NetBSD/sys/dev/spi/spiflash.c
2015-07-22 10:07:59 +00:00

771 lines
18 KiB
C

/* $NetBSD: spiflash.c,v 1.18 2015/07/22 10:07:59 ryo Exp $ */
/*-
* Copyright (c) 2006 Urbana-Champaign Independent Media Center.
* Copyright (c) 2006 Garrett D'Amore.
* All rights reserved.
*
* Portions of this code were written by Garrett D'Amore for the
* Champaign-Urbana Community Wireless Network Project.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgements:
* This product includes software developed by the Urbana-Champaign
* Independent Media Center.
* This product includes software developed by Garrett D'Amore.
* 4. Urbana-Champaign Independent Media Center's name and Garrett
* D'Amore's name may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
* MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
* MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: spiflash.c,v 1.18 2015/07/22 10:07:59 ryo Exp $");
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/uio.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <dev/spi/spivar.h>
#include <dev/spi/spiflash.h>
/*
* This is an MI block driver for SPI flash devices. It could probably be
* converted to some more generic framework, if someone wanted to create one
* for NOR flashes. Note that some flashes have the ability to handle
* interrupts.
*/
struct spiflash_softc {
struct disk sc_dk;
struct spiflash_hw_if sc_hw;
void *sc_cookie;
const char *sc_name;
struct spi_handle *sc_handle;
int sc_device_size;
int sc_write_size;
int sc_erase_size;
int sc_read_size;
int sc_device_blks;
struct bufq_state *sc_waitq;
struct bufq_state *sc_workq;
struct bufq_state *sc_doneq;
lwp_t *sc_thread;
};
#define sc_getname sc_hw.sf_getname
#define sc_gethandle sc_hw.sf_gethandle
#define sc_getsize sc_hw.sf_getsize
#define sc_getflags sc_hw.sf_getflags
#define sc_erase sc_hw.sf_erase
#define sc_write sc_hw.sf_write
#define sc_read sc_hw.sf_read
#define sc_getstatus sc_hw.sf_getstatus
#define sc_setstatus sc_hw.sf_setstatus
struct spiflash_attach_args {
const struct spiflash_hw_if *hw;
void *cookie;
};
#define STATIC
STATIC int spiflash_match(device_t , cfdata_t , void *);
STATIC void spiflash_attach(device_t , device_t , void *);
STATIC int spiflash_print(void *, const char *);
STATIC int spiflash_common_erase(spiflash_handle_t, size_t, size_t);
STATIC int spiflash_common_write(spiflash_handle_t, size_t, size_t,
const uint8_t *);
STATIC int spiflash_common_read(spiflash_handle_t, size_t, size_t, uint8_t *);
STATIC void spiflash_process_done(spiflash_handle_t, int);
STATIC void spiflash_process_read(spiflash_handle_t);
STATIC void spiflash_process_write(spiflash_handle_t);
STATIC void spiflash_thread(void *);
STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
STATIC int spiflash_nsectors(spiflash_handle_t, struct buf *);
STATIC int spiflash_sector(spiflash_handle_t, struct buf *);
CFATTACH_DECL_NEW(spiflash, sizeof(struct spiflash_softc),
spiflash_match, spiflash_attach, NULL, NULL);
#ifdef SPIFLASH_DEBUG
#define DPRINTF(x) do { printf x; } while (0/*CONSTCOND*/)
#else
#define DPRINTF(x) do { } while (0/*CONSTCOND*/)
#endif
extern struct cfdriver spiflash_cd;
dev_type_open(spiflash_open);
dev_type_close(spiflash_close);
dev_type_read(spiflash_read);
dev_type_write(spiflash_write);
dev_type_ioctl(spiflash_ioctl);
dev_type_strategy(spiflash_strategy);
const struct bdevsw spiflash_bdevsw = {
.d_open = spiflash_open,
.d_close = spiflash_close,
.d_strategy = spiflash_strategy,
.d_ioctl = spiflash_ioctl,
.d_dump = nodump,
.d_psize = nosize,
.d_discard = nodiscard,
.d_flag = D_DISK,
};
const struct cdevsw spiflash_cdevsw = {
.d_open = spiflash_open,
.d_close = spiflash_close,
.d_read = spiflash_read,
.d_write = spiflash_write,
.d_ioctl = spiflash_ioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_DISK,
};
static struct dkdriver spiflash_dkdriver = {
.d_strategy = spiflash_strategy
};
spiflash_handle_t
spiflash_attach_mi(const struct spiflash_hw_if *hw, void *cookie,
device_t dev)
{
struct spiflash_attach_args sfa;
sfa.hw = hw;
sfa.cookie = cookie;
return (spiflash_handle_t)config_found(dev, &sfa, spiflash_print);
}
int
spiflash_print(void *aux, const char *pnp)
{
if (pnp != NULL)
printf("spiflash at %s\n", pnp);
return UNCONF;
}
int
spiflash_match(device_t parent, cfdata_t cf, void *aux)
{
return 1;
}
void
spiflash_attach(device_t parent, device_t self, void *aux)
{
struct spiflash_softc *sc = device_private(self);
struct spiflash_attach_args *sfa = aux;
void *cookie = sfa->cookie;
sc->sc_hw = *sfa->hw;
sc->sc_cookie = cookie;
sc->sc_name = sc->sc_getname(cookie);
sc->sc_handle = sc->sc_gethandle(cookie);
sc->sc_device_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_DEVICE);
sc->sc_erase_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_ERASE);
sc->sc_write_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_WRITE);
sc->sc_read_size = sc->sc_getsize(cookie, SPIFLASH_SIZE_READ);
sc->sc_device_blks = sc->sc_device_size / DEV_BSIZE;
if (sc->sc_read == NULL)
sc->sc_read = spiflash_common_read;
if (sc->sc_write == NULL)
sc->sc_write = spiflash_common_write;
if (sc->sc_erase == NULL)
sc->sc_erase = spiflash_common_erase;
aprint_naive(": SPI flash\n");
aprint_normal(": %s SPI flash\n", sc->sc_name);
/* XXX: note that this has to change for boot-sectored flash */
aprint_normal_dev(self, "%d KB, %d sectors of %d KB each\n",
sc->sc_device_size / 1024,
sc->sc_device_size / sc->sc_erase_size,
sc->sc_erase_size / 1024);
/* first-come first-served strategy works best for us */
bufq_alloc(&sc->sc_waitq, "fcfs", BUFQ_SORT_RAWBLOCK);
bufq_alloc(&sc->sc_workq, "fcfs", BUFQ_SORT_RAWBLOCK);
bufq_alloc(&sc->sc_doneq, "fcfs", BUFQ_SORT_RAWBLOCK);
disk_init(&sc->sc_dk, device_xname(self), &spiflash_dkdriver);
disk_attach(&sc->sc_dk);
/* arrange to allocate the kthread */
kthread_create(PRI_NONE, 0, NULL, spiflash_thread, sc,
&sc->sc_thread, "spiflash");
}
int
spiflash_open(dev_t dev, int flags, int mode, struct lwp *l)
{
spiflash_handle_t sc;
sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
if (sc == NULL)
return ENXIO;
/*
* XXX: We need to handle partitions here. The problem is
* that it isn't entirely clear to me how to deal with this.
* There are devices that could be used "in the raw" with a
* NetBSD label, but then you get into devices that have other
* kinds of data on them -- some have VxWorks data, some have
* RedBoot data, and some have other contraints -- for example
* some devices might have a portion that is read-only,
* whereas others might have a portion that is read-write.
*
* For now we just permit access to the entire device.
*/
return 0;
}
int
spiflash_close(dev_t dev, int flags, int mode, struct lwp *l)
{
spiflash_handle_t sc;
sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
if (sc == NULL)
return ENXIO;
return 0;
}
int
spiflash_read(dev_t dev, struct uio *uio, int ioflag)
{
return physio(spiflash_strategy, NULL, dev, B_READ, minphys, uio);
}
int
spiflash_write(dev_t dev, struct uio *uio, int ioflag)
{
return physio(spiflash_strategy, NULL, dev, B_WRITE, minphys, uio);
}
int
spiflash_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
{
spiflash_handle_t sc;
sc = device_lookup_private(&spiflash_cd, DISKUNIT(dev));
if (sc == NULL)
return ENXIO;
return EINVAL;
}
void
spiflash_strategy(struct buf *bp)
{
spiflash_handle_t sc;
int s;
sc = device_lookup_private(&spiflash_cd, DISKUNIT(bp->b_dev));
if (sc == NULL) {
bp->b_error = ENXIO;
biodone(bp);
return;
}
if (((bp->b_bcount % sc->sc_write_size) != 0) ||
(bp->b_blkno < 0)) {
bp->b_error = EINVAL;
biodone(bp);
return;
}
/* no work? */
if (bp->b_bcount == 0) {
biodone(bp);
return;
}
if (bounds_check_with_mediasize(bp, DEV_BSIZE,
sc->sc_device_blks) <= 0) {
biodone(bp);
return;
}
bp->b_resid = bp->b_bcount;
/* all ready, hand off to thread for async processing */
s = splbio();
bufq_put(sc->sc_waitq, bp);
wakeup(&sc->sc_thread);
splx(s);
}
void
spiflash_process_done(spiflash_handle_t sc, int err)
{
struct buf *bp;
int cnt = 0;
int flag = 0;
while ((bp = bufq_get(sc->sc_doneq)) != NULL) {
flag = bp->b_flags & B_READ;
if ((bp->b_error = err) == 0)
bp->b_resid = 0;
cnt += bp->b_bcount - bp->b_resid;
biodone(bp);
}
disk_unbusy(&sc->sc_dk, cnt, flag);
}
void
spiflash_process_read(spiflash_handle_t sc)
{
struct buf *bp;
int err = 0;
disk_busy(&sc->sc_dk);
while ((bp = bufq_get(sc->sc_workq)) != NULL) {
size_t addr = bp->b_blkno * DEV_BSIZE;
uint8_t *data = bp->b_data;
int cnt = bp->b_resid;
bufq_put(sc->sc_doneq, bp);
DPRINTF(("read from addr %x, cnt %d\n", (unsigned)addr, cnt));
if ((err = sc->sc_read(sc, addr, cnt, data)) != 0) {
/* error occurred, fail all pending workq bufs */
bufq_move(sc->sc_doneq, sc->sc_workq);
break;
}
bp->b_resid -= cnt;
data += cnt;
addr += cnt;
}
spiflash_process_done(sc, err);
}
void
spiflash_process_write(spiflash_handle_t sc)
{
int len;
size_t base;
daddr_t blkno;
uint8_t *save;
int err = 0, neederase = 0;
struct buf *bp;
/*
* due to other considerations, we are guaranteed that
* we will only have multiple buffers if they are all in
* the same erase sector. Therefore we never need to look
* beyond the first block to determine how much data we need
* to save.
*/
bp = bufq_peek(sc->sc_workq);
len = spiflash_nsectors(sc, bp) * sc->sc_erase_size;
blkno = bp->b_blkno;
base = (blkno * DEV_BSIZE) & ~ (sc->sc_erase_size - 1);
/* get ourself a scratch buffer */
save = malloc(len, M_DEVBUF, M_WAITOK);
disk_busy(&sc->sc_dk);
/* read in as much of the data as we need */
DPRINTF(("reading in %d bytes\n", len));
if ((err = sc->sc_read(sc, base, len, save)) != 0) {
bufq_move(sc->sc_doneq, sc->sc_workq);
spiflash_process_done(sc, err);
return;
}
/*
* now coalesce the writes into the save area, but also
* check to see if we need to do an erase
*/
while ((bp = bufq_get(sc->sc_workq)) != NULL) {
uint8_t *data, *dst;
int resid = bp->b_resid;
DPRINTF(("coalesce write, blkno %x, count %d, resid %d\n",
(unsigned)bp->b_blkno, bp->b_bcount, resid));
data = bp->b_data;
dst = save + (bp->b_blkno * DEV_BSIZE) - base;
/*
* NOR flash bits. We can clear a bit, but we cannot
* set a bit, without erasing. This should help reduce
* unnecessary erases.
*/
while (resid) {
if ((*data) & ~(*dst))
neederase = 1;
*dst++ = *data++;
resid--;
}
bufq_put(sc->sc_doneq, bp);
}
/*
* do the erase, if we need to.
*/
if (neederase) {
DPRINTF(("erasing from %zx - %zx\n", base, base + len));
if ((err = sc->sc_erase(sc, base, len)) != 0) {
spiflash_process_done(sc, err);
return;
}
}
/*
* now write our save area, and finish up.
*/
DPRINTF(("flashing %d bytes to %zx from %p\n", len, base, save));
err = sc->sc_write(sc, base, len, save);
spiflash_process_done(sc, err);
}
int
spiflash_nsectors(spiflash_handle_t sc, struct buf *bp)
{
unsigned addr, sector;
addr = bp->b_blkno * DEV_BSIZE;
sector = addr / sc->sc_erase_size;
addr += bp->b_bcount;
addr--;
return (((addr / sc->sc_erase_size) - sector) + 1);
}
int
spiflash_sector(spiflash_handle_t sc, struct buf *bp)
{
unsigned addr, sector;
addr = bp->b_blkno * DEV_BSIZE;
sector = addr / sc->sc_erase_size;
/* if it spans multiple blocks, error it */
addr += bp->b_bcount;
addr--;
if (sector != (addr / sc->sc_erase_size))
return -1;
return sector;
}
void
spiflash_thread(void *arg)
{
spiflash_handle_t sc = arg;
struct buf *bp;
int sector;
(void)splbio();
for (;;) {
if ((bp = bufq_get(sc->sc_waitq)) == NULL) {
tsleep(&sc->sc_thread, PRIBIO, "spiflash_thread", 0);
continue;
}
bufq_put(sc->sc_workq, bp);
if (bp->b_flags & B_READ) {
/* just do the read */
spiflash_process_read(sc);
continue;
}
/*
* Because writing a flash filesystem is particularly
* painful, involving erase, modify, write, we prefer
* to coalesce writes to the same sector together.
*/
sector = spiflash_sector(sc, bp);
/*
* if the write spans multiple sectors, skip
* coalescing. (It would be nice if we could break
* these up. minphys is honored for read/write, but
* not necessarily for bread.)
*/
if (sector < 0)
goto dowrite;
while ((bp = bufq_peek(sc->sc_waitq)) != NULL) {
/* can't deal with read requests! */
if (bp->b_flags & B_READ)
break;
/* is it for the same sector? */
if (spiflash_sector(sc, bp) != sector)
break;
bp = bufq_get(sc->sc_waitq);
bufq_put(sc->sc_workq, bp);
}
dowrite:
spiflash_process_write(sc);
}
}
/*
* SPI flash common implementation.
*/
/*
* Most devices take on the order of 1 second for each block that they
* delete.
*/
int
spiflash_common_erase(spiflash_handle_t sc, size_t start, size_t size)
{
int rv;
if ((start % sc->sc_erase_size) || (size % sc->sc_erase_size))
return EINVAL;
/* the second test is to test against wrap */
if ((start > sc->sc_device_size) ||
((start + size) > sc->sc_device_size))
return EINVAL;
/*
* XXX: check protection status? Requires master table mapping
* sectors to status bits, and so forth.
*/
while (size) {
if ((rv = spiflash_write_enable(sc)) != 0) {
spiflash_write_disable(sc);
return rv;
}
if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_ERASE, 3, start, 0,
NULL, NULL)) != 0) {
spiflash_write_disable(sc);
return rv;
}
/*
* The devices I have all say typical for sector erase
* is ~1sec. We check ten times that often. (There
* is no way to interrupt on this.)
*/
if ((rv = spiflash_wait(sc, hz / 10)) != 0)
return rv;
start += sc->sc_erase_size;
size -= sc->sc_erase_size;
/* NB: according to the docs I have, the write enable
* is automatically cleared upon completion of an erase
* command, so there is no need to explicitly disable it.
*/
}
return 0;
}
int
spiflash_common_write(spiflash_handle_t sc, size_t start, size_t size,
const uint8_t *data)
{
int rv;
if ((start % sc->sc_write_size) || (size % sc->sc_write_size))
return EINVAL;
while (size) {
int cnt;
if ((rv = spiflash_write_enable(sc)) != 0) {
spiflash_write_disable(sc);
return rv;
}
cnt = min(size, sc->sc_write_size);
if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_PROGRAM, 3, start,
cnt, data, NULL)) != 0) {
spiflash_write_disable(sc);
return rv;
}
/*
* It seems that most devices can write bits fairly
* quickly. For example, one part I have access to
* takes ~5msec to process the entire 256 byte page.
* Probably this should be modified to cope with
* device-specific timing, and maybe also take into
* account systems with higher values of HZ (which
* could benefit from sleeping.)
*/
if ((rv = spiflash_wait(sc, 0)) != 0)
return rv;
data += cnt;
start += cnt;
size -= cnt;
}
return 0;
}
int
spiflash_common_read(spiflash_handle_t sc, size_t start, size_t size,
uint8_t *data)
{
int rv;
while (size) {
int cnt;
if (sc->sc_read_size > 0)
cnt = min(size, sc->sc_read_size);
else
cnt = size;
if ((rv = spiflash_cmd(sc, SPIFLASH_CMD_READ, 3, start,
cnt, NULL, data)) != 0) {
return rv;
}
data += cnt;
start += cnt;
size -= cnt;
}
return 0;
}
/* read status register */
int
spiflash_read_status(spiflash_handle_t sc, uint8_t *sr)
{
return spiflash_cmd(sc, SPIFLASH_CMD_RDSR, 0, 0, 1, NULL, sr);
}
int
spiflash_write_enable(spiflash_handle_t sc)
{
return spiflash_cmd(sc, SPIFLASH_CMD_WREN, 0, 0, 0, NULL, NULL);
}
int
spiflash_write_disable(spiflash_handle_t sc)
{
return spiflash_cmd(sc, SPIFLASH_CMD_WRDI, 0, 0, 0, NULL, NULL);
}
int
spiflash_cmd(spiflash_handle_t sc, uint8_t cmd,
size_t addrlen, uint32_t addr,
size_t cnt, const uint8_t *wdata, uint8_t *rdata)
{
struct spi_transfer trans;
struct spi_chunk chunk1, chunk2;
char buf[4];
int i;
buf[0] = cmd;
if (addrlen > 3)
return EINVAL;
for (i = addrlen; i > 0; i--) {
buf[i] = addr & 0xff;
addr >>= 8;
}
spi_transfer_init(&trans);
spi_chunk_init(&chunk1, addrlen + 1, buf, NULL);
spi_transfer_add(&trans, &chunk1);
if (cnt) {
spi_chunk_init(&chunk2, cnt, wdata, rdata);
spi_transfer_add(&trans, &chunk2);
}
spi_transfer(sc->sc_handle, &trans);
spi_wait(&trans);
if (trans.st_flags & SPI_F_ERROR)
return trans.st_errno;
return 0;
}
int
spiflash_wait(spiflash_handle_t sc, int tmo)
{
int rv;
uint8_t sr;
for (;;) {
if ((rv = spiflash_read_status(sc, &sr)) != 0)
return rv;
if ((sr & SPIFLASH_SR_BUSY) == 0)
break;
/*
* The devices I have all say typical for sector
* erase is ~1sec. We check time times that often.
* (There is no way to interrupt on this.)
*/
if (tmo)
tsleep(&sr, PWAIT, "spiflash_wait", tmo);
}
return 0;
}