1942 lines
45 KiB
C
1942 lines
45 KiB
C
/* $NetBSD: kern_sysctl.c,v 1.90 2001/06/21 19:08:38 jdolecek Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Mike Karels at Berkeley Software Design, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
|
|
*/
|
|
|
|
/*
|
|
* sysctl system call.
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_insecure.h"
|
|
#include "opt_defcorename.h"
|
|
#include "opt_new_pipe.h"
|
|
#include "opt_sysv.h"
|
|
#include "pty.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/device.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/file.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/vnode.h>
|
|
#define __SYSCTL_PRIVATE
|
|
#include <sys/sysctl.h>
|
|
#include <sys/lock.h>
|
|
|
|
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
|
|
#include <sys/ipc.h>
|
|
#endif
|
|
#ifdef SYSVMSG
|
|
#include <sys/msg.h>
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
#include <sys/sem.h>
|
|
#endif
|
|
#ifdef SYSVSHM
|
|
#include <sys/shm.h>
|
|
#endif
|
|
|
|
#include <dev/cons.h>
|
|
|
|
#if defined(DDB)
|
|
#include <ddb/ddbvar.h>
|
|
#endif
|
|
|
|
#ifdef NEW_PIPE
|
|
#include <sys/pipe.h>
|
|
#endif
|
|
|
|
#define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
|
|
|
|
static int sysctl_file __P((void *, size_t *));
|
|
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
|
|
static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
|
|
#endif
|
|
static int sysctl_msgbuf __P((void *, size_t *));
|
|
static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
|
|
#ifdef MULTIPROCESSOR
|
|
static int sysctl_docptime __P((void *, size_t *, void *));
|
|
static int sysctl_ncpus __P((void));
|
|
#endif
|
|
static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
|
|
static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
|
|
#if NPTY > 0
|
|
static int sysctl_pty __P((void *, size_t *, void *, size_t));
|
|
#endif
|
|
|
|
/*
|
|
* The `sysctl_memlock' is intended to keep too many processes from
|
|
* locking down memory by doing sysctls at once. Whether or not this
|
|
* is really a good idea to worry about it probably a subject of some
|
|
* debate.
|
|
*/
|
|
struct lock sysctl_memlock;
|
|
|
|
void
|
|
sysctl_init(void)
|
|
{
|
|
|
|
lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
|
|
}
|
|
|
|
int
|
|
sys___sysctl(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys___sysctl_args /* {
|
|
syscallarg(int *) name;
|
|
syscallarg(u_int) namelen;
|
|
syscallarg(void *) old;
|
|
syscallarg(size_t *) oldlenp;
|
|
syscallarg(void *) new;
|
|
syscallarg(size_t) newlen;
|
|
} */ *uap = v;
|
|
int error;
|
|
size_t savelen = 0, oldlen = 0;
|
|
sysctlfn *fn;
|
|
int name[CTL_MAXNAME];
|
|
size_t *oldlenp;
|
|
|
|
/*
|
|
* all top-level sysctl names are non-terminal
|
|
*/
|
|
if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
|
|
return (EINVAL);
|
|
error = copyin(SCARG(uap, name), &name,
|
|
SCARG(uap, namelen) * sizeof(int));
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* For all but CTL_PROC, must be root to change a value.
|
|
* For CTL_PROC, must be root, or owner of the proc (and not suid),
|
|
* this is checked in proc_sysctl() (once we know the targer proc).
|
|
*/
|
|
if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
|
|
(error = suser(p->p_ucred, &p->p_acflag)))
|
|
return error;
|
|
|
|
switch (name[0]) {
|
|
case CTL_KERN:
|
|
fn = kern_sysctl;
|
|
break;
|
|
case CTL_HW:
|
|
fn = hw_sysctl;
|
|
break;
|
|
case CTL_VM:
|
|
fn = uvm_sysctl;
|
|
break;
|
|
case CTL_NET:
|
|
fn = net_sysctl;
|
|
break;
|
|
case CTL_VFS:
|
|
fn = vfs_sysctl;
|
|
break;
|
|
case CTL_MACHDEP:
|
|
fn = cpu_sysctl;
|
|
break;
|
|
#ifdef DEBUG
|
|
case CTL_DEBUG:
|
|
fn = debug_sysctl;
|
|
break;
|
|
#endif
|
|
#ifdef DDB
|
|
case CTL_DDB:
|
|
fn = ddb_sysctl;
|
|
break;
|
|
#endif
|
|
case CTL_PROC:
|
|
fn = proc_sysctl;
|
|
break;
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
/*
|
|
* XXX Hey, we wire `old', but what about `new'?
|
|
*/
|
|
|
|
oldlenp = SCARG(uap, oldlenp);
|
|
if (oldlenp) {
|
|
if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
|
|
return (error);
|
|
oldlenp = &oldlen;
|
|
}
|
|
if (SCARG(uap, old) != NULL) {
|
|
error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
|
|
if (error)
|
|
return (error);
|
|
error = uvm_vslock(p, SCARG(uap, old), oldlen,
|
|
VM_PROT_READ|VM_PROT_WRITE);
|
|
if (error) {
|
|
(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
|
|
return error;
|
|
}
|
|
savelen = oldlen;
|
|
}
|
|
error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
|
|
oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
|
|
if (SCARG(uap, old) != NULL) {
|
|
uvm_vsunlock(p, SCARG(uap, old), savelen);
|
|
(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
|
|
}
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, oldlenp))
|
|
error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Attributes stored in the kernel.
|
|
*/
|
|
char hostname[MAXHOSTNAMELEN];
|
|
int hostnamelen;
|
|
|
|
char domainname[MAXHOSTNAMELEN];
|
|
int domainnamelen;
|
|
|
|
long hostid;
|
|
|
|
#ifdef INSECURE
|
|
int securelevel = -1;
|
|
#else
|
|
int securelevel = 0;
|
|
#endif
|
|
|
|
#ifndef DEFCORENAME
|
|
#define DEFCORENAME "%n.core"
|
|
#endif
|
|
char defcorename[MAXPATHLEN] = DEFCORENAME;
|
|
int defcorenamelen = sizeof(DEFCORENAME);
|
|
|
|
extern int kern_logsigexit;
|
|
extern fixpt_t ccpu;
|
|
|
|
#ifndef MULTIPROCESSOR
|
|
#define sysctl_ncpus() 1
|
|
#endif
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
|
|
#ifndef CPU_INFO_FOREACH
|
|
#define CPU_INFO_ITERATOR int
|
|
#define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
|
|
#endif
|
|
|
|
static int
|
|
sysctl_docptime(oldp, oldlenp, newp)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
{
|
|
u_int64_t cp_time[CPUSTATES];
|
|
int i;
|
|
struct cpu_info *ci;
|
|
CPU_INFO_ITERATOR cii;
|
|
|
|
for (i=0; i<CPUSTATES; i++)
|
|
cp_time[i] = 0;
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
for (i=0; i<CPUSTATES; i++)
|
|
cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
|
|
}
|
|
return (sysctl_rdstruct(oldp, oldlenp, newp,
|
|
cp_time, sizeof(cp_time)));
|
|
}
|
|
|
|
static int
|
|
sysctl_ncpus(void)
|
|
{
|
|
struct cpu_info *ci;
|
|
CPU_INFO_ITERATOR cii;
|
|
|
|
int ncpus = 0;
|
|
for (CPU_INFO_FOREACH(cii, ci))
|
|
ncpus++;
|
|
return ncpus;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* kernel related system variables.
|
|
*/
|
|
int
|
|
kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
|
int *name;
|
|
u_int namelen;
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
struct proc *p;
|
|
{
|
|
int error, level, inthostid;
|
|
int old_autonicetime;
|
|
int old_vnodes;
|
|
dev_t consdev;
|
|
|
|
/* All sysctl names at this level, except for a few, are terminal. */
|
|
switch (name[0]) {
|
|
case KERN_PROC:
|
|
case KERN_PROC2:
|
|
case KERN_PROF:
|
|
case KERN_MBUF:
|
|
case KERN_PROC_ARGS:
|
|
case KERN_SYSVIPC_INFO:
|
|
case KERN_PIPE:
|
|
/* Not terminal. */
|
|
break;
|
|
default:
|
|
if (namelen != 1)
|
|
return (ENOTDIR); /* overloaded */
|
|
}
|
|
|
|
switch (name[0]) {
|
|
case KERN_OSTYPE:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
|
|
case KERN_OSRELEASE:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
|
|
case KERN_OSREV:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
|
|
case KERN_VERSION:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp, version));
|
|
case KERN_MAXVNODES:
|
|
old_vnodes = desiredvnodes;
|
|
error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
|
|
if (old_vnodes > desiredvnodes) {
|
|
desiredvnodes = old_vnodes;
|
|
return (EINVAL);
|
|
}
|
|
return (error);
|
|
case KERN_MAXPROC:
|
|
return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
|
|
case KERN_MAXFILES:
|
|
return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
|
|
case KERN_ARGMAX:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
|
|
case KERN_SECURELVL:
|
|
level = securelevel;
|
|
if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
|
|
newp == NULL)
|
|
return (error);
|
|
if (level < securelevel && p->p_pid != 1)
|
|
return (EPERM);
|
|
securelevel = level;
|
|
return (0);
|
|
case KERN_HOSTNAME:
|
|
error = sysctl_string(oldp, oldlenp, newp, newlen,
|
|
hostname, sizeof(hostname));
|
|
if (newp && !error)
|
|
hostnamelen = newlen;
|
|
return (error);
|
|
case KERN_DOMAINNAME:
|
|
error = sysctl_string(oldp, oldlenp, newp, newlen,
|
|
domainname, sizeof(domainname));
|
|
if (newp && !error)
|
|
domainnamelen = newlen;
|
|
return (error);
|
|
case KERN_HOSTID:
|
|
inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
|
|
error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
|
|
hostid = inthostid;
|
|
return (error);
|
|
case KERN_CLOCKRATE:
|
|
return (sysctl_clockrate(oldp, oldlenp));
|
|
case KERN_BOOTTIME:
|
|
return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
|
|
sizeof(struct timeval)));
|
|
case KERN_VNODE:
|
|
return (sysctl_vnode(oldp, oldlenp, p));
|
|
case KERN_PROC:
|
|
case KERN_PROC2:
|
|
return (sysctl_doeproc(name, namelen, oldp, oldlenp));
|
|
case KERN_PROC_ARGS:
|
|
return (sysctl_procargs(name + 1, namelen - 1,
|
|
oldp, oldlenp, p));
|
|
case KERN_FILE:
|
|
return (sysctl_file(oldp, oldlenp));
|
|
#ifdef GPROF
|
|
case KERN_PROF:
|
|
return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
|
|
newp, newlen));
|
|
#endif
|
|
case KERN_POSIX1:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
|
|
case KERN_NGROUPS:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
|
|
case KERN_JOB_CONTROL:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
case KERN_SAVED_IDS:
|
|
#ifdef _POSIX_SAVED_IDS
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
#else
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 0));
|
|
#endif
|
|
case KERN_MAXPARTITIONS:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
|
|
case KERN_RAWPARTITION:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
|
|
#ifdef NTP
|
|
case KERN_NTPTIME:
|
|
return (sysctl_ntptime(oldp, oldlenp));
|
|
#endif
|
|
case KERN_AUTONICETIME:
|
|
old_autonicetime = autonicetime;
|
|
error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
|
|
if (autonicetime < 0)
|
|
autonicetime = old_autonicetime;
|
|
return (error);
|
|
case KERN_AUTONICEVAL:
|
|
error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
|
|
if (autoniceval < PRIO_MIN)
|
|
autoniceval = PRIO_MIN;
|
|
if (autoniceval > PRIO_MAX)
|
|
autoniceval = PRIO_MAX;
|
|
return (error);
|
|
case KERN_RTC_OFFSET:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
|
|
case KERN_ROOT_DEVICE:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp,
|
|
root_device->dv_xname));
|
|
case KERN_MSGBUFSIZE:
|
|
/*
|
|
* deal with cases where the message buffer has
|
|
* become corrupted.
|
|
*/
|
|
if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
|
|
msgbufenabled = 0;
|
|
return (ENXIO);
|
|
}
|
|
return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
|
|
case KERN_FSYNC:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
case KERN_SYSVMSG:
|
|
#ifdef SYSVMSG
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
#else
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 0));
|
|
#endif
|
|
case KERN_SYSVSEM:
|
|
#ifdef SYSVSEM
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
#else
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 0));
|
|
#endif
|
|
case KERN_SYSVSHM:
|
|
#ifdef SYSVSHM
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
#else
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 0));
|
|
#endif
|
|
case KERN_DEFCORENAME:
|
|
if (newp && newlen < 1)
|
|
return (EINVAL);
|
|
error = sysctl_string(oldp, oldlenp, newp, newlen,
|
|
defcorename, sizeof(defcorename));
|
|
if (newp && !error)
|
|
defcorenamelen = newlen;
|
|
return (error);
|
|
case KERN_SYNCHRONIZED_IO:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
case KERN_IOV_MAX:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
|
|
case KERN_MBUF:
|
|
return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
|
|
newp, newlen));
|
|
case KERN_MAPPED_FILES:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
case KERN_MEMLOCK:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
case KERN_MEMLOCK_RANGE:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
case KERN_MEMORY_PROTECTION:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, 1));
|
|
case KERN_LOGIN_NAME_MAX:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
|
|
case KERN_LOGSIGEXIT:
|
|
return (sysctl_int(oldp, oldlenp, newp, newlen,
|
|
&kern_logsigexit));
|
|
case KERN_FSCALE:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
|
|
case KERN_CCPU:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
|
|
case KERN_CP_TIME:
|
|
#ifndef MULTIPROCESSOR
|
|
return (sysctl_rdstruct(oldp, oldlenp, newp,
|
|
curcpu()->ci_schedstate.spc_cp_time,
|
|
sizeof(curcpu()->ci_schedstate.spc_cp_time)));
|
|
#else
|
|
return (sysctl_docptime(oldp, oldlenp, newp));
|
|
#endif
|
|
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
|
|
case KERN_SYSVIPC_INFO:
|
|
return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
|
|
#endif
|
|
case KERN_MSGBUF:
|
|
return (sysctl_msgbuf(oldp, oldlenp));
|
|
case KERN_CONSDEV:
|
|
if (cn_tab != NULL)
|
|
consdev = cn_tab->cn_dev;
|
|
else
|
|
consdev = NODEV;
|
|
return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
|
|
sizeof consdev));
|
|
#if NPTY > 0
|
|
case KERN_MAXPTYS:
|
|
return sysctl_pty(oldp, oldlenp, newp, newlen);
|
|
#endif
|
|
#ifdef NEW_PIPE
|
|
case KERN_PIPE:
|
|
return (sysctl_dopipe(name + 1, namelen - 1, oldp, oldlenp,
|
|
newp, newlen));
|
|
#endif
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* hardware related system variables.
|
|
*/
|
|
int
|
|
hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
|
int *name;
|
|
u_int namelen;
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
struct proc *p;
|
|
{
|
|
|
|
/* all sysctl names at this level are terminal */
|
|
if (namelen != 1)
|
|
return (ENOTDIR); /* overloaded */
|
|
|
|
switch (name[0]) {
|
|
case HW_MACHINE:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp, machine));
|
|
case HW_MACHINE_ARCH:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
|
|
case HW_MODEL:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
|
|
case HW_NCPU:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
|
|
case HW_BYTEORDER:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
|
|
case HW_PHYSMEM:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
|
|
case HW_USERMEM:
|
|
return (sysctl_rdint(oldp, oldlenp, newp,
|
|
ctob(physmem - uvmexp.wired)));
|
|
case HW_PAGESIZE:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
|
|
case HW_ALIGNBYTES:
|
|
return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
|
|
case HW_CNMAGIC: {
|
|
char magic[CNS_LEN];
|
|
int error;
|
|
|
|
if (oldp)
|
|
cn_get_magic(magic, CNS_LEN);
|
|
error = sysctl_string(oldp, oldlenp, newp, newlen,
|
|
magic, sizeof(magic));
|
|
if (newp && !error) {
|
|
error = cn_set_magic(magic);
|
|
}
|
|
return (error);
|
|
}
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* Debugging related system variables.
|
|
*/
|
|
struct ctldebug debug0, debug1, debug2, debug3, debug4;
|
|
struct ctldebug debug5, debug6, debug7, debug8, debug9;
|
|
struct ctldebug debug10, debug11, debug12, debug13, debug14;
|
|
struct ctldebug debug15, debug16, debug17, debug18, debug19;
|
|
static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
|
|
&debug0, &debug1, &debug2, &debug3, &debug4,
|
|
&debug5, &debug6, &debug7, &debug8, &debug9,
|
|
&debug10, &debug11, &debug12, &debug13, &debug14,
|
|
&debug15, &debug16, &debug17, &debug18, &debug19,
|
|
};
|
|
int
|
|
debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
|
int *name;
|
|
u_int namelen;
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
struct proc *p;
|
|
{
|
|
struct ctldebug *cdp;
|
|
|
|
/* all sysctl names at this level are name and field */
|
|
if (namelen != 2)
|
|
return (ENOTDIR); /* overloaded */
|
|
cdp = debugvars[name[0]];
|
|
if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
|
|
return (EOPNOTSUPP);
|
|
switch (name[1]) {
|
|
case CTL_DEBUG_NAME:
|
|
return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
|
|
case CTL_DEBUG_VALUE:
|
|
return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
int
|
|
proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
|
int *name;
|
|
u_int namelen;
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
struct proc *p;
|
|
{
|
|
struct proc *ptmp = NULL;
|
|
const struct proclist_desc *pd;
|
|
int error = 0;
|
|
struct rlimit alim;
|
|
struct plimit *newplim;
|
|
char *tmps = NULL;
|
|
int i, curlen, len;
|
|
|
|
if (namelen < 2)
|
|
return EINVAL;
|
|
|
|
if (name[0] == PROC_CURPROC) {
|
|
ptmp = p;
|
|
} else {
|
|
proclist_lock_read();
|
|
for (pd = proclists; pd->pd_list != NULL; pd++) {
|
|
for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
|
|
ptmp = LIST_NEXT(ptmp, p_list)) {
|
|
/* Skip embryonic processes. */
|
|
if (ptmp->p_stat == SIDL)
|
|
continue;
|
|
if (ptmp->p_pid == (pid_t)name[0])
|
|
break;
|
|
}
|
|
if (ptmp != NULL)
|
|
break;
|
|
}
|
|
proclist_unlock_read();
|
|
if (ptmp == NULL)
|
|
return(ESRCH);
|
|
if (p->p_ucred->cr_uid != 0) {
|
|
if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
|
|
p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
|
|
return EPERM;
|
|
if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
|
|
return EPERM; /* sgid proc */
|
|
for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
|
|
if (p->p_ucred->cr_groups[i] ==
|
|
ptmp->p_cred->p_rgid)
|
|
break;
|
|
}
|
|
if (i == p->p_ucred->cr_ngroups)
|
|
return EPERM;
|
|
}
|
|
}
|
|
if (name[1] == PROC_PID_CORENAME) {
|
|
if (namelen != 2)
|
|
return EINVAL;
|
|
/*
|
|
* Can't use sysctl_string() here because we may malloc a new
|
|
* area during the process, so we have to do it by hand.
|
|
*/
|
|
curlen = strlen(ptmp->p_limit->pl_corename) + 1;
|
|
if (oldlenp && *oldlenp < curlen) {
|
|
if (!oldp)
|
|
*oldlenp = curlen;
|
|
return (ENOMEM);
|
|
}
|
|
if (newp) {
|
|
if (securelevel > 2)
|
|
return EPERM;
|
|
if (newlen > MAXPATHLEN)
|
|
return ENAMETOOLONG;
|
|
tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
|
|
if (tmps == NULL)
|
|
return ENOMEM;
|
|
error = copyin(newp, tmps, newlen + 1);
|
|
tmps[newlen] = '\0';
|
|
if (error)
|
|
goto cleanup;
|
|
/* Enforce to be either 'core' for end with '.core' */
|
|
if (newlen < 4) { /* c.o.r.e */
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
len = newlen - 4;
|
|
if (len > 0) {
|
|
if (tmps[len - 1] != '.' &&
|
|
tmps[len - 1] != '/') {
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
if (strcmp(&tmps[len], "core") != 0) {
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
if (oldp && oldlenp) {
|
|
*oldlenp = curlen;
|
|
error = copyout(ptmp->p_limit->pl_corename, oldp,
|
|
curlen);
|
|
}
|
|
if (newp && error == 0) {
|
|
/* if the 2 strings are identical, don't limcopy() */
|
|
if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
|
|
error = 0;
|
|
goto cleanup;
|
|
}
|
|
if (ptmp->p_limit->p_refcnt > 1 &&
|
|
(ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
|
|
newplim = limcopy(ptmp->p_limit);
|
|
limfree(ptmp->p_limit);
|
|
ptmp->p_limit = newplim;
|
|
} else if (ptmp->p_limit->pl_corename != defcorename) {
|
|
free(ptmp->p_limit->pl_corename, M_TEMP);
|
|
}
|
|
ptmp->p_limit->pl_corename = tmps;
|
|
return (0);
|
|
}
|
|
cleanup:
|
|
if (tmps)
|
|
free(tmps, M_TEMP);
|
|
return (error);
|
|
}
|
|
if (name[1] == PROC_PID_LIMIT) {
|
|
if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
|
|
return EINVAL;
|
|
memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
|
|
if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
|
|
error = sysctl_quad(oldp, oldlenp, newp, newlen,
|
|
&alim.rlim_max);
|
|
else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
|
|
error = sysctl_quad(oldp, oldlenp, newp, newlen,
|
|
&alim.rlim_cur);
|
|
else
|
|
error = EINVAL;
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (newp)
|
|
error = dosetrlimit(ptmp, p->p_cred,
|
|
name[2] - 1, &alim);
|
|
return error;
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Convenience macros.
|
|
*/
|
|
|
|
#define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
|
|
if (oldlenp) { \
|
|
if (!oldp) \
|
|
*oldlenp = len; \
|
|
else { \
|
|
if (*oldlenp < len) \
|
|
return(ENOMEM); \
|
|
*oldlenp = len; \
|
|
error = copyout((caddr_t)valp, oldp, len); \
|
|
} \
|
|
}
|
|
|
|
#define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
|
|
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
|
|
|
|
#define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
|
|
if (newp && newlen != len) \
|
|
return (EINVAL);
|
|
|
|
#define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
|
|
SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
|
|
|
|
#define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
|
|
if (error == 0 && newp) \
|
|
error = copyin(newp, valp, len);
|
|
|
|
#define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
|
|
SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
|
|
|
|
#define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
|
|
if (oldlenp) { \
|
|
len = strlen(str) + 1; \
|
|
if (!oldp) \
|
|
*oldlenp = len; \
|
|
else { \
|
|
if (*oldlenp < len) { \
|
|
err2 = ENOMEM; \
|
|
len = *oldlenp; \
|
|
} else \
|
|
*oldlenp = len; \
|
|
error = copyout(str, oldp, len);\
|
|
if (error == 0) \
|
|
error = err2; \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* Validate parameters and get old / set new parameters
|
|
* for an integer-valued sysctl function.
|
|
*/
|
|
int
|
|
sysctl_int(oldp, oldlenp, newp, newlen, valp)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
int *valp;
|
|
{
|
|
int error = 0;
|
|
|
|
SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
|
|
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
|
|
SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* As above, but read-only.
|
|
*/
|
|
int
|
|
sysctl_rdint(oldp, oldlenp, newp, val)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
int val;
|
|
{
|
|
int error = 0;
|
|
|
|
if (newp)
|
|
return (EPERM);
|
|
|
|
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Validate parameters and get old / set new parameters
|
|
* for an quad-valued sysctl function.
|
|
*/
|
|
int
|
|
sysctl_quad(oldp, oldlenp, newp, newlen, valp)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
quad_t *valp;
|
|
{
|
|
int error = 0;
|
|
|
|
SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
|
|
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
|
|
SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* As above, but read-only.
|
|
*/
|
|
int
|
|
sysctl_rdquad(oldp, oldlenp, newp, val)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
quad_t val;
|
|
{
|
|
int error = 0;
|
|
|
|
if (newp)
|
|
return (EPERM);
|
|
|
|
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Validate parameters and get old / set new parameters
|
|
* for a string-valued sysctl function.
|
|
*/
|
|
int
|
|
sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
char *str;
|
|
int maxlen;
|
|
{
|
|
int len, error = 0, err2 = 0;
|
|
|
|
if (newp && newlen >= maxlen)
|
|
return (EINVAL);
|
|
|
|
SYSCTL_STRING_CORE(oldp, oldlenp, str);
|
|
|
|
if (error == 0 && newp) {
|
|
error = copyin(newp, str, newlen);
|
|
str[newlen] = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* As above, but read-only.
|
|
*/
|
|
int
|
|
sysctl_rdstring(oldp, oldlenp, newp, str)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
const char *str;
|
|
{
|
|
int len, error = 0, err2 = 0;
|
|
|
|
if (newp)
|
|
return (EPERM);
|
|
|
|
SYSCTL_STRING_CORE(oldp, oldlenp, str);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Validate parameters and get old / set new parameters
|
|
* for a structure oriented sysctl function.
|
|
*/
|
|
int
|
|
sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
void *sp;
|
|
int len;
|
|
{
|
|
int error = 0;
|
|
|
|
SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
|
|
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
|
|
SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Validate parameters and get old parameters
|
|
* for a structure oriented sysctl function.
|
|
*/
|
|
int
|
|
sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
const void *sp;
|
|
int len;
|
|
{
|
|
int error = 0;
|
|
|
|
if (newp)
|
|
return (EPERM);
|
|
|
|
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* As above, but can return a truncated result.
|
|
*/
|
|
int
|
|
sysctl_rdminstruct(oldp, oldlenp, newp, sp, len)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
const void *sp;
|
|
int len;
|
|
{
|
|
int error = 0;
|
|
|
|
if (newp)
|
|
return (EPERM);
|
|
|
|
len = min(*oldlenp, len);
|
|
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get file structures.
|
|
*/
|
|
static int
|
|
sysctl_file(vwhere, sizep)
|
|
void *vwhere;
|
|
size_t *sizep;
|
|
{
|
|
int buflen, error;
|
|
struct file *fp;
|
|
char *start, *where;
|
|
|
|
start = where = vwhere;
|
|
buflen = *sizep;
|
|
if (where == NULL) {
|
|
/*
|
|
* overestimate by 10 files
|
|
*/
|
|
*sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* first copyout filehead
|
|
*/
|
|
if (buflen < sizeof(filehead)) {
|
|
*sizep = 0;
|
|
return (0);
|
|
}
|
|
error = copyout((caddr_t)&filehead, where, sizeof(filehead));
|
|
if (error)
|
|
return (error);
|
|
buflen -= sizeof(filehead);
|
|
where += sizeof(filehead);
|
|
|
|
/*
|
|
* followed by an array of file structures
|
|
*/
|
|
for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
|
|
if (buflen < sizeof(struct file)) {
|
|
*sizep = where - start;
|
|
return (ENOMEM);
|
|
}
|
|
error = copyout((caddr_t)fp, where, sizeof(struct file));
|
|
if (error)
|
|
return (error);
|
|
buflen -= sizeof(struct file);
|
|
where += sizeof(struct file);
|
|
}
|
|
*sizep = where - start;
|
|
return (0);
|
|
}
|
|
|
|
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
|
|
#define FILL_PERM(src, dst) do { \
|
|
(dst)._key = (src)._key; \
|
|
(dst).uid = (src).uid; \
|
|
(dst).gid = (src).gid; \
|
|
(dst).cuid = (src).cuid; \
|
|
(dst).cgid = (src).cgid; \
|
|
(dst).mode = (src).mode; \
|
|
(dst)._seq = (src)._seq; \
|
|
} while (0);
|
|
#define FILL_MSG(src, dst) do { \
|
|
FILL_PERM((src).msg_perm, (dst).msg_perm); \
|
|
(dst).msg_qnum = (src).msg_qnum; \
|
|
(dst).msg_qbytes = (src).msg_qbytes; \
|
|
(dst)._msg_cbytes = (src)._msg_cbytes; \
|
|
(dst).msg_lspid = (src).msg_lspid; \
|
|
(dst).msg_lrpid = (src).msg_lrpid; \
|
|
(dst).msg_stime = (src).msg_stime; \
|
|
(dst).msg_rtime = (src).msg_rtime; \
|
|
(dst).msg_ctime = (src).msg_ctime; \
|
|
} while (0)
|
|
#define FILL_SEM(src, dst) do { \
|
|
FILL_PERM((src).sem_perm, (dst).sem_perm); \
|
|
(dst).sem_nsems = (src).sem_nsems; \
|
|
(dst).sem_otime = (src).sem_otime; \
|
|
(dst).sem_ctime = (src).sem_ctime; \
|
|
} while (0)
|
|
#define FILL_SHM(src, dst) do { \
|
|
FILL_PERM((src).shm_perm, (dst).shm_perm); \
|
|
(dst).shm_segsz = (src).shm_segsz; \
|
|
(dst).shm_lpid = (src).shm_lpid; \
|
|
(dst).shm_cpid = (src).shm_cpid; \
|
|
(dst).shm_atime = (src).shm_atime; \
|
|
(dst).shm_dtime = (src).shm_dtime; \
|
|
(dst).shm_ctime = (src).shm_ctime; \
|
|
(dst).shm_nattch = (src).shm_nattch; \
|
|
} while (0)
|
|
|
|
static int
|
|
sysctl_sysvipc(name, namelen, where, sizep)
|
|
int *name;
|
|
u_int namelen;
|
|
void *where;
|
|
size_t *sizep;
|
|
{
|
|
#ifdef SYSVMSG
|
|
struct msg_sysctl_info *msgsi;
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
struct sem_sysctl_info *semsi;
|
|
#endif
|
|
#ifdef SYSVSHM
|
|
struct shm_sysctl_info *shmsi;
|
|
#endif
|
|
size_t infosize, dssize, tsize, buflen;
|
|
void *buf = NULL, *buf2;
|
|
char *start;
|
|
int32_t nds;
|
|
int i, error, ret;
|
|
|
|
if (namelen != 1)
|
|
return (EINVAL);
|
|
|
|
start = where;
|
|
buflen = *sizep;
|
|
|
|
switch (*name) {
|
|
case KERN_SYSVIPC_MSG_INFO:
|
|
#ifdef SYSVMSG
|
|
infosize = sizeof(msgsi->msginfo);
|
|
nds = msginfo.msgmni;
|
|
dssize = sizeof(msgsi->msgids[0]);
|
|
break;
|
|
#else
|
|
return (EINVAL);
|
|
#endif
|
|
case KERN_SYSVIPC_SEM_INFO:
|
|
#ifdef SYSVSEM
|
|
infosize = sizeof(semsi->seminfo);
|
|
nds = seminfo.semmni;
|
|
dssize = sizeof(semsi->semids[0]);
|
|
break;
|
|
#else
|
|
return (EINVAL);
|
|
#endif
|
|
case KERN_SYSVIPC_SHM_INFO:
|
|
#ifdef SYSVSHM
|
|
infosize = sizeof(shmsi->shminfo);
|
|
nds = shminfo.shmmni;
|
|
dssize = sizeof(shmsi->shmids[0]);
|
|
break;
|
|
#else
|
|
return (EINVAL);
|
|
#endif
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* Round infosize to 64 bit boundary if requesting more than just
|
|
* the info structure or getting the total data size.
|
|
*/
|
|
if (where == NULL || *sizep > infosize)
|
|
infosize = ((infosize + 7) / 8) * 8;
|
|
tsize = infosize + nds * dssize;
|
|
|
|
/* Return just the total size required. */
|
|
if (where == NULL) {
|
|
*sizep = tsize;
|
|
return (0);
|
|
}
|
|
|
|
/* Not enough room for even the info struct. */
|
|
if (buflen < infosize) {
|
|
*sizep = 0;
|
|
return (ENOMEM);
|
|
}
|
|
buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
|
|
memset(buf, 0, min(tsize, buflen));
|
|
|
|
switch (*name) {
|
|
#ifdef SYSVMSG
|
|
case KERN_SYSVIPC_MSG_INFO:
|
|
msgsi = (struct msg_sysctl_info *)buf;
|
|
buf2 = &msgsi->msgids[0];
|
|
msgsi->msginfo = msginfo;
|
|
break;
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
case KERN_SYSVIPC_SEM_INFO:
|
|
semsi = (struct sem_sysctl_info *)buf;
|
|
buf2 = &semsi->semids[0];
|
|
semsi->seminfo = seminfo;
|
|
break;
|
|
#endif
|
|
#ifdef SYSVSHM
|
|
case KERN_SYSVIPC_SHM_INFO:
|
|
shmsi = (struct shm_sysctl_info *)buf;
|
|
buf2 = &shmsi->shmids[0];
|
|
shmsi->shminfo = shminfo;
|
|
break;
|
|
#endif
|
|
}
|
|
buflen -= infosize;
|
|
|
|
ret = 0;
|
|
if (buflen > 0) {
|
|
/* Fill in the IPC data structures. */
|
|
for (i = 0; i < nds; i++) {
|
|
if (buflen < dssize) {
|
|
ret = ENOMEM;
|
|
break;
|
|
}
|
|
switch (*name) {
|
|
#ifdef SYSVMSG
|
|
case KERN_SYSVIPC_MSG_INFO:
|
|
FILL_MSG(msqids[i], msgsi->msgids[i]);
|
|
break;
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
case KERN_SYSVIPC_SEM_INFO:
|
|
FILL_SEM(sema[i], semsi->semids[i]);
|
|
break;
|
|
#endif
|
|
#ifdef SYSVSHM
|
|
case KERN_SYSVIPC_SHM_INFO:
|
|
FILL_SHM(shmsegs[i], shmsi->shmids[i]);
|
|
break;
|
|
#endif
|
|
}
|
|
buflen -= dssize;
|
|
}
|
|
}
|
|
*sizep -= buflen;
|
|
error = copyout(buf, start, *sizep);
|
|
/* If copyout succeeded, use return code set earlier. */
|
|
if (error == 0)
|
|
error = ret;
|
|
if (buf)
|
|
free(buf, M_TEMP);
|
|
return (error);
|
|
}
|
|
#endif /* SYSVMSG || SYSVSEM || SYSVSHM */
|
|
|
|
static int
|
|
sysctl_msgbuf(vwhere, sizep)
|
|
void *vwhere;
|
|
size_t *sizep;
|
|
{
|
|
char *where = vwhere;
|
|
size_t len, maxlen = *sizep;
|
|
long beg, end;
|
|
int error;
|
|
|
|
/*
|
|
* deal with cases where the message buffer has
|
|
* become corrupted.
|
|
*/
|
|
if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
|
|
msgbufenabled = 0;
|
|
return (ENXIO);
|
|
}
|
|
|
|
if (where == NULL) {
|
|
/* always return full buffer size */
|
|
*sizep = msgbufp->msg_bufs;
|
|
return (0);
|
|
}
|
|
|
|
error = 0;
|
|
maxlen = min(msgbufp->msg_bufs, maxlen);
|
|
|
|
/*
|
|
* First, copy from the write pointer to the end of
|
|
* message buffer.
|
|
*/
|
|
beg = msgbufp->msg_bufx;
|
|
end = msgbufp->msg_bufs;
|
|
while (maxlen > 0) {
|
|
len = min(end - beg, maxlen);
|
|
if (len == 0)
|
|
break;
|
|
error = copyout(&msgbufp->msg_bufc[beg], where, len);
|
|
if (error)
|
|
break;
|
|
where += len;
|
|
maxlen -= len;
|
|
|
|
/*
|
|
* ... then, copy from the beginning of message buffer to
|
|
* the write pointer.
|
|
*/
|
|
beg = 0;
|
|
end = msgbufp->msg_bufx;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* try over estimating by 5 procs
|
|
*/
|
|
#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
|
|
|
|
static int
|
|
sysctl_doeproc(name, namelen, vwhere, sizep)
|
|
int *name;
|
|
u_int namelen;
|
|
void *vwhere;
|
|
size_t *sizep;
|
|
{
|
|
struct eproc eproc;
|
|
struct kinfo_proc2 kproc2;
|
|
struct kinfo_proc *dp;
|
|
struct proc *p;
|
|
const struct proclist_desc *pd;
|
|
char *where, *dp2;
|
|
int type, op, arg, elem_size, elem_count;
|
|
int buflen, needed, error;
|
|
|
|
dp = vwhere;
|
|
dp2 = where = vwhere;
|
|
buflen = where != NULL ? *sizep : 0;
|
|
error = needed = 0;
|
|
type = name[0];
|
|
|
|
if (type == KERN_PROC) {
|
|
if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
|
|
return (EINVAL);
|
|
op = name[1];
|
|
if (op != KERN_PROC_ALL)
|
|
arg = name[2];
|
|
} else {
|
|
if (namelen != 5)
|
|
return (EINVAL);
|
|
op = name[1];
|
|
arg = name[2];
|
|
elem_size = name[3];
|
|
elem_count = name[4];
|
|
}
|
|
|
|
proclist_lock_read();
|
|
|
|
pd = proclists;
|
|
again:
|
|
for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
|
|
/*
|
|
* Skip embryonic processes.
|
|
*/
|
|
if (p->p_stat == SIDL)
|
|
continue;
|
|
/*
|
|
* TODO - make more efficient (see notes below).
|
|
* do by session.
|
|
*/
|
|
switch (op) {
|
|
|
|
case KERN_PROC_PID:
|
|
/* could do this with just a lookup */
|
|
if (p->p_pid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_PGRP:
|
|
/* could do this by traversing pgrp */
|
|
if (p->p_pgrp->pg_id != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_SESSION:
|
|
if (p->p_session->s_sid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_TTY:
|
|
if (arg == KERN_PROC_TTY_REVOKE) {
|
|
if ((p->p_flag & P_CONTROLT) == 0 ||
|
|
p->p_session->s_ttyp == NULL ||
|
|
p->p_session->s_ttyvp != NULL)
|
|
continue;
|
|
} else if ((p->p_flag & P_CONTROLT) == 0 ||
|
|
p->p_session->s_ttyp == NULL) {
|
|
if ((dev_t)arg != KERN_PROC_TTY_NODEV)
|
|
continue;
|
|
} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_UID:
|
|
if (p->p_ucred->cr_uid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_RUID:
|
|
if (p->p_cred->p_ruid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_GID:
|
|
if (p->p_ucred->cr_gid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_RGID:
|
|
if (p->p_cred->p_rgid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_ALL:
|
|
/* allow everything */
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
goto cleanup;
|
|
}
|
|
if (type == KERN_PROC) {
|
|
if (buflen >= sizeof(struct kinfo_proc)) {
|
|
fill_eproc(p, &eproc);
|
|
error = copyout((caddr_t)p, &dp->kp_proc,
|
|
sizeof(struct proc));
|
|
if (error)
|
|
goto cleanup;
|
|
error = copyout((caddr_t)&eproc, &dp->kp_eproc,
|
|
sizeof(eproc));
|
|
if (error)
|
|
goto cleanup;
|
|
dp++;
|
|
buflen -= sizeof(struct kinfo_proc);
|
|
}
|
|
needed += sizeof(struct kinfo_proc);
|
|
} else { /* KERN_PROC2 */
|
|
if (buflen >= elem_size && elem_count > 0) {
|
|
fill_kproc2(p, &kproc2);
|
|
/*
|
|
* Copy out elem_size, but not larger than
|
|
* the size of a struct kinfo_proc2.
|
|
*/
|
|
error = copyout(&kproc2, dp2,
|
|
min(sizeof(kproc2), elem_size));
|
|
if (error)
|
|
goto cleanup;
|
|
dp2 += elem_size;
|
|
buflen -= elem_size;
|
|
elem_count--;
|
|
}
|
|
needed += elem_size;
|
|
}
|
|
}
|
|
pd++;
|
|
if (pd->pd_list != NULL)
|
|
goto again;
|
|
proclist_unlock_read();
|
|
|
|
if (where != NULL) {
|
|
if (type == KERN_PROC)
|
|
*sizep = (caddr_t)dp - where;
|
|
else
|
|
*sizep = dp2 - where;
|
|
if (needed > *sizep)
|
|
return (ENOMEM);
|
|
} else {
|
|
needed += KERN_PROCSLOP;
|
|
*sizep = needed;
|
|
}
|
|
return (0);
|
|
cleanup:
|
|
proclist_unlock_read();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Fill in an eproc structure for the specified process.
|
|
*/
|
|
void
|
|
fill_eproc(p, ep)
|
|
struct proc *p;
|
|
struct eproc *ep;
|
|
{
|
|
struct tty *tp;
|
|
|
|
ep->e_paddr = p;
|
|
ep->e_sess = p->p_session;
|
|
ep->e_pcred = *p->p_cred;
|
|
ep->e_ucred = *p->p_ucred;
|
|
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
|
|
ep->e_vm.vm_rssize = 0;
|
|
ep->e_vm.vm_tsize = 0;
|
|
ep->e_vm.vm_dsize = 0;
|
|
ep->e_vm.vm_ssize = 0;
|
|
/* ep->e_vm.vm_pmap = XXX; */
|
|
} else {
|
|
struct vmspace *vm = p->p_vmspace;
|
|
|
|
ep->e_vm.vm_rssize = vm_resident_count(vm);
|
|
ep->e_vm.vm_tsize = vm->vm_tsize;
|
|
ep->e_vm.vm_dsize = vm->vm_dsize;
|
|
ep->e_vm.vm_ssize = vm->vm_ssize;
|
|
}
|
|
if (p->p_pptr)
|
|
ep->e_ppid = p->p_pptr->p_pid;
|
|
else
|
|
ep->e_ppid = 0;
|
|
ep->e_pgid = p->p_pgrp->pg_id;
|
|
ep->e_sid = ep->e_sess->s_sid;
|
|
ep->e_jobc = p->p_pgrp->pg_jobc;
|
|
if ((p->p_flag & P_CONTROLT) &&
|
|
(tp = ep->e_sess->s_ttyp)) {
|
|
ep->e_tdev = tp->t_dev;
|
|
ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
|
|
ep->e_tsess = tp->t_session;
|
|
} else
|
|
ep->e_tdev = NODEV;
|
|
if (p->p_wmesg)
|
|
strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
|
|
ep->e_xsize = ep->e_xrssize = 0;
|
|
ep->e_xccount = ep->e_xswrss = 0;
|
|
ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
|
|
if (SESS_LEADER(p))
|
|
ep->e_flag |= EPROC_SLEADER;
|
|
strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
|
|
}
|
|
|
|
/*
|
|
* Fill in an eproc structure for the specified process.
|
|
*/
|
|
static void
|
|
fill_kproc2(p, ki)
|
|
struct proc *p;
|
|
struct kinfo_proc2 *ki;
|
|
{
|
|
struct tty *tp;
|
|
|
|
memset(ki, 0, sizeof(*ki));
|
|
|
|
ki->p_forw = PTRTOINT64(p->p_forw);
|
|
ki->p_back = PTRTOINT64(p->p_back);
|
|
ki->p_paddr = PTRTOINT64(p);
|
|
|
|
ki->p_addr = PTRTOINT64(p->p_addr);
|
|
ki->p_fd = PTRTOINT64(p->p_fd);
|
|
ki->p_cwdi = PTRTOINT64(p->p_cwdi);
|
|
ki->p_stats = PTRTOINT64(p->p_stats);
|
|
ki->p_limit = PTRTOINT64(p->p_limit);
|
|
ki->p_vmspace = PTRTOINT64(p->p_vmspace);
|
|
ki->p_sigacts = PTRTOINT64(p->p_sigacts);
|
|
ki->p_sess = PTRTOINT64(p->p_session);
|
|
ki->p_tsess = 0; /* may be changed if controlling tty below */
|
|
ki->p_ru = PTRTOINT64(p->p_ru);
|
|
|
|
ki->p_eflag = 0;
|
|
ki->p_exitsig = p->p_exitsig;
|
|
ki->p_flag = p->p_flag;
|
|
|
|
ki->p_pid = p->p_pid;
|
|
if (p->p_pptr)
|
|
ki->p_ppid = p->p_pptr->p_pid;
|
|
else
|
|
ki->p_ppid = 0;
|
|
ki->p_sid = p->p_session->s_sid;
|
|
ki->p__pgid = p->p_pgrp->pg_id;
|
|
|
|
ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
|
|
|
|
ki->p_uid = p->p_ucred->cr_uid;
|
|
ki->p_ruid = p->p_cred->p_ruid;
|
|
ki->p_gid = p->p_ucred->cr_gid;
|
|
ki->p_rgid = p->p_cred->p_rgid;
|
|
|
|
memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
|
|
min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
|
|
ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
|
|
|
|
ki->p_jobc = p->p_pgrp->pg_jobc;
|
|
if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
|
|
ki->p_tdev = tp->t_dev;
|
|
ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
|
|
ki->p_tsess = PTRTOINT64(tp->t_session);
|
|
} else {
|
|
ki->p_tdev = NODEV;
|
|
}
|
|
|
|
ki->p_estcpu = p->p_estcpu;
|
|
ki->p_rtime_sec = p->p_rtime.tv_sec;
|
|
ki->p_rtime_usec = p->p_rtime.tv_usec;
|
|
ki->p_cpticks = p->p_cpticks;
|
|
ki->p_pctcpu = p->p_pctcpu;
|
|
ki->p_swtime = p->p_swtime;
|
|
ki->p_slptime = p->p_slptime;
|
|
if (p->p_stat == SONPROC) {
|
|
KDASSERT(p->p_cpu != NULL);
|
|
ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
|
|
} else
|
|
ki->p_schedflags = 0;
|
|
|
|
ki->p_uticks = p->p_uticks;
|
|
ki->p_sticks = p->p_sticks;
|
|
ki->p_iticks = p->p_iticks;
|
|
|
|
ki->p_tracep = PTRTOINT64(p->p_tracep);
|
|
ki->p_traceflag = p->p_traceflag;
|
|
|
|
ki->p_holdcnt = p->p_holdcnt;
|
|
|
|
memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
|
|
memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
|
|
memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
|
|
memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
|
|
|
|
ki->p_stat = p->p_stat;
|
|
ki->p_priority = p->p_priority;
|
|
ki->p_usrpri = p->p_usrpri;
|
|
ki->p_nice = p->p_nice;
|
|
|
|
ki->p_xstat = p->p_xstat;
|
|
ki->p_acflag = p->p_acflag;
|
|
|
|
strncpy(ki->p_comm, p->p_comm,
|
|
min(sizeof(ki->p_comm), sizeof(p->p_comm)));
|
|
|
|
if (p->p_wmesg)
|
|
strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
|
|
ki->p_wchan = PTRTOINT64(p->p_wchan);
|
|
|
|
strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
|
|
|
|
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
|
|
ki->p_vm_rssize = 0;
|
|
ki->p_vm_tsize = 0;
|
|
ki->p_vm_dsize = 0;
|
|
ki->p_vm_ssize = 0;
|
|
} else {
|
|
struct vmspace *vm = p->p_vmspace;
|
|
|
|
ki->p_vm_rssize = vm_resident_count(vm);
|
|
ki->p_vm_tsize = vm->vm_tsize;
|
|
ki->p_vm_dsize = vm->vm_dsize;
|
|
ki->p_vm_ssize = vm->vm_ssize;
|
|
}
|
|
|
|
if (p->p_session->s_ttyvp)
|
|
ki->p_eflag |= EPROC_CTTY;
|
|
if (SESS_LEADER(p))
|
|
ki->p_eflag |= EPROC_SLEADER;
|
|
|
|
/* XXX Is this double check necessary? */
|
|
if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
|
|
ki->p_uvalid = 0;
|
|
} else {
|
|
ki->p_uvalid = 1;
|
|
|
|
ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
|
|
ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
|
|
|
|
ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
|
|
ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
|
|
ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
|
|
ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
|
|
|
|
ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
|
|
ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
|
|
ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
|
|
ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
|
|
ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
|
|
ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
|
|
ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
|
|
ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
|
|
ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
|
|
ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
|
|
ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
|
|
ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
|
|
ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
|
|
ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
|
|
|
|
ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
|
|
p->p_stats->p_cru.ru_stime.tv_sec;
|
|
ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
|
|
p->p_stats->p_cru.ru_stime.tv_usec;
|
|
}
|
|
#ifdef MULTIPROCESSOR
|
|
if (p->p_cpu != NULL)
|
|
ki->p_cpuid = p->p_cpu->ci_cpuid;
|
|
else
|
|
#endif
|
|
ki->p_cpuid = KI_NOCPU;
|
|
}
|
|
|
|
int
|
|
sysctl_procargs(name, namelen, where, sizep, up)
|
|
int *name;
|
|
u_int namelen;
|
|
void *where;
|
|
size_t *sizep;
|
|
struct proc *up;
|
|
{
|
|
struct ps_strings pss;
|
|
struct proc *p;
|
|
size_t len, upper_bound, xlen;
|
|
struct uio auio;
|
|
struct iovec aiov;
|
|
vaddr_t argv;
|
|
pid_t pid;
|
|
int nargv, type, error, i;
|
|
char *arg;
|
|
char *tmp;
|
|
|
|
if (namelen != 2)
|
|
return (EINVAL);
|
|
pid = name[0];
|
|
type = name[1];
|
|
|
|
switch (type) {
|
|
case KERN_PROC_ARGV:
|
|
case KERN_PROC_NARGV:
|
|
case KERN_PROC_ENV:
|
|
case KERN_PROC_NENV:
|
|
/* ok */
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* check pid */
|
|
if ((p = pfind(pid)) == NULL)
|
|
return (EINVAL);
|
|
|
|
/* only root or same user change look at the environment */
|
|
if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
|
|
if (up->p_ucred->cr_uid != 0) {
|
|
if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
|
|
up->p_cred->p_ruid != p->p_cred->p_svuid)
|
|
return (EPERM);
|
|
}
|
|
}
|
|
|
|
if (sizep != NULL && where == NULL) {
|
|
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
|
|
*sizep = sizeof (int);
|
|
else
|
|
*sizep = ARG_MAX; /* XXX XXX XXX */
|
|
return (0);
|
|
}
|
|
if (where == NULL || sizep == NULL)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Zombies don't have a stack, so we can't read their psstrings.
|
|
* System processes also don't have a user stack.
|
|
*/
|
|
if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Lock the process down in memory.
|
|
*/
|
|
/* XXXCDC: how should locking work here? */
|
|
if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
|
|
return (EFAULT);
|
|
p->p_vmspace->vm_refcnt++; /* XXX */
|
|
|
|
/*
|
|
* Allocate a temporary buffer to hold the arguments.
|
|
*/
|
|
arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
|
|
|
|
/*
|
|
* Read in the ps_strings structure.
|
|
*/
|
|
aiov.iov_base = &pss;
|
|
aiov.iov_len = sizeof(pss);
|
|
auio.uio_iov = &aiov;
|
|
auio.uio_iovcnt = 1;
|
|
auio.uio_offset = (vaddr_t)p->p_psstr;
|
|
auio.uio_resid = sizeof(pss);
|
|
auio.uio_segflg = UIO_SYSSPACE;
|
|
auio.uio_rw = UIO_READ;
|
|
auio.uio_procp = NULL;
|
|
error = uvm_io(&p->p_vmspace->vm_map, &auio);
|
|
if (error)
|
|
goto done;
|
|
|
|
if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
|
|
memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
|
|
else
|
|
memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
|
|
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
|
|
error = copyout(&nargv, where, sizeof(nargv));
|
|
*sizep = sizeof(nargv);
|
|
goto done;
|
|
}
|
|
/*
|
|
* Now read the address of the argument vector.
|
|
*/
|
|
switch (type) {
|
|
case KERN_PROC_ARGV:
|
|
/* XXX compat32 stuff here */
|
|
memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
|
|
break;
|
|
case KERN_PROC_ENV:
|
|
memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
auio.uio_offset = (off_t)(long)tmp;
|
|
aiov.iov_base = &argv;
|
|
aiov.iov_len = sizeof(argv);
|
|
auio.uio_iov = &aiov;
|
|
auio.uio_iovcnt = 1;
|
|
auio.uio_resid = sizeof(argv);
|
|
auio.uio_segflg = UIO_SYSSPACE;
|
|
auio.uio_rw = UIO_READ;
|
|
auio.uio_procp = NULL;
|
|
error = uvm_io(&p->p_vmspace->vm_map, &auio);
|
|
if (error)
|
|
goto done;
|
|
|
|
/*
|
|
* Now copy in the actual argument vector, one page at a time,
|
|
* since we don't know how long the vector is (though, we do
|
|
* know how many NUL-terminated strings are in the vector).
|
|
*/
|
|
len = 0;
|
|
upper_bound = *sizep;
|
|
for (; nargv != 0 && len < upper_bound; len += xlen) {
|
|
aiov.iov_base = arg;
|
|
aiov.iov_len = PAGE_SIZE;
|
|
auio.uio_iov = &aiov;
|
|
auio.uio_iovcnt = 1;
|
|
auio.uio_offset = argv + len;
|
|
xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
|
|
auio.uio_resid = xlen;
|
|
auio.uio_segflg = UIO_SYSSPACE;
|
|
auio.uio_rw = UIO_READ;
|
|
auio.uio_procp = NULL;
|
|
error = uvm_io(&p->p_vmspace->vm_map, &auio);
|
|
if (error)
|
|
goto done;
|
|
|
|
for (i = 0; i < xlen && nargv != 0; i++) {
|
|
if (arg[i] == '\0')
|
|
nargv--; /* one full string */
|
|
}
|
|
|
|
/* make sure we don't copyout past the end of the user's buffer */
|
|
if (len + i > upper_bound)
|
|
i = upper_bound - len;
|
|
|
|
error = copyout(arg, (char *)where + len, i);
|
|
if (error)
|
|
break;
|
|
|
|
if (nargv == 0) {
|
|
len += i;
|
|
break;
|
|
}
|
|
}
|
|
*sizep = len;
|
|
|
|
done:
|
|
uvmspace_free(p->p_vmspace);
|
|
|
|
free(arg, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
#if NPTY > 0
|
|
int pty_maxptys __P((int, int)); /* defined in kern/tty_pty.c */
|
|
|
|
/*
|
|
* Validate parameters and get old / set new parameters
|
|
* for pty sysctl function.
|
|
*/
|
|
static int
|
|
sysctl_pty(oldp, oldlenp, newp, newlen)
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
{
|
|
int error = 0;
|
|
int oldmax = 0, newmax = 0;
|
|
|
|
/* get current value of maxptys */
|
|
oldmax = pty_maxptys(0, 0);
|
|
|
|
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
|
|
|
|
if (!error && newp) {
|
|
SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
|
|
SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
|
|
|
|
if (newmax != pty_maxptys(newmax, (newp != NULL)))
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
#endif /* NPTY > 0 */
|