NetBSD/sys/arch/amiga/dev/aucc.c

1280 lines
28 KiB
C

/* $NetBSD: aucc.c,v 1.35 2004/10/29 12:57:15 yamt Exp $ */
/*
* Copyright (c) 1999 Bernardo Innocenti
* All rights reserved.
*
* Copyright (c) 1997 Stephan Thesing
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Stephan Thesing.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* TODO:
*
* - mu-law -> 14bit conversion
* - channel allocation is wrong for 14bit mono
* - convert the... err... conversion routines to 68k asm for best performance
* XXX: NO. aucc audio is limited by chipmem speed, anyway. You dont
* want to make life difficult for amigappc work.
* -is
*
* - rely on auconv.c routines for mu-law/A-law conversions
* - perhaps use a calibration table for better 14bit output
* - set 31KHz AGA video mode to allow 44.1KHz even if grfcc is missing
* in the kernel
* - 14bit output requires maximum volume
*/
#include "aucc.h"
#if NAUCC > 0
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: aucc.c,v 1.35 2004/10/29 12:57:15 yamt Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <machine/cpu.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <amiga/amiga/cc.h>
#include <amiga/amiga/custom.h>
#include <amiga/amiga/device.h>
#include <amiga/dev/auccvar.h>
#include "opt_lev6_defer.h"
#ifdef LEV6_DEFER
#define AUCC_MAXINT 3
#define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2)
#else
#define AUCC_MAXINT 4
#define AUCC_ALLINTF (INTF_AUD0|INTF_AUD1|INTF_AUD2|INTF_AUD3)
#endif
/* this unconditionally; we may use AUD3 as slave channel with LEV6_DEFER */
#define AUCC_ALLDMAF (DMAF_AUD0|DMAF_AUD1|DMAF_AUD2|DMAF_AUD3)
#ifdef AUDIO_DEBUG
/*extern printf(const char *,...);*/
int auccdebug = 1;
#define DPRINTF(x) if (auccdebug) printf x
#else
#define DPRINTF(x)
#endif
#ifdef splaudio
#undef splaudio
#endif
#define splaudio() spl4();
/* clock frequency.. */
extern int eclockfreq;
/* hw audio ch */
extern struct audio_channel channel[4];
/*
* Software state.
*/
struct aucc_softc {
struct device sc_dev; /* base device */
int sc_open; /* single use device */
aucc_data_t sc_channel[4]; /* per channel freq, ... */
u_int sc_encoding; /* encoding AUDIO_ENCODING_.*/
int sc_channels; /* # of channels used */
int sc_precision; /* 8 or 16 bits */
int sc_14bit; /* 14bit output enabled */
int sc_intrcnt; /* interrupt count */
int sc_channelmask; /* which channels are used ? */
void (*sc_decodefunc)(u_char **, u_char *, int);
/* pointer to format conversion routine */
};
/* interrupt interfaces */
void aucc_inthdl(int);
/* forward declarations */
static int init_aucc(struct aucc_softc *);
static u_int freqtoper(u_int);
static u_int pertofreq(u_int);
/* autoconfiguration driver */
void auccattach(struct device *, struct device *, void *);
int auccmatch(struct device *, struct cfdata *, void *);
CFATTACH_DECL(aucc, sizeof(struct aucc_softc),
auccmatch, auccattach, NULL, NULL);
struct audio_device aucc_device = {
"Amiga-audio",
"2.0",
"aucc"
};
struct aucc_softc *aucc=NULL;
unsigned char mulaw_to_lin[] = {
0x82, 0x86, 0x8a, 0x8e, 0x92, 0x96, 0x9a, 0x9e,
0xa2, 0xa6, 0xaa, 0xae, 0xb2, 0xb6, 0xba, 0xbe,
0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf,
0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8,
0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0,
0xf0, 0xf1, 0xf1, 0xf2, 0xf2, 0xf3, 0xf3, 0xf4,
0xf4, 0xf5, 0xf5, 0xf6, 0xf6, 0xf7, 0xf7, 0xf8,
0xf8, 0xf8, 0xf9, 0xf9, 0xf9, 0xf9, 0xfa, 0xfa,
0xfa, 0xfa, 0xfb, 0xfb, 0xfb, 0xfb, 0xfc, 0xfc,
0xfc, 0xfc, 0xfc, 0xfc, 0xfd, 0xfd, 0xfd, 0xfd,
0xfd, 0xfd, 0xfd, 0xfd, 0xfe, 0xfe, 0xfe, 0xfe,
0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
0x7d, 0x79, 0x75, 0x71, 0x6d, 0x69, 0x65, 0x61,
0x5d, 0x59, 0x55, 0x51, 0x4d, 0x49, 0x45, 0x41,
0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30,
0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17,
0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f,
0x0f, 0x0e, 0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b,
0x0b, 0x0a, 0x0a, 0x09, 0x09, 0x08, 0x08, 0x07,
0x07, 0x07, 0x06, 0x06, 0x06, 0x06, 0x05, 0x05,
0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/*
* Define our interface to the higher level audio driver.
*/
int aucc_open(void *, int);
void aucc_close(void *);
int aucc_set_out_sr(void *, u_long);
int aucc_query_encoding(void *, struct audio_encoding *);
int aucc_round_blocksize(void *, int);
int aucc_commit_settings(void *);
int aucc_start_output(void *, void *, int, void (*)(void *), void *);
int aucc_start_input(void *, void *, int, void (*)(void *), void *);
int aucc_halt_output(void *);
int aucc_halt_input(void *);
int aucc_getdev(void *, struct audio_device *);
int aucc_set_port(void *, mixer_ctrl_t *);
int aucc_get_port(void *, mixer_ctrl_t *);
int aucc_query_devinfo(void *, mixer_devinfo_t *);
void aucc_encode(int, int, int, int, u_char *, u_short **);
int aucc_set_params(void *, int, int, struct audio_params *,
struct audio_params *);
int aucc_get_props(void *);
static void aucc_decode_slinear8_1ch(u_char **, u_char *, int);
static void aucc_decode_slinear8_2ch(u_char **, u_char *, int);
static void aucc_decode_slinear8_3ch(u_char **, u_char *, int);
static void aucc_decode_slinear8_4ch(u_char **, u_char *, int);
static void aucc_decode_ulinear8_1ch(u_char **, u_char *, int);
static void aucc_decode_ulinear8_2ch(u_char **, u_char *, int);
static void aucc_decode_ulinear8_3ch(u_char **, u_char *, int);
static void aucc_decode_ulinear8_4ch(u_char **, u_char *, int);
static void aucc_decode_mulaw_1ch(u_char **, u_char *, int);
static void aucc_decode_mulaw_2ch(u_char **, u_char *, int);
static void aucc_decode_mulaw_3ch(u_char **, u_char *, int);
static void aucc_decode_mulaw_4ch(u_char **, u_char *, int);
static void aucc_decode_slinear16_1ch(u_char **, u_char *, int);
static void aucc_decode_slinear16_2ch(u_char **, u_char *, int);
static void aucc_decode_slinear16_3ch(u_char **, u_char *, int);
static void aucc_decode_slinear16_4ch(u_char **, u_char *, int);
static void aucc_decode_slinear16sw_1ch(u_char **, u_char *, int);
static void aucc_decode_slinear16sw_2ch(u_char **, u_char *, int);
static void aucc_decode_slinear16sw_3ch(u_char **, u_char *, int);
static void aucc_decode_slinear16sw_4ch(u_char **, u_char *, int);
const struct audio_hw_if sa_hw_if = {
aucc_open,
aucc_close,
NULL,
aucc_query_encoding,
aucc_set_params,
aucc_round_blocksize,
aucc_commit_settings,
NULL,
NULL,
aucc_start_output,
aucc_start_input,
aucc_halt_output,
aucc_halt_input,
NULL,
aucc_getdev,
NULL,
aucc_set_port,
aucc_get_port,
aucc_query_devinfo,
NULL,
NULL,
NULL,
NULL,
aucc_get_props,
NULL,
NULL,
NULL,
};
/* autoconfig routines */
int
auccmatch(struct device *pdp, struct cfdata *cfp, void *aux)
{
static int aucc_matched = 0;
if (!matchname((char *)aux, "aucc") ||
#ifdef DRACO
is_draco() ||
#endif
aucc_matched)
return 0;
aucc_matched = 1;
return 1;
}
/*
* Audio chip found.
*/
void
auccattach(struct device *parent, struct device *self, void *args)
{
register struct aucc_softc *sc = (struct aucc_softc *)self;
register int i;
printf("\n");
if((i=init_aucc(sc))) {
printf("audio: no chipmem\n");
return;
}
audio_attach_mi(&sa_hw_if, sc, &sc->sc_dev);
}
static int
init_aucc(struct aucc_softc *sc)
{
register int i, err=0;
/* init values per channel */
for (i=0;i<4;i++) {
sc->sc_channel[i].nd_freq=8000;
sc->sc_channel[i].nd_per=freqtoper(8000);
sc->sc_channel[i].nd_busy=0;
sc->sc_channel[i].nd_dma=alloc_chipmem(AUDIO_BUF_SIZE*2);
if (sc->sc_channel[i].nd_dma==NULL)
err=1;
sc->sc_channel[i].nd_dmalength=0;
sc->sc_channel[i].nd_volume=64;
sc->sc_channel[i].nd_intr=NULL;
sc->sc_channel[i].nd_intrdata=NULL;
sc->sc_channel[i].nd_doublebuf=0;
DPRINTF(("DMA buffer for channel %d is %p\n", i,
sc->sc_channel[i].nd_dma));
}
if (err) {
for(i=0;i<4;i++)
if (sc->sc_channel[i].nd_dma)
free_chipmem(sc->sc_channel[i].nd_dma);
}
sc->sc_channels=1;
sc->sc_channelmask=0xf;
sc->sc_precision=8;
sc->sc_14bit = 0;
sc->sc_encoding=AUDIO_ENCODING_ULAW;
sc->sc_decodefunc = aucc_decode_mulaw_1ch;
/* clear interrupts and DMA: */
custom.intena = AUCC_ALLINTF;
custom.dmacon = AUCC_ALLDMAF;
return err;
}
int
aucc_open(void *addr, int flags)
{
struct aucc_softc *sc = addr;
int i;
DPRINTF(("sa_open: unit %p\n",sc));
if (sc->sc_open)
return (EBUSY);
sc->sc_open = 1;
for (i=0;i<AUCC_MAXINT;i++) {
sc->sc_channel[i].nd_intr=NULL;
sc->sc_channel[i].nd_intrdata=NULL;
}
aucc=sc;
sc->sc_channelmask=0xf;
DPRINTF(("saopen: ok -> sc=0x%p\n",sc));
return (0);
}
void
aucc_close(void *addr)
{
register struct aucc_softc *sc = addr;
DPRINTF(("sa_close: sc=0x%p\n", sc));
/*
* halt i/o, clear open flag, and done.
*/
aucc_halt_output(sc);
sc->sc_open = 0;
DPRINTF(("sa_close: closed.\n"));
}
int
aucc_set_out_sr(void *addr, u_long sr)
{
struct aucc_softc *sc=addr;
u_long per;
register int i;
per=freqtoper(sr);
if (per>0xffff)
return EINVAL;
sr=pertofreq(per);
for (i=0;i<4;i++) {
sc->sc_channel[i].nd_freq=sr;
sc->sc_channel[i].nd_per=per;
}
return(0);
}
int
aucc_query_encoding(void *addr, struct audio_encoding *fp)
{
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = 0;
break;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 2:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 4:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 5:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
default:
return(EINVAL);
/*NOTREACHED*/
}
return(0);
}
int
aucc_set_params(void *addr, int setmode, int usemode, struct audio_params *p,
struct audio_params *r)
{
struct aucc_softc *sc = addr;
/* if (setmode & AUMODE_RECORD)
return 0 ENXIO*/;
#ifdef AUCCDEBUG
printf("aucc_set_params(setmode 0x%x, usemode 0x%x, "
"enc %d, bits %d, chn %d, sr %ld)\n", setmode, usemode,
p->encoding, p->precision, p->channels, p->sample_rate);
#endif
switch (p->precision) {
case 8:
switch (p->encoding) {
case AUDIO_ENCODING_ULAW:
switch (p->channels) {
case 1:
sc->sc_decodefunc = aucc_decode_mulaw_1ch;
break;
case 2:
sc->sc_decodefunc = aucc_decode_mulaw_2ch;
break;
case 3:
sc->sc_decodefunc = aucc_decode_mulaw_3ch;
break;
case 4:
sc->sc_decodefunc = aucc_decode_mulaw_4ch;
break;
default:
return EINVAL;
}
break;
case AUDIO_ENCODING_SLINEAR:
case AUDIO_ENCODING_SLINEAR_BE:
case AUDIO_ENCODING_SLINEAR_LE:
switch (p->channels) {
case 1:
sc->sc_decodefunc = aucc_decode_slinear8_1ch;
break;
case 2:
sc->sc_decodefunc = aucc_decode_slinear8_2ch;
break;
case 3:
sc->sc_decodefunc = aucc_decode_slinear8_3ch;
break;
case 4:
sc->sc_decodefunc = aucc_decode_slinear8_4ch;
break;
default:
return EINVAL;
}
break;
case AUDIO_ENCODING_ULINEAR:
case AUDIO_ENCODING_ULINEAR_BE:
case AUDIO_ENCODING_ULINEAR_LE:
switch (p->channels) {
case 1:
sc->sc_decodefunc = aucc_decode_ulinear8_1ch;
break;
case 2:
sc->sc_decodefunc = aucc_decode_ulinear8_2ch;
break;
case 3:
sc->sc_decodefunc = aucc_decode_ulinear8_3ch;
break;
case 4:
sc->sc_decodefunc = aucc_decode_ulinear8_4ch;
break;
default:
return EINVAL;
}
break;
default:
return EINVAL;
}
break;
case 16:
switch (p->encoding) {
#if BYTE_ORDER == BIG_ENDIAN
case AUDIO_ENCODING_SLINEAR:
#endif
case AUDIO_ENCODING_SLINEAR_BE:
switch (p->channels) {
case 1:
sc->sc_decodefunc = aucc_decode_slinear16_1ch;
break;
case 2:
sc->sc_decodefunc = aucc_decode_slinear16_2ch;
break;
case 3:
sc->sc_decodefunc = aucc_decode_slinear16_3ch;
break;
case 4:
sc->sc_decodefunc = aucc_decode_slinear16_4ch;
break;
default:
return EINVAL;
}
break;
#if BYTE_ORDER == LITTLE_ENDIAN
case AUDIO_ENCODING_SLINEAR:
#endif
case AUDIO_ENCODING_SLINEAR_LE:
switch (p->channels) {
case 1:
sc->sc_decodefunc = aucc_decode_slinear16sw_1ch;
break;
case 2:
sc->sc_decodefunc = aucc_decode_slinear16sw_2ch;
break;
case 3:
sc->sc_decodefunc = aucc_decode_slinear16sw_3ch;
break;
case 4:
sc->sc_decodefunc = aucc_decode_slinear16sw_4ch;
break;
default:
return EINVAL;
}
break;
default:
return EINVAL;
}
break;
default:
return EINVAL;
}
sc->sc_encoding = p->encoding;
sc->sc_precision = p->precision;
sc->sc_14bit = ((p->precision == 16) && (p->channels <= 2));
sc->sc_channels = sc->sc_14bit ? (p->channels * 2) : p->channels;
return aucc_set_out_sr(addr, p->sample_rate);
}
int
aucc_round_blocksize(void *addr, int blk)
{
/* round up to even size */
return blk > AUDIO_BUF_SIZE ? AUDIO_BUF_SIZE : blk;
}
int
aucc_commit_settings(void *addr)
{
register struct aucc_softc *sc = addr;
register int i;
DPRINTF(("sa_commit.\n"));
for (i=0;i<4;i++) {
custom.aud[i].vol=sc->sc_channel[i].nd_volume;
custom.aud[i].per=sc->sc_channel[i].nd_per;
}
DPRINTF(("commit done\n"));
return(0);
}
static int masks[4] = {1,3,7,15}; /* masks for n first channels */
static int masks2[4] = {1,2,4,8};
int
aucc_start_output(void *addr, void *p, int cc, void (*intr)(void *), void *arg)
{
struct aucc_softc *sc;
int mask;
int i, j, k, len;
u_char *dmap[4];
sc = addr;
mask = sc->sc_channelmask;
dmap[0] = dmap[1] = dmap[2] = dmap[3] = NULL;
DPRINTF(("sa_start_output: cc=%d %p (%p)\n", cc, intr, arg));
if (sc->sc_channels > 1)
mask &= masks[sc->sc_channels - 1];
/* we use first sc_channels channels */
if (mask == 0) /* active and used channels are disjoint */
return EINVAL;
for (i=0;i<4;i++) {
/* channels available ? */
if ((masks2[i] & mask) && (sc->sc_channel[i].nd_busy))
return EBUSY; /* channel is busy */
if (channel[i].isaudio == -1)
return EBUSY; /* system uses them */
}
/* enable interrupt on 1st channel */
for (i = j = 0; i < AUCC_MAXINT; i++) {
if (masks2[i] & mask) {
DPRINTF(("first channel is %d\n",i));
j=i;
sc->sc_channel[i].nd_intr=intr;
sc->sc_channel[i].nd_intrdata=arg;
break;
}
}
DPRINTF(("dmap is %p %p %p %p, mask=0x%x\n", dmap[0], dmap[1],
dmap[2], dmap[3], mask));
/* disable ints, DMA for channels, until all parameters set */
/* XXX dont disable DMA! custom.dmacon=mask;*/
custom.intreq = mask << INTB_AUD0;
custom.intena = mask << INTB_AUD0;
/* copy data to DMA buffer */
if (sc->sc_channels == 1) {
dmap[0] =
dmap[1] =
dmap[2] =
dmap[3] = (u_char *)sc->sc_channel[j].nd_dma;
}
else {
for (k=0; k<4; k++) {
if (masks2[k+j] & mask)
dmap[k] = (u_char *)sc->sc_channel[k+j].nd_dma;
}
}
sc->sc_channel[j].nd_doublebuf ^= 1;
if (sc->sc_channel[j].nd_doublebuf) {
dmap[0] += AUDIO_BUF_SIZE;
dmap[1] += AUDIO_BUF_SIZE;
dmap[2] += AUDIO_BUF_SIZE;
dmap[3] += AUDIO_BUF_SIZE;
}
/* compute output length in bytes per channel.
* divide by two only for 16bit->8bit conversion.
*/
len = cc / sc->sc_channels;
if (!sc->sc_14bit && (sc->sc_precision == 16))
len /= 2;
/* call audio decoding routine */
sc->sc_decodefunc (dmap, (u_char *)p, len);
/* DMA buffers: we use same buffer 4 all channels
* write DMA location and length
*/
for (i = k = 0; i < 4; i++) {
if (masks2[i] & mask) {
DPRINTF(("turning channel %d on\n",i));
/* sc->sc_channel[i].nd_busy=1; */
channel[i].isaudio = 1;
channel[i].play_count = 1;
channel[i].handler = NULL;
custom.aud[i].per = sc->sc_channel[i].nd_per;
if (sc->sc_14bit && (i > 1))
custom.aud[i].vol = 1;
else
custom.aud[i].vol = sc->sc_channel[i].nd_volume;
custom.aud[i].lc = PREP_DMA_MEM(dmap[k++]);
custom.aud[i].len = len / 2;
sc->sc_channel[i].nd_mask = mask;
DPRINTF(("per is %d, vol is %d, len is %d\n",\
sc->sc_channel[i].nd_per,
sc->sc_channel[i].nd_volume, len));
}
}
channel[j].handler=aucc_inthdl;
/* enable ints */
custom.intena = INTF_SETCLR | INTF_INTEN | (masks2[j] << INTB_AUD0);
DPRINTF(("enabled ints: 0x%x\n", (masks2[j] << INTB_AUD0)));
/* enable DMA */
custom.dmacon = DMAF_SETCLR | DMAF_MASTER | mask;
DPRINTF(("enabled DMA, mask=0x%x\n",mask));
return(0);
}
/* ARGSUSED */
int
aucc_start_input(void *addr, void *p, int cc, void (*intr)(void *), void *arg)
{
return ENXIO; /* no input */
}
int
aucc_halt_output(void *addr)
{
register struct aucc_softc *sc = addr;
register int i;
/* XXX only halt, if input is also halted ?? */
/* stop DMA, etc */
custom.intena = AUCC_ALLINTF;
custom.dmacon = AUCC_ALLDMAF;
/* mark every busy unit idle */
for (i=0;i<4;i++) {
sc->sc_channel[i].nd_busy=sc->sc_channel[i].nd_mask=0;
channel[i].isaudio=0;
channel[i].play_count=0;
}
return(0);
}
int
aucc_halt_input(void *addr)
{
/* no input */
return ENXIO;
}
int
aucc_getdev(void *addr, struct audio_device *retp)
{
*retp = aucc_device;
return 0;
}
int
aucc_set_port(void *addr, mixer_ctrl_t *cp)
{
register struct aucc_softc *sc = addr;
register int i,j;
DPRINTF(("aucc_set_port: port=%d", cp->dev));
switch (cp->type) {
case AUDIO_MIXER_SET:
if (cp->dev!=AUCC_CHANNELS)
return EINVAL;
i=cp->un.mask;
if ((i<1) || (i>15))
return EINVAL;
sc->sc_channelmask=i;
break;
case AUDIO_MIXER_VALUE:
i=cp->un.value.num_channels;
if ((i<1) || (i>4))
return EINVAL;
#ifdef __XXXwhatsthat
if (cp->dev!=AUCC_VOLUME)
return EINVAL;
#endif
/* set volume for channel 0..i-1 */
/* evil workaround for xanim bug, IMO */
if ((sc->sc_channels == 1) && (i == 2)) {
sc->sc_channel[0].nd_volume =
sc->sc_channel[3].nd_volume =
cp->un.value.level[0]>>2;
sc->sc_channel[1].nd_volume =
sc->sc_channel[2].nd_volume =
cp->un.value.level[1]>>2;
} else if (i>1) {
for (j=0;j<i;j++)
sc->sc_channel[j].nd_volume =
cp->un.value.level[j]>>2;
} else if (sc->sc_channels > 1)
for (j=0; j<sc->sc_channels; j++)
sc->sc_channel[j].nd_volume =
cp->un.value.level[0]>>2;
else
for (j=0; j<4; j++)
sc->sc_channel[j].nd_volume =
cp->un.value.level[0]>>2;
break;
default:
return EINVAL;
break;
}
return 0;
}
int
aucc_get_port(void *addr, mixer_ctrl_t *cp)
{
register struct aucc_softc *sc = addr;
register int i,j;
DPRINTF(("aucc_get_port: port=%d", cp->dev));
switch (cp->type) {
case AUDIO_MIXER_SET:
if (cp->dev!=AUCC_CHANNELS)
return EINVAL;
cp->un.mask=sc->sc_channelmask;
break;
case AUDIO_MIXER_VALUE:
i = cp->un.value.num_channels;
if ((i<1)||(i>4))
return EINVAL;
for (j=0;j<i;j++)
cp->un.value.level[j] =
(sc->sc_channel[j].nd_volume<<2) +
(sc->sc_channel[j].nd_volume>>4);
break;
default:
return EINVAL;
}
return 0;
}
int
aucc_get_props(void *addr)
{
return 0;
}
int
aucc_query_devinfo(void *addr, register mixer_devinfo_t *dip)
{
register int i;
switch(dip->index) {
case AUCC_CHANNELS:
dip->type = AUDIO_MIXER_SET;
dip->mixer_class = AUCC_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNspeaker);
for (i=0;i<16;i++) {
sprintf(dip->un.s.member[i].label.name,
"channelmask%d", i);
dip->un.s.member[i].mask = i;
}
dip->un.s.num_mem = 16;
break;
case AUCC_VOLUME:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = AUCC_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmaster);
dip->un.v.num_channels = 4;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case AUCC_OUTPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = AUCC_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
break;
default:
return ENXIO;
}
DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
return(0);
}
/* audio int handler */
void
aucc_inthdl(int ch)
{
register int i;
register int mask=aucc->sc_channel[ch].nd_mask;
/* for all channels in this maskgroup:
disable DMA, int
mark idle */
DPRINTF(("inthandler called, channel %d, mask 0x%x\n",ch,mask));
custom.intreq=mask<<INTB_AUD0; /* clear request */
/*
* XXX: maybe we can leave ints and/or DMA on,
* if another sample has to be played?
*/
custom.intena=mask<<INTB_AUD0;
/*
* XXX custom.dmacon=mask; NO!!!
*/
for (i=0; i<4; i++) {
if (masks2[i]&&mask) {
DPRINTF(("marking channel %d idle\n",i));
aucc->sc_channel[i].nd_busy=0;
aucc->sc_channel[i].nd_mask=0;
channel[i].isaudio=channel[i].play_count=0;
}
}
/* call handler */
if (aucc->sc_channel[ch].nd_intr) {
DPRINTF(("calling %p\n",aucc->sc_channel[ch].nd_intr));
(*(aucc->sc_channel[ch].nd_intr))
(aucc->sc_channel[ch].nd_intrdata);
}
else
DPRINTF(("zero int handler\n"));
DPRINTF(("ints done\n"));
}
/* transform frequency to period, adjust bounds */
static u_int
freqtoper(u_int freq)
{
u_int per=eclockfreq*5/freq;
if (per<124)
per=124; /* must have at least 124 ticks between samples */
return per;
}
/* transform period to frequency */
static u_int
pertofreq(u_int per)
{
u_int freq=eclockfreq*5/per;
return freq;
}
static void
aucc_decode_slinear8_1ch(u_char **dmap, u_char *p, int i)
{
memcpy (dmap[0], p, i);
}
static void
aucc_decode_slinear8_2ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
while (i--) {
*ch0++ = *p++;
*ch1++ = *p++;
}
}
static void
aucc_decode_slinear8_3ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
while (i--) {
*ch0++ = *p++;
*ch1++ = *p++;
*ch2++ = *p++;
}
}
static void
aucc_decode_slinear8_4ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
u_char *ch3 = dmap[3];
while (i--) {
*ch0++ = *p++;
*ch1++ = *p++;
*ch2++ = *p++;
*ch3++ = *p++;
}
}
static void
aucc_decode_ulinear8_1ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
while (i--)
*ch0++ = *p++ - 128;
}
static void
aucc_decode_ulinear8_2ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
while (i--) {
*ch0++ = *p++ - 128;
*ch1++ = *p++ - 128;
}
}
static void
aucc_decode_ulinear8_3ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
while (i--) {
*ch0++ = *p++ - 128;
*ch1++ = *p++ - 128;
*ch2++ = *p++ - 128;
}
}
static void
aucc_decode_ulinear8_4ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
u_char *ch3 = dmap[3];
while (i--) {
*ch0++ = *p++ - 128;
*ch1++ = *p++ - 128;
*ch2++ = *p++ - 128;
*ch3++ = *p++ - 128;
}
}
static void
aucc_decode_mulaw_1ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
while (i--)
*ch0++ = mulaw_to_lin[*p++];
}
static void
aucc_decode_mulaw_2ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
while (i--) {
*ch0++ = mulaw_to_lin[*p++];
*ch1++ = mulaw_to_lin[*p++];
}
}
static void
aucc_decode_mulaw_3ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
while (i--) {
*ch0++ = mulaw_to_lin[*p++];
*ch1++ = mulaw_to_lin[*p++];
*ch2++ = mulaw_to_lin[*p++];
}
}
static void
aucc_decode_mulaw_4ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
u_char *ch3 = dmap[3];
while (i--) {
*ch0++ = mulaw_to_lin[*p++];
*ch1++ = mulaw_to_lin[*p++];
*ch2++ = mulaw_to_lin[*p++];
*ch3++ = mulaw_to_lin[*p++];
}
}
/* 14bit output */
static void
aucc_decode_slinear16_1ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch3 = dmap[1]; /* XXX should be 3 */
while (i--) {
*ch0++ = *p++;
*ch3++ = *p++ >> 2;
}
}
/* 14bit stereo output */
static void
aucc_decode_slinear16_2ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
u_char *ch3 = dmap[3];
while (i--) {
*ch0++ = *p++;
*ch3++ = *p++ >> 2;
*ch1++ = *p++;
*ch2++ = *p++ >> 2;
}
}
static void
aucc_decode_slinear16_3ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
while (i--) {
*ch0++ = *p++; p++;
*ch1++ = *p++; p++;
*ch2++ = *p++; p++;
}
}
static void
aucc_decode_slinear16_4ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
u_char *ch3 = dmap[3];
while (i--) {
*ch0++ = *p++; p++;
*ch1++ = *p++; p++;
*ch2++ = *p++; p++;
*ch3++ = *p++; p++;
}
}
/* 14bit output, swap bytes */
static void
aucc_decode_slinear16sw_1ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch3 = dmap[1]; /* XXX should be 3 */
while (i--) {
*ch3++ = *p++ >> 2;
*ch0++ = *p++;
}
}
static void
aucc_decode_slinear16sw_2ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
u_char *ch3 = dmap[3];
while (i--) {
*ch3++ = *p++ >> 2;
*ch0++ = *p++;
*ch2++ = *p++ >> 2;
*ch1++ = *p++;
}
}
static void
aucc_decode_slinear16sw_3ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
while (i--) {
p++; *ch0++ = *p++;
p++; *ch1++ = *p++;
p++; *ch2++ = *p++;
}
}
static void
aucc_decode_slinear16sw_4ch(u_char **dmap, u_char *p, int i)
{
u_char *ch0 = dmap[0];
u_char *ch1 = dmap[1];
u_char *ch2 = dmap[2];
u_char *ch3 = dmap[3];
while (i--) {
p++; *ch0++ = *p++;
p++; *ch1++ = *p++;
p++; *ch2++ = *p++;
p++; *ch3++ = *p++;
}
}
#endif /* NAUCC > 0 */