXX it is worth it?
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
bus_dmamap_unload(sc->sc_dmatag, dmamap);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = GEM_NEXTTX(nexttx)) {
|
|
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, set the start of packet flag,
|
|
* and the checksum stuff if we want the hardware
|
|
* to do it.
|
|
*/
|
|
sc->sc_txdescs[nexttx].gd_addr =
|
|
GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
|
|
flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
|
|
if (nexttx == firsttx) {
|
|
flags |= GEM_TD_START_OF_PACKET;
|
|
if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
|
|
sc->sc_txwin = 0;
|
|
flags |= GEM_TD_INTERRUPT_ME;
|
|
}
|
|
|
|
#ifdef INET
|
|
/* h/w checksum */
|
|
if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
|
|
m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
|
|
struct ether_header *eh;
|
|
uint16_t offset, start;
|
|
|
|
eh = mtod(m0, struct ether_header *);
|
|
switch (ntohs(eh->ether_type)) {
|
|
case ETHERTYPE_IP:
|
|
start = ETHER_HDR_LEN;
|
|
break;
|
|
case ETHERTYPE_VLAN:
|
|
start = ETHER_HDR_LEN +
|
|
ETHER_VLAN_ENCAP_LEN;
|
|
break;
|
|
default:
|
|
/* unsupported, drop it */
|
|
m_free(m0);
|
|
continue;
|
|
}
|
|
start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
|
|
offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
|
|
flags |= (start <<
|
|
GEM_TD_CXSUM_STARTSHFT) |
|
|
(offset <<
|
|
GEM_TD_CXSUM_STUFFSHFT) |
|
|
GEM_TD_CXSUM_ENABLE;
|
|
}
|
|
#endif
|
|
}
|
|
if (seg == dmamap->dm_nsegs - 1) {
|
|
flags |= GEM_TD_END_OF_PACKET;
|
|
} else {
|
|
/* last flag set outside of loop */
|
|
sc->sc_txdescs[nexttx].gd_flags =
|
|
GEM_DMA_WRITE(sc, flags);
|
|
}
|
|
lasttx = nexttx;
|
|
}
|
|
if (m0->m_pkthdr.len < ETHER_MIN_TX) {
|
|
/* add padding buffer at end of chain */
|
|
flags &= ~GEM_TD_END_OF_PACKET;
|
|
sc->sc_txdescs[lasttx].gd_flags =
|
|
GEM_DMA_WRITE(sc, flags);
|
|
|
|
sc->sc_txdescs[nexttx].gd_addr =
|
|
GEM_DMA_WRITE(sc,
|
|
sc->sc_nulldmamap->dm_segs[0].ds_addr);
|
|
flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
|
|
GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
|
|
lasttx = nexttx;
|
|
nexttx = GEM_NEXTTX(nexttx);
|
|
seg++;
|
|
}
|
|
sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
|
|
|
|
KASSERT(lasttx != -1);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later,
|
|
* and remember what txdirty will be once the packet is
|
|
* done.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_lastdesc = lasttx;
|
|
txs->txs_ndescs = seg;
|
|
|
|
#ifdef GEM_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
printf(" gem_start %p transmit chain:\n", txs);
|
|
gem_txsoft_print(sc, txs->txs_firstdesc,
|
|
txs->txs_lastdesc);
|
|
}
|
|
#endif
|
|
|
|
/* Sync the descriptors we're using. */
|
|
GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txfree -= txs->txs_ndescs;
|
|
sc->sc_txnext = nexttx;
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
|
|
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
bpf_mtap(ifp, m0);
|
|
}
|
|
|
|
if (txs == NULL || sc->sc_txfree == 0) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
}
|
|
|
|
if (sc->sc_txfree != ofree) {
|
|
DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
|
|
device_xname(sc->sc_dev), lasttx, firsttx));
|
|
/*
|
|
* The entire packet chain is set up.
|
|
* Kick the transmitter.
|
|
*/
|
|
DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
|
|
device_xname(sc->sc_dev), nexttx));
|
|
bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
|
|
sc->sc_txnext);
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
|
|
device_xname(sc->sc_dev), ifp->if_timer));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transmit interrupt.
|
|
*/
|
|
int
|
|
gem_tint(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t mac = sc->sc_h1;
|
|
struct gem_txsoft *txs;
|
|
int txlast;
|
|
int progress = 0;
|
|
u_int32_t v;
|
|
|
|
DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
|
|
|
|
/* Unload collision counters ... */
|
|
v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
|
|
bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
|
|
ifp->if_collisions += v +
|
|
bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
|
|
bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
|
|
ifp->if_oerrors += v;
|
|
|
|
/* ... then clear the hardware counters. */
|
|
bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
|
|
bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
|
|
bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
|
|
bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
/*
|
|
* In theory, we could harvest some descriptors before
|
|
* the ring is empty, but that's a bit complicated.
|
|
*
|
|
* GEM_TX_COMPLETION points to the last descriptor
|
|
* processed +1.
|
|
*
|
|
* Let's assume that the NIC writes back to the Tx
|
|
* descriptors before it updates the completion
|
|
* register. If the NIC has posted writes to the
|
|
* Tx descriptors, PCI ordering requires that the
|
|
* posted writes flush to RAM before the register-read
|
|
* finishes. So let's read the completion register,
|
|
* before syncing the descriptors, so that we
|
|
* examine Tx descriptors that are at least as
|
|
* current as the completion register.
|
|
*/
|
|
txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
|
|
DPRINTF(sc,
|
|
("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
|
|
txs->txs_lastdesc, txlast));
|
|
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
|
|
if (txlast >= txs->txs_firstdesc &&
|
|
txlast <= txs->txs_lastdesc)
|
|
break;
|
|
} else if (txlast >= txs->txs_firstdesc ||
|
|
txlast <= txs->txs_lastdesc)
|
|
break;
|
|
|
|
GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
#ifdef GEM_DEBUG /* XXX DMA synchronization? */
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
printf(" txsoft %p transmit chain:\n", txs);
|
|
gem_txsoft_print(sc, txs->txs_firstdesc,
|
|
txs->txs_lastdesc);
|
|
}
|
|
#endif
|
|
|
|
|
|
DPRINTF(sc, ("gem_tint: releasing a desc\n"));
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
|
|
sc->sc_txfree += txs->txs_ndescs;
|
|
|
|
bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
|
|
if (txs->txs_mbuf != NULL) {
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
|
|
ifp->if_opackets++;
|
|
progress = 1;
|
|
}
|
|
|
|
#if 0
|
|
DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
|
|
"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
|
|
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
|
|
((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
|
|
GEM_TX_DATA_PTR_HI) << 32) |
|
|
bus_space_read_4(sc->sc_bustag, sc->sc_h1,
|
|
GEM_TX_DATA_PTR_LO),
|
|
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
|
|
#endif
|
|
|
|
if (progress) {
|
|
if (sc->sc_txfree == GEM_NTXDESC - 1)
|
|
sc->sc_txwin = 0;
|
|
|
|
/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
|
|
gem_start(ifp);
|
|
}
|
|
DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
|
|
device_xname(sc->sc_dev), ifp->if_timer));
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Receive interrupt.
|
|
*/
|
|
int
|
|
gem_rint(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
struct gem_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
u_int64_t rxstat;
|
|
u_int32_t rxcomp;
|
|
int i, len, progress = 0;
|
|
|
|
DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
|
|
|
|
/*
|
|
* Ignore spurious interrupt that sometimes occurs before
|
|
* we are set up when we network boot.
|
|
*/
|
|
if (!sc->sc_meminited)
|
|
return 1;
|
|
|
|
/*
|
|
* Read the completion register once. This limits
|
|
* how long the following loop can execute.
|
|
*/
|
|
rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
|
|
|
|
/*
|
|
* XXX Read the lastrx only once at the top for speed.
|
|
*/
|
|
DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
|
|
sc->sc_rxptr, rxcomp));
|
|
|
|
/*
|
|
* Go into the loop at least once.
|
|
*/
|
|
for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
|
|
i = GEM_NEXTRX(i)) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
|
|
GEM_CDRXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
|
|
|
|
if (rxstat & GEM_RD_OWN) {
|
|
GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
|
|
/*
|
|
* We have processed all of the receive buffers.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
progress++;
|
|
ifp->if_ipackets++;
|
|
|
|
if (rxstat & GEM_RD_BAD_CRC) {
|
|
ifp->if_ierrors++;
|
|
aprint_error_dev(sc->sc_dev,
|
|
"receive error: CRC error\n");
|
|
GEM_INIT_RXDESC(sc, i);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
#ifdef GEM_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
printf(" rxsoft %p descriptor %d: ", rxs, i);
|
|
printf("gd_flags: 0x%016llx\t", (long long)
|
|
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
|
|
printf("gd_addr: 0x%016llx\n", (long long)
|
|
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
|
|
}
|
|
#endif
|
|
|
|
/* No errors; receive the packet. */
|
|
len = GEM_RD_BUFLEN(rxstat);
|
|
|
|
/*
|
|
* Allocate a new mbuf cluster. If that fails, we are
|
|
* out of memory, and must drop the packet and recycle
|
|
* the buffer that's already attached to this descriptor.
|
|
*/
|
|
m = rxs->rxs_mbuf;
|
|
if (gem_add_rxbuf(sc, i) != 0) {
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
|
|
ifp->if_ierrors++;
|
|
aprint_error_dev(sc->sc_dev,
|
|
"receive error: RX no buffer space\n");
|
|
GEM_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
m->m_data += 2; /* We're already off by two */
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
/*
|
|
* Pass this up to any BPF listeners, but only
|
|
* pass it up the stack if it's for us.
|
|
*/
|
|
bpf_mtap(ifp, m);
|
|
|
|
#ifdef INET
|
|
/* hardware checksum */
|
|
if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
int32_t hlen, pktlen;
|
|
|
|
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
|
|
pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
|
|
ETHER_VLAN_ENCAP_LEN;
|
|
eh = (struct ether_header *) (mtod(m, char *) +
|
|
ETHER_VLAN_ENCAP_LEN);
|
|
} else {
|
|
pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
|
|
eh = mtod(m, struct ether_header *);
|
|
}
|
|
if (ntohs(eh->ether_type) != ETHERTYPE_IP)
|
|
goto swcsum;
|
|
ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
|
|
|
|
/* IPv4 only */
|
|
if (ip->ip_v != IPVERSION)
|
|
goto swcsum;
|
|
|
|
hlen = ip->ip_hl << 2;
|
|
if (hlen < sizeof(struct ip))
|
|
goto swcsum;
|
|
|
|
/*
|
|
* bail if too short, has random trailing garbage,
|
|
* truncated, fragment, or has ethernet pad.
|
|
*/
|
|
if ((ntohs(ip->ip_len) < hlen) ||
|
|
(ntohs(ip->ip_len) != pktlen) ||
|
|
(ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
|
|
goto swcsum;
|
|
|
|
switch (ip->ip_p) {
|
|
case IPPROTO_TCP:
|
|
if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
|
|
goto swcsum;
|
|
if (pktlen < (hlen + sizeof(struct tcphdr)))
|
|
goto swcsum;
|
|
m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
/* FALLTHROUGH */
|
|
default:
|
|
goto swcsum;
|
|
}
|
|
|
|
/* the uncomplemented sum is expected */
|
|
m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
|
|
|
|
/* if the pkt had ip options, we have to deduct them */
|
|
if (hlen > sizeof(struct ip)) {
|
|
uint16_t *opts;
|
|
uint32_t optsum, temp;
|
|
|
|
optsum = 0;
|
|
temp = hlen - sizeof(struct ip);
|
|
opts = (uint16_t *) ((char *) ip +
|
|
sizeof(struct ip));
|
|
|
|
while (temp > 1) {
|
|
optsum += ntohs(*opts++);
|
|
temp -= 2;
|
|
}
|
|
while (optsum >> 16)
|
|
optsum = (optsum >> 16) +
|
|
(optsum & 0xffff);
|
|
|
|
/* Deduct ip opts sum from hwsum. */
|
|
m->m_pkthdr.csum_data += (uint16_t)~optsum;
|
|
|
|
while (m->m_pkthdr.csum_data >> 16)
|
|
m->m_pkthdr.csum_data =
|
|
(m->m_pkthdr.csum_data >> 16) +
|
|
(m->m_pkthdr.csum_data &
|
|
0xffff);
|
|
}
|
|
|
|
m->m_pkthdr.csum_flags |= M_CSUM_DATA |
|
|
M_CSUM_NO_PSEUDOHDR;
|
|
} else
|
|
swcsum:
|
|
m->m_pkthdr.csum_flags = 0;
|
|
#endif
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
if (progress) {
|
|
/* Update the receive pointer. */
|
|
if (i == sc->sc_rxptr) {
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxfull);
|
|
#ifdef GEM_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: rint: ring wrap\n",
|
|
device_xname(sc->sc_dev));
|
|
#endif
|
|
}
|
|
sc->sc_rxptr = i;
|
|
bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
|
|
}
|
|
#ifdef GEM_COUNTERS
|
|
if (progress <= 4) {
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
|
|
} else if (progress < 32) {
|
|
if (progress < 16)
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
|
|
else
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
|
|
|
|
} else {
|
|
if (progress < 64)
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
|
|
else
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
|
|
}
|
|
#endif
|
|
|
|
DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
|
|
sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
|
|
|
|
/* Read error counters ... */
|
|
ifp->if_ierrors +=
|
|
bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
|
|
bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
|
|
bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
|
|
bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
|
|
|
|
/* ... then clear the hardware counters. */
|
|
bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
|
|
bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* gem_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
int
|
|
gem_add_rxbuf(struct gem_softc *sc, int idx)
|
|
{
|
|
struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
#ifdef GEM_DEBUG
|
|
/* bzero the packet to check DMA */
|
|
memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
|
|
#endif
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't load rx DMA map %d, error = %d\n", idx, error);
|
|
panic("gem_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
GEM_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
int
|
|
gem_eint(struct gem_softc *sc, u_int status)
|
|
{
|
|
char bits[128];
|
|
u_int32_t r, v;
|
|
|
|
if ((status & GEM_INTR_MIF) != 0) {
|
|
printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
|
|
return (1);
|
|
}
|
|
|
|
if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
|
|
gem_reset_rxdma(sc);
|
|
return (1);
|
|
}
|
|
|
|
if (status & GEM_INTR_BERR) {
|
|
if (sc->sc_flags & GEM_PCI)
|
|
r = GEM_ERROR_STATUS;
|
|
else
|
|
r = GEM_SBUS_ERROR_STATUS;
|
|
bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
|
|
v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
|
|
aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
|
|
v);
|
|
return (1);
|
|
}
|
|
snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
|
|
printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* PCS interrupts.
|
|
* We should receive these when the link status changes, but sometimes
|
|
* we don't receive them for link up. We compensate for this in the
|
|
* gem_tick() callout.
|
|
*/
|
|
int
|
|
gem_pint(struct gem_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
u_int32_t v, v2;
|
|
|
|
/*
|
|
* Clear the PCS interrupt from GEM_STATUS. The PCS register is
|
|
* latched, so we have to read it twice. There is only one bit in
|
|
* use, so the value is meaningless.
|
|
*/
|
|
bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
|
|
bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return 1;
|
|
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
|
|
return 1;
|
|
|
|
v = bus_space_read_4(t, h, GEM_MII_STATUS);
|
|
/* If we see remote fault, our link partner is probably going away */
|
|
if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
|
|
gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
|
|
v = bus_space_read_4(t, h, GEM_MII_STATUS);
|
|
/* Otherwise, we may need to wait after auto-negotiation completes */
|
|
} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
|
|
GEM_MII_STATUS_ANEG_CPT) {
|
|
gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
|
|
v = bus_space_read_4(t, h, GEM_MII_STATUS);
|
|
}
|
|
if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
|
|
if (sc->sc_flags & GEM_LINK) {
|
|
return 1;
|
|
}
|
|
callout_stop(&sc->sc_tick_ch);
|
|
v = bus_space_read_4(t, h, GEM_MII_ANAR);
|
|
v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
|
|
sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
|
|
sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
|
|
v &= v2;
|
|
if (v & GEM_MII_ANEG_FUL_DUPLX) {
|
|
sc->sc_mii.mii_media_active |= IFM_FDX;
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
|
|
#endif
|
|
} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
|
|
sc->sc_mii.mii_media_active |= IFM_HDX;
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
|
|
#endif
|
|
} else {
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
|
|
#endif
|
|
}
|
|
gem_statuschange(sc);
|
|
} else {
|
|
if ((sc->sc_flags & GEM_LINK) == 0) {
|
|
return 1;
|
|
}
|
|
sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
|
|
sc->sc_mii.mii_media_status = IFM_AVALID;
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "link down\n");
|
|
#endif
|
|
gem_statuschange(sc);
|
|
|
|
/* Start the 10 second timer */
|
|
callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
|
|
int
|
|
gem_intr(void *v)
|
|
{
|
|
struct gem_softc *sc = v;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
u_int32_t status;
|
|
int r = 0;
|
|
#ifdef GEM_DEBUG
|
|
char bits[128];
|
|
#endif
|
|
|
|
/* XXX We should probably mask out interrupts until we're done */
|
|
|
|
sc->sc_ev_intr.ev_count++;
|
|
|
|
status = bus_space_read_4(t, h, GEM_STATUS);
|
|
#ifdef GEM_DEBUG
|
|
snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
|
|
#endif
|
|
DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
|
|
device_xname(sc->sc_dev), (status >> 19), bits));
|
|
|
|
|
|
if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
|
|
r |= gem_eint(sc, status);
|
|
|
|
/* We don't bother with GEM_INTR_TX_DONE */
|
|
if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
|
|
GEM_COUNTER_INCR(sc, sc_ev_txint);
|
|
r |= gem_tint(sc);
|
|
}
|
|
|
|
if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
|
|
GEM_COUNTER_INCR(sc, sc_ev_rxint);
|
|
r |= gem_rint(sc);
|
|
}
|
|
|
|
/* We should eventually do more than just print out error stats. */
|
|
if (status & GEM_INTR_TX_MAC) {
|
|
int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
|
|
if (txstat & ~GEM_MAC_TX_XMIT_DONE)
|
|
printf("%s: MAC tx fault, status %x\n",
|
|
device_xname(sc->sc_dev), txstat);
|
|
if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
|
|
gem_init(ifp);
|
|
}
|
|
if (status & GEM_INTR_RX_MAC) {
|
|
int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
|
|
/*
|
|
* At least with GEM_SUN_GEM and some GEM_SUN_ERI
|
|
* revisions GEM_MAC_RX_OVERFLOW happen often due to a
|
|
* silicon bug so handle them silently. So if we detect
|
|
* an RX FIFO overflow, we fire off a timer, and check
|
|
* whether we're still making progress by looking at the
|
|
* RX FIFO write and read pointers.
|
|
*/
|
|
if (rxstat & GEM_MAC_RX_OVERFLOW) {
|
|
ifp->if_ierrors++;
|
|
aprint_error_dev(sc->sc_dev,
|
|
"receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
|
|
sc->sc_rx_fifo_wr_ptr =
|
|
bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
|
|
sc->sc_rx_fifo_rd_ptr =
|
|
bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
|
|
callout_schedule(&sc->sc_rx_watchdog, 400);
|
|
} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
|
|
printf("%s: MAC rx fault, status 0x%02x\n",
|
|
device_xname(sc->sc_dev), rxstat);
|
|
}
|
|
if (status & GEM_INTR_PCS) {
|
|
r |= gem_pint(sc);
|
|
}
|
|
|
|
/* Do we need to do anything with these?
|
|
if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
|
|
status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
|
|
if ((status2 & GEM_MAC_PAUSED) != 0)
|
|
aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
|
|
GEM_MAC_PAUSE_TIME(status2));
|
|
if ((status2 & GEM_MAC_PAUSE) != 0)
|
|
aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
|
|
if ((status2 & GEM_MAC_RESUME) != 0)
|
|
aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
|
|
}
|
|
if ((status & GEM_INTR_MIF) != 0)
|
|
aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
|
|
*/
|
|
rnd_add_uint32(&sc->rnd_source, status);
|
|
return (r);
|
|
}
|
|
|
|
void
|
|
gem_rx_watchdog(void *arg)
|
|
{
|
|
struct gem_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
u_int32_t rx_fifo_wr_ptr;
|
|
u_int32_t rx_fifo_rd_ptr;
|
|
u_int32_t state;
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
aprint_error_dev(sc->sc_dev, "receiver not running\n");
|
|
return;
|
|
}
|
|
|
|
rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
|
|
rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
|
|
state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
|
|
if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
|
|
((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
|
|
((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
|
|
(sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
|
|
{
|
|
/*
|
|
* The RX state machine is still in overflow state and
|
|
* the RX FIFO write and read pointers seem to be
|
|
* stuck. Whack the chip over the head to get things
|
|
* going again.
|
|
*/
|
|
aprint_error_dev(sc->sc_dev,
|
|
"receiver stuck in overflow, resetting\n");
|
|
gem_init(ifp);
|
|
} else {
|
|
if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"rx_watchdog: not in overflow state: 0x%x\n",
|
|
state);
|
|
}
|
|
if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"rx_watchdog: wr & rd ptr different\n");
|
|
}
|
|
if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"rx_watchdog: wr pointer != saved\n");
|
|
}
|
|
if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"rx_watchdog: rd pointer != saved\n");
|
|
}
|
|
aprint_error_dev(sc->sc_dev, "resetting anyway\n");
|
|
gem_init(ifp);
|
|
}
|
|
}
|
|
|
|
void
|
|
gem_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
|
|
DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
|
|
"GEM_MAC_RX_CONFIG %x\n",
|
|
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
|
|
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
|
|
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
|
|
|
|
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
|
|
++ifp->if_oerrors;
|
|
|
|
/* Try to get more packets going. */
|
|
gem_init(ifp);
|
|
gem_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Initialize the MII Management Interface
|
|
*/
|
|
void
|
|
gem_mifinit(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t mif = sc->sc_h1;
|
|
|
|
/* Configure the MIF in frame mode */
|
|
sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
|
|
sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
|
|
bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
|
|
}
|
|
|
|
/*
|
|
* MII interface
|
|
*
|
|
* The GEM MII interface supports at least three different operating modes:
|
|
*
|
|
* Bitbang mode is implemented using data, clock and output enable registers.
|
|
*
|
|
* Frame mode is implemented by loading a complete frame into the frame
|
|
* register and polling the valid bit for completion.
|
|
*
|
|
* Polling mode uses the frame register but completion is indicated by
|
|
* an interrupt.
|
|
*
|
|
*/
|
|
static int
|
|
gem_mii_readreg(device_t self, int phy, int reg)
|
|
{
|
|
struct gem_softc *sc = device_private(self);
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t mif = sc->sc_h1;
|
|
int n;
|
|
u_int32_t v;
|
|
|
|
#ifdef GEM_DEBUG1
|
|
if (sc->sc_debug)
|
|
printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
|
|
#endif
|
|
|
|
/* Construct the frame command */
|
|
v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
|
|
GEM_MIF_FRAME_READ;
|
|
|
|
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
|
|
if (v & GEM_MIF_FRAME_TA0)
|
|
return (v & GEM_MIF_FRAME_DATA);
|
|
}
|
|
|
|
printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
gem_mii_writereg(device_t self, int phy, int reg, int val)
|
|
{
|
|
struct gem_softc *sc = device_private(self);
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t mif = sc->sc_h1;
|
|
int n;
|
|
u_int32_t v;
|
|
|
|
#ifdef GEM_DEBUG1
|
|
if (sc->sc_debug)
|
|
printf("gem_mii_writereg: PHY %d reg %d val %x\n",
|
|
phy, reg, val);
|
|
#endif
|
|
|
|
/* Construct the frame command */
|
|
v = GEM_MIF_FRAME_WRITE |
|
|
(phy << GEM_MIF_PHY_SHIFT) |
|
|
(reg << GEM_MIF_REG_SHIFT) |
|
|
(val & GEM_MIF_FRAME_DATA);
|
|
|
|
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
|
|
if (v & GEM_MIF_FRAME_TA0)
|
|
return;
|
|
}
|
|
|
|
printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
|
|
}
|
|
|
|
static void
|
|
gem_mii_statchg(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
#ifdef GEM_DEBUG
|
|
int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
|
|
#endif
|
|
|
|
#ifdef GEM_DEBUG
|
|
if (sc->sc_debug)
|
|
printf("gem_mii_statchg: status change: phy = %d\n",
|
|
sc->sc_phys[instance]);
|
|
#endif
|
|
gem_statuschange(sc);
|
|
}
|
|
|
|
/*
|
|
* Common status change for gem_mii_statchg() and gem_pint()
|
|
*/
|
|
void
|
|
gem_statuschange(struct gem_softc* sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t mac = sc->sc_h1;
|
|
int gigabit;
|
|
u_int32_t rxcfg, txcfg, v;
|
|
|
|
if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
|
|
IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
|
|
sc->sc_flags |= GEM_LINK;
|
|
else
|
|
sc->sc_flags &= ~GEM_LINK;
|
|
|
|
if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
|
|
gigabit = 1;
|
|
else
|
|
gigabit = 0;
|
|
|
|
/*
|
|
* The configuration done here corresponds to the steps F) and
|
|
* G) and as far as enabling of RX and TX MAC goes also step H)
|
|
* of the initialization sequence outlined in section 3.2.1 of
|
|
* the GEM Gigabit Ethernet ASIC Specification.
|
|
*/
|
|
|
|
rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
|
|
rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
|
|
txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
|
|
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
|
|
txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
|
|
else if (gigabit) {
|
|
rxcfg |= GEM_MAC_RX_CARR_EXTEND;
|
|
txcfg |= GEM_MAC_RX_CARR_EXTEND;
|
|
}
|
|
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
|
|
bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
|
|
aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
|
|
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
|
|
bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
|
|
bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
|
|
aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
|
|
bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
|
|
|
|
v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
|
|
~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
|
|
bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
|
|
|
|
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
|
|
gigabit != 0)
|
|
bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
|
|
GEM_MAC_SLOT_TIME_CARR_EXTEND);
|
|
else
|
|
bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
|
|
GEM_MAC_SLOT_TIME_NORMAL);
|
|
|
|
/* XIF Configuration */
|
|
if (sc->sc_flags & GEM_LINK)
|
|
v = GEM_MAC_XIF_LINK_LED;
|
|
else
|
|
v = 0;
|
|
v |= GEM_MAC_XIF_TX_MII_ENA;
|
|
|
|
/* If an external transceiver is connected, enable its MII drivers */
|
|
sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
|
|
if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
|
|
if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
|
|
if (gigabit)
|
|
v |= GEM_MAC_XIF_GMII_MODE;
|
|
else
|
|
v &= ~GEM_MAC_XIF_GMII_MODE;
|
|
} else
|
|
/* Internal MII needs buf enable */
|
|
v |= GEM_MAC_XIF_MII_BUF_ENA;
|
|
/* MII needs echo disable if half duplex. */
|
|
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
|
|
/* turn on full duplex LED */
|
|
v |= GEM_MAC_XIF_FDPLX_LED;
|
|
else
|
|
/* half duplex -- disable echo */
|
|
v |= GEM_MAC_XIF_ECHO_DISABL;
|
|
} else {
|
|
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
|
|
v |= GEM_MAC_XIF_FDPLX_LED;
|
|
v |= GEM_MAC_XIF_GMII_MODE;
|
|
}
|
|
bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) != 0 &&
|
|
(sc->sc_flags & GEM_LINK) != 0) {
|
|
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
|
|
txcfg | GEM_MAC_TX_ENABLE);
|
|
bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
|
|
rxcfg | GEM_MAC_RX_ENABLE);
|
|
}
|
|
}
|
|
|
|
int
|
|
gem_ser_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
u_int s, t;
|
|
|
|
if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
|
|
return EINVAL;
|
|
|
|
s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
|
|
if (s == IFM_AUTO) {
|
|
if (sc->sc_mii_media != s) {
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
|
|
#endif
|
|
sc->sc_mii_media = s;
|
|
if (ifp->if_flags & IFF_UP) {
|
|
gem_pcs_stop(sc, 0);
|
|
gem_pcs_start(sc);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
if (s == IFM_1000_SX) {
|
|
t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
|
|
if (t == IFM_FDX || t == IFM_HDX) {
|
|
if (sc->sc_mii_media != t) {
|
|
sc->sc_mii_media = t;
|
|
#ifdef GEM_DEBUG
|
|
aprint_debug_dev(sc->sc_dev,
|
|
"setting media to 1000baseSX-%s\n",
|
|
t == IFM_FDX ? "FDX" : "HDX");
|
|
#endif
|
|
if (ifp->if_flags & IFF_UP) {
|
|
gem_pcs_stop(sc, 0);
|
|
gem_pcs_start(sc);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return EINVAL;
|
|
}
|
|
|
|
void
|
|
gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
}
|
|
|
|
static int
|
|
gem_ifflags_cb(struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
int change = ifp->if_flags ^ sc->sc_if_flags;
|
|
|
|
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
|
|
return ENETRESET;
|
|
else if ((change & IFF_PROMISC) != 0)
|
|
gem_setladrf(sc);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request.
|
|
*/
|
|
int
|
|
gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
|
|
{
|
|
struct gem_softc *sc = ifp->if_softc;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
|
|
error = 0;
|
|
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
|
|
;
|
|
else if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
gem_setladrf(sc);
|
|
}
|
|
}
|
|
|
|
/* Try to get things going again */
|
|
if (ifp->if_flags & IFF_UP)
|
|
gem_start(ifp);
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
gem_inten(struct gem_softc *sc)
|
|
{
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
uint32_t v;
|
|
|
|
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
|
|
v = GEM_INTR_PCS;
|
|
else
|
|
v = GEM_INTR_MIF;
|
|
bus_space_write_4(t, h, GEM_INTMASK,
|
|
~(GEM_INTR_TX_INTME |
|
|
GEM_INTR_TX_EMPTY |
|
|
GEM_INTR_TX_MAC |
|
|
GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
|
|
GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
|
|
GEM_INTR_BERR | v));
|
|
}
|
|
|
|
bool
|
|
gem_resume(device_t self, const pmf_qual_t *qual)
|
|
{
|
|
struct gem_softc *sc = device_private(self);
|
|
|
|
gem_inten(sc);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
gem_suspend(device_t self, const pmf_qual_t *qual)
|
|
{
|
|
struct gem_softc *sc = device_private(self);
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
|
|
bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
gem_shutdown(device_t self, int howto)
|
|
{
|
|
struct gem_softc *sc = device_private(self);
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
gem_stop(ifp, 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Set up the logical address filter.
|
|
*/
|
|
void
|
|
gem_setladrf(struct gem_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
bus_space_tag_t t = sc->sc_bustag;
|
|
bus_space_handle_t h = sc->sc_h1;
|
|
u_int32_t crc;
|
|
u_int32_t hash[16];
|
|
u_int32_t v;
|
|
int i;
|
|
|
|
/* Get current RX configuration */
|
|
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
|
|
|
|
/*
|
|
* Turn off promiscuous mode, promiscuous group mode (all multicast),
|
|
* and hash filter. Depending on the case, the right bit will be
|
|
* enabled.
|
|
*/
|
|
v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
|
|
GEM_MAC_RX_PROMISC_GRP);
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0) {
|
|
/* Turn on promiscuous mode */
|
|
v |= GEM_MAC_RX_PROMISCUOUS;
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
goto chipit;
|
|
}
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast addresses
|
|
* through a crc generator, and then using the high order 8 bits as an
|
|
* index into the 256 bit logical address filter. The high order 4
|
|
* bits selects the word, while the other 4 bits select the bit within
|
|
* the word (where bit 0 is the MSB).
|
|
*/
|
|
|
|
/* Clear hash table */
|
|
memset(hash, 0, sizeof(hash));
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
* XXX should use the address filters for this
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
v |= GEM_MAC_RX_PROMISC_GRP;
|
|
goto chipit;
|
|
}
|
|
|
|
/* Get the LE CRC32 of the address */
|
|
crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
|
|
|
|
/* Just want the 8 most significant bits. */
|
|
crc >>= 24;
|
|
|
|
/* Set the corresponding bit in the filter. */
|
|
hash[crc >> 4] |= 1 << (15 - (crc & 15));
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
v |= GEM_MAC_RX_HASH_FILTER;
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
/* Now load the hash table into the chip (if we are using it) */
|
|
for (i = 0; i < 16; i++) {
|
|
bus_space_write_4(t, h,
|
|
GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
|
|
hash[i]);
|
|
}
|
|
|
|
chipit:
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
|
|
}
|