NetBSD/sys/dev/ieee1394/fwohci.c

6861 lines
182 KiB
C

/* $NetBSD: fwohci.c,v 1.88 2005/06/08 18:33:15 fair Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas of 3am Software Foundry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* IEEE1394 Open Host Controller Interface
* based on OHCI Specification 1.1 (January 6, 2000)
* The first version to support network interface part is wrtten by
* Atsushi Onoe <onoe@NetBSD.org>.
*/
/*
* The first version to support isochronous acquisition part is wrtten
* by HAYAKAWA Koichi <haya@NetBSD.org>.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fwohci.c,v 1.88 2005/06/08 18:33:15 fair Exp $");
#define FWOHCI_WAIT_DEBUG 1
#define FWOHCI_IT_BUFNUM 4
#include "opt_inet.h"
#include "fwiso.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kthread.h>
#include <sys/socket.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/poll.h>
#include <sys/select.h>
#if __NetBSD_Version__ >= 105010000
#include <uvm/uvm_extern.h>
#else
#include <vm/vm.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/ieee1394/ieee1394reg.h>
#include <dev/ieee1394/fwohcireg.h>
#include <dev/ieee1394/ieee1394var.h>
#include <dev/ieee1394/fwohcivar.h>
#include <dev/ieee1394/fwisovar.h>
static const char * const ieee1394_speeds[] = { IEEE1394_SPD_STRINGS };
#if 0
static int fwohci_dnamem_alloc(struct fwohci_softc *sc, int size,
int alignment, bus_dmamap_t *mapp, caddr_t *kvap, int flags);
#endif
static void fwohci_create_event_thread(void *);
static void fwohci_thread_init(void *);
static void fwohci_event_thread(struct fwohci_softc *);
static void fwohci_hw_init(struct fwohci_softc *);
static void fwohci_power(int, void *);
static void fwohci_shutdown(void *);
static int fwohci_desc_alloc(struct fwohci_softc *);
static struct fwohci_desc *fwohci_desc_get(struct fwohci_softc *, int);
static void fwohci_desc_put(struct fwohci_softc *, struct fwohci_desc *, int);
static int fwohci_ctx_alloc(struct fwohci_softc *, struct fwohci_ctx **,
int, int, int);
static void fwohci_ctx_free(struct fwohci_softc *, struct fwohci_ctx *);
static void fwohci_ctx_init(struct fwohci_softc *, struct fwohci_ctx *);
static int fwohci_misc_dmabuf_alloc(bus_dma_tag_t, int, int,
bus_dma_segment_t *, bus_dmamap_t *, void **, const char *);
static void fwohci_misc_dmabuf_free(bus_dma_tag_t, int, int,
bus_dma_segment_t *, bus_dmamap_t *, caddr_t);
static struct fwohci_ir_ctx *fwohci_ir_ctx_construct(struct fwohci_softc *,
int, int, int, int, int, int);
static void fwohci_ir_ctx_destruct(struct fwohci_ir_ctx *);
static int fwohci_ir_buf_setup(struct fwohci_ir_ctx *);
static int fwohci_ir_init(struct fwohci_ir_ctx *);
static int fwohci_ir_start(struct fwohci_ir_ctx *);
static void fwohci_ir_intr(struct fwohci_softc *, struct fwohci_ir_ctx *);
static int fwohci_ir_stop(struct fwohci_ir_ctx *);
static int fwohci_ir_ctx_packetnum(struct fwohci_ir_ctx *);
#ifdef USEDRAIN
static int fwohci_ir_ctx_drain(struct fwohci_ir_ctx *);
#endif /* USEDRAIN */
static int fwohci_it_desc_alloc(struct fwohci_it_ctx *);
static void fwohci_it_desc_free(struct fwohci_it_ctx *itc);
struct fwohci_it_ctx *fwohci_it_ctx_construct(struct fwohci_softc *,
int, int, int, int);
void fwohci_it_ctx_destruct(struct fwohci_it_ctx *);
int fwohci_it_ctx_writedata(ieee1394_it_tag_t, int,
struct ieee1394_it_datalist *, int);
static void fwohci_it_ctx_run(struct fwohci_it_ctx *);
int fwohci_it_ctx_flush(ieee1394_it_tag_t);
static void fwohci_it_intr(struct fwohci_softc *, struct fwohci_it_ctx *);
int fwohci_itd_construct(struct fwohci_it_ctx *, struct fwohci_it_dmabuf *,
int, struct fwohci_desc *, bus_addr_t, int, int, paddr_t);
void fwohci_itd_destruct(struct fwohci_it_dmabuf *);
static int fwohci_itd_dmabuf_alloc(struct fwohci_it_dmabuf *);
static void fwohci_itd_dmabuf_free(struct fwohci_it_dmabuf *);
int fwohci_itd_link(volatile struct fwohci_it_dmabuf *,
volatile struct fwohci_it_dmabuf *);
int fwohci_itd_unlink(volatile struct fwohci_it_dmabuf *);
int fwohci_itd_writedata(volatile struct fwohci_it_dmabuf *, int,
struct ieee1394_it_datalist *);
int fwohci_itd_isfilled(volatile struct fwohci_it_dmabuf *);
static int fwohci_buf_alloc(struct fwohci_softc *, struct fwohci_buf *);
static void fwohci_buf_free(struct fwohci_softc *, struct fwohci_buf *);
static void fwohci_buf_init_rx(struct fwohci_softc *);
static void fwohci_buf_start_rx(struct fwohci_softc *);
static void fwohci_buf_stop_tx(struct fwohci_softc *);
static void fwohci_buf_stop_rx(struct fwohci_softc *);
static void fwohci_buf_next(struct fwohci_softc *, struct fwohci_ctx *);
static int fwohci_buf_pktget(struct fwohci_softc *, struct fwohci_buf **,
caddr_t *, int);
static int fwohci_buf_input(struct fwohci_softc *, struct fwohci_ctx *,
struct fwohci_pkt *);
static int fwohci_buf_input_ppb(struct fwohci_softc *, struct fwohci_ctx *,
struct fwohci_pkt *);
static u_int8_t fwohci_phy_read(struct fwohci_softc *, u_int8_t);
static void fwohci_phy_write(struct fwohci_softc *, u_int8_t, u_int8_t);
static void fwohci_phy_busreset(struct fwohci_softc *);
static void fwohci_phy_input(struct fwohci_softc *, struct fwohci_pkt *);
static int fwohci_handler_set(struct fwohci_softc *, int, u_int32_t, u_int32_t,
u_int32_t, int (*)(struct fwohci_softc *, void *, struct fwohci_pkt *),
void *);
ieee1394_ir_tag_t fwohci_ir_ctx_set(struct device *, int, int, int, int, int);
int fwohci_ir_ctx_clear(struct device *, ieee1394_ir_tag_t);
int fwohci_ir_read(struct device *, ieee1394_ir_tag_t, struct uio *,
int, int);
int fwohci_ir_wait(struct device *, ieee1394_ir_tag_t, void *, char *name);
int fwohci_ir_select(struct device *, ieee1394_ir_tag_t, struct proc *);
ieee1394_it_tag_t fwohci_it_set(struct ieee1394_softc *, int, int);
static ieee1394_it_tag_t fwohci_it_ctx_set(struct fwohci_softc *, int, int, int);
int fwohci_it_ctx_clear(ieee1394_it_tag_t *);
static void fwohci_arrq_input(struct fwohci_softc *, struct fwohci_ctx *);
static void fwohci_arrs_input(struct fwohci_softc *, struct fwohci_ctx *);
static void fwohci_as_input(struct fwohci_softc *, struct fwohci_ctx *);
static int fwohci_at_output(struct fwohci_softc *, struct fwohci_ctx *,
struct fwohci_pkt *);
static void fwohci_at_done(struct fwohci_softc *, struct fwohci_ctx *, int);
static void fwohci_atrs_output(struct fwohci_softc *, int, struct fwohci_pkt *,
struct fwohci_pkt *);
static int fwohci_guidrom_init(struct fwohci_softc *);
static void fwohci_configrom_init(struct fwohci_softc *);
static int fwohci_configrom_input(struct fwohci_softc *, void *,
struct fwohci_pkt *);
static void fwohci_selfid_init(struct fwohci_softc *);
static int fwohci_selfid_input(struct fwohci_softc *);
static void fwohci_csr_init(struct fwohci_softc *);
static int fwohci_csr_input(struct fwohci_softc *, void *,
struct fwohci_pkt *);
static void fwohci_uid_collect(struct fwohci_softc *);
static void fwohci_uid_req(struct fwohci_softc *, int);
static int fwohci_uid_input(struct fwohci_softc *, void *,
struct fwohci_pkt *);
static int fwohci_uid_lookup(struct fwohci_softc *, const u_int8_t *);
static void fwohci_check_nodes(struct fwohci_softc *);
static int fwohci_if_inreg(struct device *, u_int32_t, u_int32_t,
void (*)(struct device *, struct mbuf *));
static int fwohci_if_input(struct fwohci_softc *, void *, struct fwohci_pkt *);
static int fwohci_if_input_iso(struct fwohci_softc *, void *, struct fwohci_pkt *);
static int fwohci_if_output(struct device *, struct mbuf *,
void (*)(struct device *, struct mbuf *));
static int fwohci_if_setiso(struct device *, u_int32_t, u_int32_t, u_int32_t,
void (*)(struct device *, struct mbuf *));
static int fwohci_read(struct ieee1394_abuf *);
static int fwohci_write(struct ieee1394_abuf *);
static int fwohci_read_resp(struct fwohci_softc *, void *, struct fwohci_pkt *);
static int fwohci_write_ack(struct fwohci_softc *, void *, struct fwohci_pkt *);
static int fwohci_read_multi_resp(struct fwohci_softc *, void *,
struct fwohci_pkt *);
static int fwohci_inreg(struct ieee1394_abuf *, int);
static int fwohci_unreg(struct ieee1394_abuf *, int);
static int fwohci_parse_input(struct fwohci_softc *, void *,
struct fwohci_pkt *);
static int fwohci_submatch(struct device *, struct cfdata *,
const locdesc_t *, void *);
/* XXX */
u_int16_t fwohci_cycletimer(struct fwohci_softc *);
u_int16_t fwohci_it_cycletimer(ieee1394_it_tag_t);
#ifdef FW_DEBUG
static void fwohci_show_intr(struct fwohci_softc *, u_int32_t);
static void fwohci_show_phypkt(struct fwohci_softc *, u_int32_t);
/* 1 is normal debug, 2 is verbose debug, 3 is complete (packet dumps). */
#define DPRINTF(x) if (fwdebug) printf x
#define DPRINTFN(n,x) if (fwdebug>(n)) printf x
int fwdebug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define OHCI_ITHEADER_SPD_MASK 0x00070000
#define OHCI_ITHEADER_SPD_BITPOS 16
#define OHCI_ITHEADER_TAG_MASK 0x0000c000
#define OHCI_ITHEADER_TAG_BITPOS 14
#define OHCI_ITHEADER_CHAN_MASK 0x00003f00
#define OHCI_ITHEADER_CHAN_BITPOS 8
#define OHCI_ITHEADER_TCODE_MASK 0x000000f0
#define OHCI_ITHEADER_TCODE_BITPOS 4
#define OHCI_ITHEADER_SY_MASK 0x0000000f
#define OHCI_ITHEADER_SY_BITPOS 0
#define OHCI_ITHEADER_VAL(fld, val) \
(OHCI_ITHEADER_##fld##_MASK & ((val) << OHCI_ITHEADER_##fld##_BITPOS))
int
fwohci_init(struct fwohci_softc *sc, const struct evcnt *ev)
{
int i;
u_int32_t val;
#if 0
int error;
#endif
evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, ev,
sc->sc_sc1394.sc1394_dev.dv_xname, "intr");
evcnt_attach_dynamic(&sc->sc_isocnt, EVCNT_TYPE_MISC, ev,
sc->sc_sc1394.sc1394_dev.dv_xname, "isorcvs");
evcnt_attach_dynamic(&sc->sc_ascnt, EVCNT_TYPE_MISC, ev,
sc->sc_sc1394.sc1394_dev.dv_xname, "asrcvs");
evcnt_attach_dynamic(&sc->sc_itintrcnt, EVCNT_TYPE_INTR, ev,
sc->sc_sc1394.sc1394_dev.dv_xname, "itintr");
/*
* Wait for reset completion
*/
for (i = 0; i < OHCI_LOOP; i++) {
val = OHCI_CSR_READ(sc, OHCI_REG_HCControlClear);
if ((val & OHCI_HCControl_SoftReset) == 0)
break;
DELAY(10);
}
/* What dialect of OHCI is this device?
*/
val = OHCI_CSR_READ(sc, OHCI_REG_Version);
aprint_normal("%s: OHCI %u.%u", sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_Version_GET_Version(val), OHCI_Version_GET_Revision(val));
LIST_INIT(&sc->sc_nodelist);
if (fwohci_guidrom_init(sc) != 0) {
aprint_error("\n%s: fatal: no global UID ROM\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
return -1;
}
aprint_normal(", %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
sc->sc_sc1394.sc1394_guid[0], sc->sc_sc1394.sc1394_guid[1],
sc->sc_sc1394.sc1394_guid[2], sc->sc_sc1394.sc1394_guid[3],
sc->sc_sc1394.sc1394_guid[4], sc->sc_sc1394.sc1394_guid[5],
sc->sc_sc1394.sc1394_guid[6], sc->sc_sc1394.sc1394_guid[7]);
/* Get the maximum link speed and receive size
*/
val = OHCI_CSR_READ(sc, OHCI_REG_BusOptions);
sc->sc_sc1394.sc1394_link_speed =
OHCI_BITVAL(val, OHCI_BusOptions_LinkSpd);
if (sc->sc_sc1394.sc1394_link_speed < IEEE1394_SPD_MAX) {
aprint_normal(", %s",
ieee1394_speeds[sc->sc_sc1394.sc1394_link_speed]);
} else {
aprint_normal(", unknown speed %u",
sc->sc_sc1394.sc1394_link_speed);
}
/* MaxRec is encoded as log2(max_rec_octets)-1
*/
sc->sc_sc1394.sc1394_max_receive =
1 << (OHCI_BITVAL(val, OHCI_BusOptions_MaxRec) + 1);
aprint_normal(", %u max_rec", sc->sc_sc1394.sc1394_max_receive);
/*
* Count how many isochronous receive ctx we have.
*/
OHCI_CSR_WRITE(sc, OHCI_REG_IsoRecvIntMaskSet, ~0);
val = OHCI_CSR_READ(sc, OHCI_REG_IsoRecvIntMaskClear);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoRecvIntMaskClear, ~0);
for (i = 0; val != 0; val >>= 1) {
if (val & 0x1)
i++;
}
sc->sc_isoctx = i;
aprint_normal(", %d ir_ctx", sc->sc_isoctx);
/*
* Count how many isochronous transmit ctx we have.
*/
OHCI_CSR_WRITE(sc, OHCI_REG_IsoXmitIntMaskSet, ~0);
val = OHCI_CSR_READ(sc, OHCI_REG_IsoXmitIntMaskClear);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoXmitIntMaskClear, ~0);
for (i = 0; val != 0; val >>= 1) {
if (val & 0x1) {
i++;
OHCI_SYNC_TX_DMA_WRITE(sc, i,OHCI_SUBREG_CommandPtr,0);
}
}
sc->sc_itctx = i;
aprint_normal(", %d it_ctx", sc->sc_itctx);
aprint_normal("\n");
#if 0
error = fwohci_dnamem_alloc(sc, OHCI_CONFIG_SIZE,
OHCI_CONFIG_ALIGNMENT, &sc->sc_configrom_map,
(caddr_t *) &sc->sc_configrom, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
return error;
#endif
sc->sc_dying = 0;
sc->sc_nodeid = 0xffff; /* invalid */
sc->sc_sc1394.sc1394_callback.sc1394_read = fwohci_read;
sc->sc_sc1394.sc1394_callback.sc1394_write = fwohci_write;
sc->sc_sc1394.sc1394_callback.sc1394_inreg = fwohci_inreg;
sc->sc_sc1394.sc1394_callback.sc1394_unreg = fwohci_unreg;
kthread_create(fwohci_create_event_thread, sc);
return 0;
}
static int
fwohci_if_setiso(struct device *self, u_int32_t channel, u_int32_t tag,
u_int32_t direction, void (*handler)(struct device *, struct mbuf *))
{
struct fwohci_softc *sc = (struct fwohci_softc *)self;
int retval;
int s;
if (direction == 1) {
return EIO;
}
s = splnet();
retval = fwohci_handler_set(sc, IEEE1394_TCODE_STREAM_DATA,
channel, 1 << tag, 0, fwohci_if_input_iso, handler);
splx(s);
if (!retval) {
printf("%s: dummy iso handler set\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
} else {
printf("%s: dummy iso handler cannot set\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
}
return retval;
}
int
fwohci_intr(void *arg)
{
struct fwohci_softc * const sc = arg;
int progress = 0;
u_int32_t intmask, iso;
for (;;) {
intmask = OHCI_CSR_READ(sc, OHCI_REG_IntEventClear);
/*
* On a bus reset, everything except bus reset gets
* cleared. That can't get cleared until the selfid
* phase completes (which happens outside the
* interrupt routines). So if just a bus reset is left
* in the mask and it's already in the sc_intmask,
* just return.
*/
if ((intmask == 0) ||
(progress && (intmask == OHCI_Int_BusReset) &&
(sc->sc_intmask & OHCI_Int_BusReset))) {
if (progress)
wakeup(fwohci_event_thread);
return progress;
}
OHCI_CSR_WRITE(sc, OHCI_REG_IntEventClear,
intmask & ~OHCI_Int_BusReset);
#ifdef FW_DEBUG
if (fwdebug > 1)
fwohci_show_intr(sc, intmask);
#endif
if (intmask & OHCI_Int_BusReset) {
/*
* According to OHCI spec 6.1.1 "busReset",
* All asynchronous transmit must be stopped before
* clearing BusReset. Moreover, the BusReset
* interrupt bit should not be cleared during the
* SelfID phase. Thus we turned off interrupt mask
* bit of BusReset instead until SelfID completion
* or SelfID timeout.
*/
intmask &= OHCI_Int_SelfIDComplete;
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskClear,
OHCI_Int_BusReset);
sc->sc_intmask = OHCI_Int_BusReset;
}
sc->sc_intmask |= intmask;
if (intmask & OHCI_Int_IsochTx) {
int i;
iso = OHCI_CSR_READ(sc, OHCI_REG_IsoXmitIntEventClear);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoXmitIntEventClear, iso);
sc->sc_itintrcnt.ev_count++;
for (i = 0; i < sc->sc_itctx; ++i) {
if ((iso & (1<<i)) == 0 ||
sc->sc_ctx_it[i] == NULL) {
continue;
}
fwohci_it_intr(sc, sc->sc_ctx_it[i]);
}
}
if (intmask & OHCI_Int_IsochRx) {
int i;
iso = OHCI_CSR_READ(sc, OHCI_REG_IsoRecvIntEventClear);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoRecvIntEventClear, iso);
for (i = 0; i < sc->sc_isoctx; i++) {
if ((iso & (1 << i))
&& sc->sc_ctx_ir[i] != NULL) {
iso &= ~(1 << i);
fwohci_ir_intr(sc, sc->sc_ctx_ir[i]);
}
}
if (iso == 0) {
sc->sc_intmask &= ~OHCI_Int_IsochRx;
}
sc->sc_iso |= iso;
}
if (!progress) {
sc->sc_intrcnt.ev_count++;
progress = 1;
}
}
}
static void
fwohci_create_event_thread(void *arg)
{
struct fwohci_softc *sc = arg;
if (kthread_create1(fwohci_thread_init, sc, &sc->sc_event_thread, "%s",
sc->sc_sc1394.sc1394_dev.dv_xname)) {
printf("%s: unable to create event thread\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
panic("fwohci_create_event_thread");
}
}
static void
fwohci_thread_init(void *arg)
{
struct fwohci_softc *sc = arg;
int i;
/*
* Allocate descriptors
*/
if (fwohci_desc_alloc(sc)) {
printf("%s: not enabling interrupts\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
kthread_exit(1);
}
/*
* Enable Link Power
*/
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlSet, OHCI_HCControl_LPS);
/*
* Allocate DMA Context
*/
fwohci_ctx_alloc(sc, &sc->sc_ctx_arrq, OHCI_BUF_ARRQ_CNT,
OHCI_CTX_ASYNC_RX_REQUEST, FWOHCI_CTX_ASYNC);
fwohci_ctx_alloc(sc, &sc->sc_ctx_arrs, OHCI_BUF_ARRS_CNT,
OHCI_CTX_ASYNC_RX_RESPONSE, FWOHCI_CTX_ASYNC);
fwohci_ctx_alloc(sc, &sc->sc_ctx_atrq, 0, OHCI_CTX_ASYNC_TX_REQUEST,
FWOHCI_CTX_ASYNC);
fwohci_ctx_alloc(sc, &sc->sc_ctx_atrs, 0, OHCI_CTX_ASYNC_TX_RESPONSE,
FWOHCI_CTX_ASYNC);
sc->sc_ctx_as = malloc(sizeof(sc->sc_ctx_as[0]) * sc->sc_isoctx,
M_DEVBUF, M_WAITOK);
if (sc->sc_ctx_as == NULL) {
printf("no asynchronous stream\n");
} else {
for (i = 0; i < sc->sc_isoctx; i++)
sc->sc_ctx_as[i] = NULL;
}
sc->sc_ctx_ir = malloc(sizeof(sc->sc_ctx_ir[0]) * sc->sc_isoctx,
M_DEVBUF, M_WAITOK|M_ZERO);
sc->sc_ctx_it = malloc(sizeof(sc->sc_ctx_it[0]) * sc->sc_itctx,
M_DEVBUF, M_WAITOK|M_ZERO);
/*
* Allocate buffer for configuration ROM and SelfID buffer
*/
fwohci_buf_alloc(sc, &sc->sc_buf_cnfrom);
fwohci_buf_alloc(sc, &sc->sc_buf_selfid);
callout_init(&sc->sc_selfid_callout);
sc->sc_sc1394.sc1394_ifinreg = fwohci_if_inreg;
sc->sc_sc1394.sc1394_ifoutput = fwohci_if_output;
sc->sc_sc1394.sc1394_ifsetiso = fwohci_if_setiso;
sc->sc_sc1394.sc1394_ir_open = fwohci_ir_ctx_set;
sc->sc_sc1394.sc1394_ir_close = fwohci_ir_ctx_clear;
sc->sc_sc1394.sc1394_ir_read = fwohci_ir_read;
sc->sc_sc1394.sc1394_ir_wait = fwohci_ir_wait;
sc->sc_sc1394.sc1394_ir_select = fwohci_ir_select;
#if 0
sc->sc_sc1394.sc1394_it_open = fwohci_it_open;
sc->sc_sc1394.sc1394_it_write = fwohci_it_write;
sc->sc_sc1394.sc1394_it_close = fwohci_it_close;
/* XXX: need fwohci_it_flush? */
#endif
/*
* establish hooks for shutdown and suspend/resume
*/
sc->sc_shutdownhook = shutdownhook_establish(fwohci_shutdown, sc);
sc->sc_powerhook = powerhook_establish(fwohci_power, sc);
sc->sc_sc1394.sc1394_if = config_found(&sc->sc_sc1394.sc1394_dev,
/*XXXUNCONST*/
__UNCONST("fw"), fwohci_print);
#if NFWISO > 0
fwiso_register_if(&sc->sc_sc1394);
#endif
/* Main loop. It's not coming back normally. */
fwohci_event_thread(sc);
kthread_exit(0);
}
static void
fwohci_event_thread(struct fwohci_softc *sc)
{
int i, s;
u_int32_t intmask, iso;
s = splbio();
/*
* Initialize hardware registers.
*/
fwohci_hw_init(sc);
/* Initial Bus Reset */
fwohci_phy_busreset(sc);
splx(s);
while (!sc->sc_dying) {
s = splbio();
intmask = sc->sc_intmask;
if (intmask == 0) {
tsleep(fwohci_event_thread, PZERO, "fwohciev", 0);
splx(s);
continue;
}
sc->sc_intmask = 0;
splx(s);
if (intmask & OHCI_Int_BusReset) {
fwohci_buf_stop_tx(sc);
if (sc->sc_uidtbl != NULL) {
free(sc->sc_uidtbl, M_DEVBUF);
sc->sc_uidtbl = NULL;
}
callout_reset(&sc->sc_selfid_callout,
OHCI_SELFID_TIMEOUT,
(void (*)(void *))fwohci_phy_busreset, sc);
sc->sc_nodeid = 0xffff; /* indicate invalid */
sc->sc_rootid = 0;
sc->sc_irmid = IEEE1394_BCAST_PHY_ID;
}
if (intmask & OHCI_Int_SelfIDComplete) {
s = splbio();
OHCI_CSR_WRITE(sc, OHCI_REG_IntEventClear,
OHCI_Int_BusReset);
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskSet,
OHCI_Int_BusReset);
splx(s);
callout_stop(&sc->sc_selfid_callout);
if (fwohci_selfid_input(sc) == 0) {
fwohci_buf_start_rx(sc);
fwohci_uid_collect(sc);
}
}
if (intmask & OHCI_Int_ReqTxComplete)
fwohci_at_done(sc, sc->sc_ctx_atrq, 0);
if (intmask & OHCI_Int_RespTxComplete)
fwohci_at_done(sc, sc->sc_ctx_atrs, 0);
if (intmask & OHCI_Int_RQPkt)
fwohci_arrq_input(sc, sc->sc_ctx_arrq);
if (intmask & OHCI_Int_RSPkt)
fwohci_arrs_input(sc, sc->sc_ctx_arrs);
if (intmask & OHCI_Int_IsochRx) {
if (sc->sc_ctx_as == NULL) {
continue;
}
s = splbio();
iso = sc->sc_iso;
sc->sc_iso = 0;
splx(s);
for (i = 0; i < sc->sc_isoctx; i++) {
if ((iso & (1 << i)) &&
sc->sc_ctx_as[i] != NULL) {
fwohci_as_input(sc, sc->sc_ctx_as[i]);
sc->sc_ascnt.ev_count++;
}
}
}
}
}
#if 0
static int
fwohci_dnamem_alloc(struct fwohci_softc *sc, int size, int alignment,
bus_dmamap_t *mapp, caddr_t *kvap, int flags)
{
bus_dma_segment_t segs[1];
int error, nsegs, steps;
steps = 0;
error = bus_dmamem_alloc(sc->sc_dmat, size, alignment, alignment,
segs, 1, &nsegs, flags);
if (error)
goto cleanup;
steps = 1;
error = bus_dmamem_map(sc->sc_dmat, segs, nsegs, segs[0].ds_len,
kvap, flags);
if (error)
goto cleanup;
if (error == 0)
error = bus_dmamap_create(sc->sc_dmat, size, 1, alignment,
size, flags, mapp);
if (error)
goto cleanup;
if (error == 0)
error = bus_dmamap_load(sc->sc_dmat, *mapp, *kvap, size, NULL,
flags);
if (error)
goto cleanup;
cleanup:
switch (steps) {
case 1:
bus_dmamem_free(sc->sc_dmat, segs, nsegs);
}
return error;
}
#endif
int
fwohci_print(void *aux, const char *pnp)
{
char *name = aux;
if (pnp)
aprint_normal("%s at %s", name, pnp);
return UNCONF;
}
static void
fwohci_hw_init(struct fwohci_softc *sc)
{
int i;
u_int32_t val;
/*
* Software Reset.
*/
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlSet, OHCI_HCControl_SoftReset);
for (i = 0; i < OHCI_LOOP; i++) {
val = OHCI_CSR_READ(sc, OHCI_REG_HCControlClear);
if ((val & OHCI_HCControl_SoftReset) == 0)
break;
DELAY(10);
}
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlSet, OHCI_HCControl_LPS);
/*
* First, initilize CSRs with undefined value to default settings.
*/
val = OHCI_CSR_READ(sc, OHCI_REG_BusOptions);
val |= OHCI_BusOptions_ISC | OHCI_BusOptions_CMC;
#if 0
val |= OHCI_BusOptions_BMC | OHCI_BusOptions_IRMC;
#else
val &= ~(OHCI_BusOptions_BMC | OHCI_BusOptions_IRMC);
#endif
OHCI_CSR_WRITE(sc, OHCI_REG_BusOptions, val);
for (i = 0; i < sc->sc_isoctx; i++) {
OHCI_SYNC_RX_DMA_WRITE(sc, i, OHCI_SUBREG_ContextControlClear,
~0);
}
for (i = 0; i < sc->sc_itctx; i++) {
OHCI_SYNC_TX_DMA_WRITE(sc, i, OHCI_SUBREG_ContextControlClear,
~0);
}
OHCI_CSR_WRITE(sc, OHCI_REG_LinkControlClear, ~0);
fwohci_configrom_init(sc);
fwohci_selfid_init(sc);
fwohci_buf_init_rx(sc);
fwohci_csr_init(sc);
/*
* Final CSR settings.
*/
OHCI_CSR_WRITE(sc, OHCI_REG_LinkControlSet,
OHCI_LinkControl_CycleTimerEnable |
OHCI_LinkControl_RcvSelfID | OHCI_LinkControl_RcvPhyPkt);
OHCI_CSR_WRITE(sc, OHCI_REG_ATRetries, 0x00000888); /*XXX*/
/* clear receive filter */
OHCI_CSR_WRITE(sc, OHCI_REG_IRMultiChanMaskHiClear, ~0);
OHCI_CSR_WRITE(sc, OHCI_REG_IRMultiChanMaskLoClear, ~0);
OHCI_CSR_WRITE(sc, OHCI_REG_AsynchronousRequestFilterHiSet, 0x80000000);
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlClear,
OHCI_HCControl_NoByteSwapData | OHCI_HCControl_APhyEnhanceEnable);
#if BYTE_ORDER == BIG_ENDIAN
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlSet,
OHCI_HCControl_NoByteSwapData);
#endif
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskClear, ~0);
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskSet, OHCI_Int_BusReset |
OHCI_Int_SelfIDComplete | OHCI_Int_IsochRx | OHCI_Int_IsochTx |
OHCI_Int_RSPkt | OHCI_Int_RQPkt | OHCI_Int_ARRS | OHCI_Int_ARRQ |
OHCI_Int_RespTxComplete | OHCI_Int_ReqTxComplete);
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskSet, OHCI_Int_CycleTooLong |
OHCI_Int_UnrecoverableError | OHCI_Int_CycleInconsistent |
OHCI_Int_LockRespErr | OHCI_Int_PostedWriteErr);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoXmitIntMaskSet, ~0);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoRecvIntMaskSet, ~0);
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskSet, OHCI_Int_MasterEnable);
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlSet, OHCI_HCControl_LinkEnable);
/*
* Start the receivers
*/
fwohci_buf_start_rx(sc);
}
static void
fwohci_power(int why, void *arg)
{
struct fwohci_softc *sc = arg;
int s;
s = splbio();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
fwohci_shutdown(sc);
break;
case PWR_RESUME:
fwohci_hw_init(sc);
fwohci_phy_busreset(sc);
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
static void
fwohci_shutdown(void *arg)
{
struct fwohci_softc *sc = arg;
u_int32_t val;
callout_stop(&sc->sc_selfid_callout);
/* disable all interrupt */
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskClear, OHCI_Int_MasterEnable);
fwohci_buf_stop_tx(sc);
fwohci_buf_stop_rx(sc);
val = OHCI_CSR_READ(sc, OHCI_REG_BusOptions);
val &= ~(OHCI_BusOptions_BMC | OHCI_BusOptions_ISC |
OHCI_BusOptions_CMC | OHCI_BusOptions_IRMC);
OHCI_CSR_WRITE(sc, OHCI_REG_BusOptions, val);
fwohci_phy_busreset(sc);
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlClear, OHCI_HCControl_LinkEnable);
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlClear, OHCI_HCControl_LPS);
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlSet, OHCI_HCControl_SoftReset);
}
/*
* COMMON FUNCTIONS
*/
/*
* read the PHY Register.
*/
static u_int8_t
fwohci_phy_read(struct fwohci_softc *sc, u_int8_t reg)
{
int i;
u_int32_t val;
OHCI_CSR_WRITE(sc, OHCI_REG_PhyControl,
OHCI_PhyControl_RdReg | (reg << OHCI_PhyControl_RegAddr_BITPOS));
for (i = 0; i < OHCI_LOOP; i++) {
if (OHCI_CSR_READ(sc, OHCI_REG_PhyControl) &
OHCI_PhyControl_RdDone)
break;
DELAY(10);
}
val = OHCI_CSR_READ(sc, OHCI_REG_PhyControl);
return (val & OHCI_PhyControl_RdData) >> OHCI_PhyControl_RdData_BITPOS;
}
/*
* write the PHY Register.
*/
static void
fwohci_phy_write(struct fwohci_softc *sc, u_int8_t reg, u_int8_t val)
{
int i;
OHCI_CSR_WRITE(sc, OHCI_REG_PhyControl, OHCI_PhyControl_WrReg |
(reg << OHCI_PhyControl_RegAddr_BITPOS) |
(val << OHCI_PhyControl_WrData_BITPOS));
for (i = 0; i < OHCI_LOOP; i++) {
if (!(OHCI_CSR_READ(sc, OHCI_REG_PhyControl) &
OHCI_PhyControl_WrReg))
break;
DELAY(10);
}
}
/*
* Initiate Bus Reset
*/
static void
fwohci_phy_busreset(struct fwohci_softc *sc)
{
int s;
u_int8_t val;
s = splbio();
OHCI_CSR_WRITE(sc, OHCI_REG_IntEventClear,
OHCI_Int_BusReset | OHCI_Int_SelfIDComplete);
OHCI_CSR_WRITE(sc, OHCI_REG_IntMaskSet, OHCI_Int_BusReset);
callout_stop(&sc->sc_selfid_callout);
val = fwohci_phy_read(sc, 1);
val = (val & 0x80) | /* preserve RHB (force root) */
0x40 | /* Initiate Bus Reset */
0x3f; /* default GAP count */
fwohci_phy_write(sc, 1, val);
splx(s);
}
/*
* PHY Packet
*/
static void
fwohci_phy_input(struct fwohci_softc *sc, struct fwohci_pkt *pkt)
{
u_int32_t val;
val = pkt->fp_hdr[1];
if (val != ~pkt->fp_hdr[2]) {
if (val == 0 && ((*pkt->fp_trail & 0x001f0000) >> 16) ==
OHCI_CTXCTL_EVENT_BUS_RESET) {
DPRINTFN(1, ("fwohci_phy_input: BusReset: 0x%08x\n",
pkt->fp_hdr[2]));
} else {
printf("%s: phy packet corrupted (0x%08x, 0x%08x)\n",
sc->sc_sc1394.sc1394_dev.dv_xname, val,
pkt->fp_hdr[2]);
}
return;
}
#ifdef FW_DEBUG
if (fwdebug > 1)
fwohci_show_phypkt(sc, val);
#endif
}
/*
* Descriptor for context DMA.
*/
static int
fwohci_desc_alloc(struct fwohci_softc *sc)
{
int error, mapsize, dsize;
/*
* allocate descriptor buffer
*/
sc->sc_descsize = OHCI_BUF_ARRQ_CNT + OHCI_BUF_ARRS_CNT +
OHCI_BUF_ATRQ_CNT + OHCI_BUF_ATRS_CNT +
OHCI_BUF_IR_CNT * sc->sc_isoctx + 2;
dsize = sizeof(struct fwohci_desc) * sc->sc_descsize;
mapsize = howmany(sc->sc_descsize, NBBY);
sc->sc_descmap = malloc(mapsize, M_DEVBUF, M_WAITOK|M_ZERO);
if (sc->sc_descmap == NULL) {
printf("fwohci_desc_alloc: cannot get memory\n");
return -1;
}
if ((error = bus_dmamem_alloc(sc->sc_dmat, dsize, PAGE_SIZE, 0,
&sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
printf("%s: unable to allocate descriptor buffer, error = %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
dsize, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT | BUS_DMA_WAITOK))
!= 0) {
printf("%s: unable to map descriptor buffer, error = %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat, dsize, sc->sc_dnseg,
dsize, 0, BUS_DMA_WAITOK, &sc->sc_ddmamap)) != 0) {
printf("%s: unable to create descriptor buffer DMA map, "
"error = %d\n", sc->sc_sc1394.sc1394_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
dsize, NULL, BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to load descriptor buffer DMA map, "
"error = %d\n", sc->sc_sc1394.sc1394_dev.dv_xname, error);
goto fail_3;
}
return 0;
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, dsize);
fail_1:
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
fail_0:
return error;
}
static struct fwohci_desc *
fwohci_desc_get(struct fwohci_softc *sc, int ndesc)
{
int i, n;
for (n = 0; n <= sc->sc_descsize - ndesc; n++) {
for (i = 0; ; i++) {
if (i == ndesc) {
for (i = 0; i < ndesc; i++)
setbit(sc->sc_descmap, n + i);
return sc->sc_desc + n;
}
if (isset(sc->sc_descmap, n + i))
break;
}
}
return NULL;
}
static void
fwohci_desc_put(struct fwohci_softc *sc, struct fwohci_desc *fd, int ndesc)
{
int i, n;
n = fd - sc->sc_desc;
for (i = 0; i < ndesc; i++, n++) {
#ifdef DIAGNOSTIC
if (isclr(sc->sc_descmap, n))
panic("fwohci_desc_put: duplicated free");
#endif
clrbit(sc->sc_descmap, n);
}
}
/*
* Asynchronous/Isochronous Transmit/Receive Context
*/
static int
fwohci_ctx_alloc(struct fwohci_softc *sc, struct fwohci_ctx **fcp,
int bufcnt, int ctx, int ctxtype)
{
int i, error;
struct fwohci_ctx *fc;
struct fwohci_buf *fb;
struct fwohci_desc *fd;
#if DOUBLEBUF
int buf2cnt;
#endif
fc = malloc(sizeof(*fc), M_DEVBUF, M_WAITOK|M_ZERO);
LIST_INIT(&fc->fc_handler);
TAILQ_INIT(&fc->fc_buf);
fc->fc_ctx = ctx;
fc->fc_buffers = fb = malloc(sizeof(*fb) * bufcnt, M_DEVBUF, M_WAITOK|M_ZERO);
fc->fc_bufcnt = bufcnt;
#if DOUBLEBUF
TAILQ_INIT(&fc->fc_buf2); /* for isochronous */
if (ctxtype == FWOHCI_CTX_ISO_MULTI) {
buf2cnt = bufcnt/2;
bufcnt -= buf2cnt;
if (buf2cnt == 0) {
panic("cannot allocate iso buffer");
}
}
#endif
for (i = 0; i < bufcnt; i++, fb++) {
if ((error = fwohci_buf_alloc(sc, fb)) != 0)
goto fail;
if ((fd = fwohci_desc_get(sc, 1)) == NULL) {
error = ENOBUFS;
goto fail;
}
fb->fb_desc = fd;
fb->fb_daddr = sc->sc_ddmamap->dm_segs[0].ds_addr +
((caddr_t)fd - (caddr_t)sc->sc_desc);
fd->fd_flags = OHCI_DESC_INPUT | OHCI_DESC_STATUS |
OHCI_DESC_INTR_ALWAYS | OHCI_DESC_BRANCH;
fd->fd_reqcount = fb->fb_dmamap->dm_segs[0].ds_len;
fd->fd_data = fb->fb_dmamap->dm_segs[0].ds_addr;
TAILQ_INSERT_TAIL(&fc->fc_buf, fb, fb_list);
}
#if DOUBLEBUF
if (ctxtype == FWOHCI_CTX_ISO_MULTI) {
for (i = bufcnt; i < bufcnt + buf2cnt; i++, fb++) {
if ((error = fwohci_buf_alloc(sc, fb)) != 0)
goto fail;
if ((fd = fwohci_desc_get(sc, 1)) == NULL) {
error = ENOBUFS;
goto fail;
}
fb->fb_desc = fd;
fb->fb_daddr = sc->sc_ddmamap->dm_segs[0].ds_addr +
((caddr_t)fd - (caddr_t)sc->sc_desc);
bus_dmamap_sync(sc->sc_dmat, sc->sc_ddmamap,
(caddr_t)fd - (caddr_t)sc->sc_desc, sizeof(struct fwohci_desc),
BUS_DMASYNC_PREWRITE);
fd->fd_flags = OHCI_DESC_INPUT | OHCI_DESC_STATUS |
OHCI_DESC_INTR_ALWAYS | OHCI_DESC_BRANCH;
fd->fd_reqcount = fb->fb_dmamap->dm_segs[0].ds_len;
fd->fd_data = fb->fb_dmamap->dm_segs[0].ds_addr;
TAILQ_INSERT_TAIL(&fc->fc_buf2, fb, fb_list);
bus_dmamap_sync(sc->sc_dmat, sc->sc_ddmamap,
(caddr_t)fd - (caddr_t)sc->sc_desc, sizeof(struct fwohci_desc),
BUS_DMASYNC_POSTWRITE);
}
}
#endif /* DOUBLEBUF */
fc->fc_type = ctxtype;
*fcp = fc;
return 0;
fail:
while (i-- > 0) {
fb--;
if (fb->fb_desc)
fwohci_desc_put(sc, fb->fb_desc, 1);
fwohci_buf_free(sc, fb);
}
free(fc, M_DEVBUF);
return error;
}
static void
fwohci_ctx_free(struct fwohci_softc *sc, struct fwohci_ctx *fc)
{
struct fwohci_buf *fb;
struct fwohci_handler *fh;
#if DOUBLEBUF
if ((fc->fc_type == FWOHCI_CTX_ISO_MULTI) &&
(TAILQ_FIRST(&fc->fc_buf) > TAILQ_FIRST(&fc->fc_buf2))) {
struct fwohci_buf_s fctmp;
fctmp = fc->fc_buf;
fc->fc_buf = fc->fc_buf2;
fc->fc_buf2 = fctmp;
}
#endif
while ((fh = LIST_FIRST(&fc->fc_handler)) != NULL)
fwohci_handler_set(sc, fh->fh_tcode, fh->fh_key1, fh->fh_key2,
fh->fh_key3, NULL, NULL);
while ((fb = TAILQ_FIRST(&fc->fc_buf)) != NULL) {
TAILQ_REMOVE(&fc->fc_buf, fb, fb_list);
if (fb->fb_desc)
fwohci_desc_put(sc, fb->fb_desc, 1);
fwohci_buf_free(sc, fb);
}
#if DOUBLEBUF
while ((fb = TAILQ_FIRST(&fc->fc_buf2)) != NULL) {
TAILQ_REMOVE(&fc->fc_buf2, fb, fb_list);
if (fb->fb_desc)
fwohci_desc_put(sc, fb->fb_desc, 1);
fwohci_buf_free(sc, fb);
}
#endif /* DOUBLEBUF */
free(fc->fc_buffers, M_DEVBUF);
free(fc, M_DEVBUF);
}
static void
fwohci_ctx_init(struct fwohci_softc *sc, struct fwohci_ctx *fc)
{
struct fwohci_buf *fb, *nfb;
struct fwohci_desc *fd;
struct fwohci_handler *fh;
int n;
for (fb = TAILQ_FIRST(&fc->fc_buf); fb != NULL; fb = nfb) {
nfb = TAILQ_NEXT(fb, fb_list);
fb->fb_off = 0;
fd = fb->fb_desc;
fd->fd_branch = (nfb != NULL) ? (nfb->fb_daddr | 1) : 0;
fd->fd_rescount = fd->fd_reqcount;
}
#if DOUBLEBUF
for (fb = TAILQ_FIRST(&fc->fc_buf2); fb != NULL; fb = nfb) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_ddmamap,
(caddr_t)fd - (caddr_t)sc->sc_desc, sizeof(struct fwohci_desc),
BUS_DMASYNC_PREWRITE);
nfb = TAILQ_NEXT(fb, fb_list);
fb->fb_off = 0;
fd = fb->fb_desc;
fd->fd_branch = (nfb != NULL) ? (nfb->fb_daddr | 1) : 0;
fd->fd_rescount = fd->fd_reqcount;
bus_dmamap_sync(sc->sc_dmat, sc->sc_ddmamap,
(caddr_t)fd - (caddr_t)sc->sc_desc, sizeof(struct fwohci_desc),
BUS_DMASYNC_POSTWRITE);
}
#endif /* DOUBLEBUF */
n = fc->fc_ctx;
fb = TAILQ_FIRST(&fc->fc_buf);
if (fc->fc_type != FWOHCI_CTX_ASYNC) {
OHCI_SYNC_RX_DMA_WRITE(sc, n, OHCI_SUBREG_CommandPtr,
fb->fb_daddr | 1);
OHCI_SYNC_RX_DMA_WRITE(sc, n, OHCI_SUBREG_ContextControlClear,
OHCI_CTXCTL_RX_BUFFER_FILL |
OHCI_CTXCTL_RX_CYCLE_MATCH_ENABLE |
OHCI_CTXCTL_RX_MULTI_CHAN_MODE |
OHCI_CTXCTL_RX_DUAL_BUFFER_MODE);
OHCI_SYNC_RX_DMA_WRITE(sc, n, OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_RX_ISOCH_HEADER);
if (fc->fc_type == FWOHCI_CTX_ISO_MULTI) {
OHCI_SYNC_RX_DMA_WRITE(sc, n,
OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_RX_BUFFER_FILL);
}
fh = LIST_FIRST(&fc->fc_handler);
if (fh->fh_key1 == IEEE1394_ISO_CHANNEL_ANY) {
OHCI_SYNC_RX_DMA_WRITE(sc, n,
OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_RX_MULTI_CHAN_MODE);
/* Receive all the isochronous channels */
OHCI_CSR_WRITE(sc, OHCI_REG_IRMultiChanMaskHiSet,
0xffffffff);
OHCI_CSR_WRITE(sc, OHCI_REG_IRMultiChanMaskLoSet,
0xffffffff);
DPRINTF(("%s: CTXCTL 0x%08x\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_RX_DMA_READ(sc, n,
OHCI_SUBREG_ContextControlSet)));
}
OHCI_SYNC_RX_DMA_WRITE(sc, n, OHCI_SUBREG_ContextMatch,
(fh->fh_key2 << OHCI_CTXMATCH_TAG_BITPOS) |
(fh->fh_key1 & IEEE1394_ISO_CHANNEL_MASK));
} else {
OHCI_ASYNC_DMA_WRITE(sc, n, OHCI_SUBREG_CommandPtr,
fb->fb_daddr | 1);
}
}
/*
* DMA data buffer
*/
static int
fwohci_buf_alloc(struct fwohci_softc *sc, struct fwohci_buf *fb)
{
int error;
if ((error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
PAGE_SIZE, &fb->fb_seg, 1, &fb->fb_nseg, BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to allocate buffer, error = %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &fb->fb_seg,
fb->fb_nseg, PAGE_SIZE, &fb->fb_buf, BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to map buffer, error = %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, fb->fb_nseg,
PAGE_SIZE, 0, BUS_DMA_WAITOK, &fb->fb_dmamap)) != 0) {
printf("%s: unable to create buffer DMA map, "
"error = %d\n", sc->sc_sc1394.sc1394_dev.dv_xname,
error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, fb->fb_dmamap,
fb->fb_buf, PAGE_SIZE, NULL, BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to load buffer DMA map, "
"error = %d\n", sc->sc_sc1394.sc1394_dev.dv_xname,
error);
goto fail_3;
}
return 0;
bus_dmamap_unload(sc->sc_dmat, fb->fb_dmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, fb->fb_dmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, fb->fb_buf, PAGE_SIZE);
fail_1:
bus_dmamem_free(sc->sc_dmat, &fb->fb_seg, fb->fb_nseg);
fail_0:
return error;
}
static void
fwohci_buf_free(struct fwohci_softc *sc, struct fwohci_buf *fb)
{
bus_dmamap_unload(sc->sc_dmat, fb->fb_dmamap);
bus_dmamap_destroy(sc->sc_dmat, fb->fb_dmamap);
bus_dmamem_unmap(sc->sc_dmat, fb->fb_buf, PAGE_SIZE);
bus_dmamem_free(sc->sc_dmat, &fb->fb_seg, fb->fb_nseg);
}
static void
fwohci_buf_init_rx(struct fwohci_softc *sc)
{
int i;
/*
* Initialize for Asynchronous Receive Queue.
*/
fwohci_ctx_init(sc, sc->sc_ctx_arrq);
fwohci_ctx_init(sc, sc->sc_ctx_arrs);
/*
* Initialize for Isochronous Receive Queue.
*/
if (sc->sc_ctx_as != NULL) {
for (i = 0; i < sc->sc_isoctx; i++) {
if (sc->sc_ctx_as[i] != NULL)
fwohci_ctx_init(sc, sc->sc_ctx_as[i]);
}
}
}
static void
fwohci_buf_start_rx(struct fwohci_softc *sc)
{
int i;
OHCI_ASYNC_DMA_WRITE(sc, OHCI_CTX_ASYNC_RX_REQUEST,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_RUN);
OHCI_ASYNC_DMA_WRITE(sc, OHCI_CTX_ASYNC_RX_RESPONSE,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_RUN);
if (sc->sc_ctx_as != NULL) {
for (i = 0; i < sc->sc_isoctx; i++) {
if (sc->sc_ctx_as[i] != NULL)
OHCI_SYNC_RX_DMA_WRITE(sc, i,
OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_RUN);
}
}
}
static void
fwohci_buf_stop_tx(struct fwohci_softc *sc)
{
int i;
OHCI_ASYNC_DMA_WRITE(sc, OHCI_CTX_ASYNC_TX_REQUEST,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
OHCI_ASYNC_DMA_WRITE(sc, OHCI_CTX_ASYNC_TX_RESPONSE,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
/*
* Make sure the transmitter is stopped.
*/
for (i = 0; i < OHCI_LOOP; i++) {
DELAY(10);
if (OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_TX_REQUEST,
OHCI_SUBREG_ContextControlClear) & OHCI_CTXCTL_ACTIVE)
continue;
if (OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_TX_RESPONSE,
OHCI_SUBREG_ContextControlClear) & OHCI_CTXCTL_ACTIVE)
continue;
break;
}
/*
* Initialize for Asynchronous Transmit Queue.
*/
fwohci_at_done(sc, sc->sc_ctx_atrq, 1);
fwohci_at_done(sc, sc->sc_ctx_atrs, 1);
}
static void
fwohci_buf_stop_rx(struct fwohci_softc *sc)
{
int i;
OHCI_ASYNC_DMA_WRITE(sc, OHCI_CTX_ASYNC_RX_REQUEST,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
OHCI_ASYNC_DMA_WRITE(sc, OHCI_CTX_ASYNC_RX_RESPONSE,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
for (i = 0; i < sc->sc_isoctx; i++) {
OHCI_SYNC_RX_DMA_WRITE(sc, i,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
}
}
static void
fwohci_buf_next(struct fwohci_softc *sc, struct fwohci_ctx *fc)
{
struct fwohci_buf *fb, *tfb;
#if DOUBLEBUF
if (fc->fc_type != FWOHCI_CTX_ISO_MULTI) {
#endif
while ((fb = TAILQ_FIRST(&fc->fc_buf)) != NULL) {
if (fc->fc_type) {
if (fb->fb_off == 0)
break;
} else {
if (fb->fb_off != fb->fb_desc->fd_reqcount ||
fb->fb_desc->fd_rescount != 0)
break;
}
TAILQ_REMOVE(&fc->fc_buf, fb, fb_list);
fb->fb_desc->fd_rescount = fb->fb_desc->fd_reqcount;
fb->fb_off = 0;
fb->fb_desc->fd_branch = 0;
tfb = TAILQ_LAST(&fc->fc_buf, fwohci_buf_s);
tfb->fb_desc->fd_branch = fb->fb_daddr | 1;
TAILQ_INSERT_TAIL(&fc->fc_buf, fb, fb_list);
}
#if DOUBLEBUF
} else {
struct fwohci_buf_s fctmp;
/* cleaning buffer */
for (fb = TAILQ_FIRST(&fc->fc_buf); fb != NULL;
fb = TAILQ_NEXT(fb, fb_list)) {
fb->fb_off = 0;
fb->fb_desc->fd_rescount = fb->fb_desc->fd_reqcount;
}
/* rotating buffer */
fctmp = fc->fc_buf;
fc->fc_buf = fc->fc_buf2;
fc->fc_buf2 = fctmp;
}
#endif
}
static int
fwohci_buf_pktget(struct fwohci_softc *sc, struct fwohci_buf **fbp, caddr_t *pp,
int len)
{
struct fwohci_buf *fb;
struct fwohci_desc *fd;
int bufend;
fb = *fbp;
again:
fd = fb->fb_desc;
DPRINTFN(1, ("fwohci_buf_pktget: desc %ld, off %d, req %d, res %d,"
" len %d, avail %d\n", (long)(fd - sc->sc_desc), fb->fb_off,
fd->fd_reqcount, fd->fd_rescount, len,
fd->fd_reqcount - fd->fd_rescount - fb->fb_off));
bufend = fd->fd_reqcount - fd->fd_rescount;
if (fb->fb_off >= bufend) {
DPRINTFN(5, ("buf %x finish req %d res %d off %d ",
fb->fb_desc->fd_data, fd->fd_reqcount, fd->fd_rescount,
fb->fb_off));
if (fd->fd_rescount == 0) {
*fbp = fb = TAILQ_NEXT(fb, fb_list);
if (fb != NULL)
goto again;
}
return 0;
}
if (fb->fb_off + len > bufend)
len = bufend - fb->fb_off;
bus_dmamap_sync(sc->sc_dmat, fb->fb_dmamap, fb->fb_off, len,
BUS_DMASYNC_POSTREAD);
*pp = fb->fb_buf + fb->fb_off;
fb->fb_off += roundup(len, 4);
return len;
}
static int
fwohci_buf_input(struct fwohci_softc *sc, struct fwohci_ctx *fc,
struct fwohci_pkt *pkt)
{
caddr_t p;
struct fwohci_buf *fb;
int len, count, i;
#ifdef FW_DEBUG
int tlabel;
#endif
memset(pkt, 0, sizeof(*pkt));
pkt->fp_uio.uio_iov = pkt->fp_iov;
pkt->fp_uio.uio_rw = UIO_WRITE;
pkt->fp_uio.uio_segflg = UIO_SYSSPACE;
/* get first quadlet */
fb = TAILQ_FIRST(&fc->fc_buf);
count = 4;
len = fwohci_buf_pktget(sc, &fb, &p, count);
if (len <= 0) {
DPRINTFN(1, ("fwohci_buf_input: no input for %d\n",
fc->fc_ctx));
return 0;
}
pkt->fp_hdr[0] = *(u_int32_t *)p;
pkt->fp_tcode = (pkt->fp_hdr[0] & 0x000000f0) >> 4;
switch (pkt->fp_tcode) {
case IEEE1394_TCODE_WRITE_REQ_QUAD:
case IEEE1394_TCODE_READ_RESP_QUAD:
pkt->fp_hlen = 12;
pkt->fp_dlen = 4;
break;
case IEEE1394_TCODE_READ_REQ_BLOCK:
pkt->fp_hlen = 16;
pkt->fp_dlen = 0;
break;
case IEEE1394_TCODE_WRITE_REQ_BLOCK:
case IEEE1394_TCODE_READ_RESP_BLOCK:
case IEEE1394_TCODE_LOCK_REQ:
case IEEE1394_TCODE_LOCK_RESP:
pkt->fp_hlen = 16;
break;
case IEEE1394_TCODE_STREAM_DATA:
#ifdef DIAGNOSTIC
if (fc->fc_type == FWOHCI_CTX_ISO_MULTI)
#endif
{
pkt->fp_hlen = 4;
pkt->fp_dlen = pkt->fp_hdr[0] >> 16;
DPRINTFN(5, ("[%d]", pkt->fp_dlen));
break;
}
#ifdef DIAGNOSTIC
else {
printf("fwohci_buf_input: bad tcode: STREAM_DATA\n");
return 0;
}
#endif
default:
pkt->fp_hlen = 12;
pkt->fp_dlen = 0;
break;
}
/* get header */
while (count < pkt->fp_hlen) {
len = fwohci_buf_pktget(sc, &fb, &p, pkt->fp_hlen - count);
if (len == 0) {
printf("fwohci_buf_input: malformed input 1: %d\n",
pkt->fp_hlen - count);
return 0;
}
memcpy((caddr_t)pkt->fp_hdr + count, p, len);
count += len;
}
if (pkt->fp_hlen == 16 &&
pkt->fp_tcode != IEEE1394_TCODE_READ_REQ_BLOCK)
pkt->fp_dlen = pkt->fp_hdr[3] >> 16;
#ifdef FW_DEBUG
tlabel = (pkt->fp_hdr[0] & 0x0000fc00) >> 10;
#endif
DPRINTFN(1, ("fwohci_buf_input: tcode=0x%x, tlabel=0x%x, hlen=%d, "
"dlen=%d\n", pkt->fp_tcode, tlabel, pkt->fp_hlen, pkt->fp_dlen));
/* get data */
count = 0;
i = 0;
while (count < pkt->fp_dlen) {
len = fwohci_buf_pktget(sc, &fb,
(caddr_t *)&pkt->fp_iov[i].iov_base,
pkt->fp_dlen - count);
if (len == 0) {
printf("fwohci_buf_input: malformed input 2: %d\n",
pkt->fp_dlen - count);
return 0;
}
pkt->fp_iov[i++].iov_len = len;
count += len;
}
pkt->fp_uio.uio_iovcnt = i;
pkt->fp_uio.uio_resid = count;
/* get trailer */
len = fwohci_buf_pktget(sc, &fb, (caddr_t *)&pkt->fp_trail,
sizeof(*pkt->fp_trail));
if (len <= 0) {
printf("fwohci_buf_input: malformed input 3: %d\n",
pkt->fp_hlen - count);
return 0;
}
return 1;
}
static int
fwohci_buf_input_ppb(struct fwohci_softc *sc, struct fwohci_ctx *fc,
struct fwohci_pkt *pkt)
{
caddr_t p;
int len;
struct fwohci_buf *fb;
struct fwohci_desc *fd;
if (fc->fc_type == FWOHCI_CTX_ISO_MULTI) {
return fwohci_buf_input(sc, fc, pkt);
}
memset(pkt, 0, sizeof(*pkt));
pkt->fp_uio.uio_iov = pkt->fp_iov;
pkt->fp_uio.uio_rw = UIO_WRITE;
pkt->fp_uio.uio_segflg = UIO_SYSSPACE;
for (fb = TAILQ_FIRST(&fc->fc_buf); ; fb = TAILQ_NEXT(fb, fb_list)) {
if (fb == NULL)
return 0;
if (fb->fb_off == 0)
break;
}
fd = fb->fb_desc;
len = fd->fd_reqcount - fd->fd_rescount;
if (len == 0)
return 0;
bus_dmamap_sync(sc->sc_dmat, fb->fb_dmamap, fb->fb_off, len,
BUS_DMASYNC_POSTREAD);
p = fb->fb_buf;
fb->fb_off += roundup(len, 4);
if (len < 8) {
printf("fwohci_buf_input_ppb: malformed input 1: %d\n", len);
return 0;
}
/*
* get trailer first, may be bogus data unless status update
* in descriptor is set.
*/
pkt->fp_trail = (u_int32_t *)p;
*pkt->fp_trail = (*pkt->fp_trail & 0xffff) | (fd->fd_status << 16);
pkt->fp_hdr[0] = ((u_int32_t *)p)[1];
pkt->fp_tcode = (pkt->fp_hdr[0] & 0x000000f0) >> 4;
#ifdef DIAGNOSTIC
if (pkt->fp_tcode != IEEE1394_TCODE_STREAM_DATA) {
printf("fwohci_buf_input_ppb: bad tcode: 0x%x\n",
pkt->fp_tcode);
return 0;
}
#endif
pkt->fp_hlen = 4;
pkt->fp_dlen = pkt->fp_hdr[0] >> 16;
p += 8;
len -= 8;
if (pkt->fp_dlen != len) {
printf("fwohci_buf_input_ppb: malformed input 2: %d != %d\n",
pkt->fp_dlen, len);
return 0;
}
DPRINTFN(1, ("fwohci_buf_input_ppb: tcode=0x%x, hlen=%d, dlen=%d\n",
pkt->fp_tcode, pkt->fp_hlen, pkt->fp_dlen));
pkt->fp_iov[0].iov_base = p;
pkt->fp_iov[0].iov_len = len;
pkt->fp_uio.uio_iovcnt = 0;
pkt->fp_uio.uio_resid = len;
return 1;
}
static int
fwohci_handler_set(struct fwohci_softc *sc,
int tcode, u_int32_t key1, u_int32_t key2, u_int32_t key3,
int (*handler)(struct fwohci_softc *, void *, struct fwohci_pkt *),
void *arg)
{
struct fwohci_ctx *fc;
struct fwohci_handler *fh;
u_int64_t addr, naddr;
u_int32_t off;
int i, j;
if (tcode == IEEE1394_TCODE_STREAM_DATA &&
(((key1 & OHCI_ASYNC_STREAM) && sc->sc_ctx_as != NULL)
|| (key1 & OHCI_ASYNC_STREAM) == 0)) {
int isasync = key1 & OHCI_ASYNC_STREAM;
key1 = key1 & IEEE1394_ISO_CHANNEL_ANY ?
IEEE1394_ISO_CHANNEL_ANY : (key1 & IEEE1394_ISOCH_MASK);
if (key1 & IEEE1394_ISO_CHANNEL_ANY) {
printf("%s: key changed to %x\n",
sc->sc_sc1394.sc1394_dev.dv_xname, key1);
}
j = sc->sc_isoctx;
fh = NULL;
for (i = 0; i < sc->sc_isoctx; i++) {
if ((fc = sc->sc_ctx_as[i]) == NULL) {
if (j == sc->sc_isoctx)
j = i;
continue;
}
fh = LIST_FIRST(&fc->fc_handler);
if (fh->fh_tcode == tcode &&
fh->fh_key1 == key1 && fh->fh_key2 == key2)
break;
fh = NULL;
}
if (fh == NULL) {
if (handler == NULL)
return 0;
if (j == sc->sc_isoctx) {
DPRINTF(("fwohci_handler_set: no more free "
"context\n"));
return ENOMEM;
}
if ((fc = sc->sc_ctx_as[j]) == NULL) {
fwohci_ctx_alloc(sc, &fc, OHCI_BUF_IR_CNT, j,
isasync ? FWOHCI_CTX_ISO_SINGLE :
FWOHCI_CTX_ISO_MULTI);
sc->sc_ctx_as[j] = fc;
}
}
#ifdef FW_DEBUG
if (fh == NULL && handler != NULL) {
printf("use ir context %d\n", j);
} else if (fh != NULL && handler == NULL) {
printf("remove ir context %d\n", i);
}
#endif
} else {
switch (tcode) {
case IEEE1394_TCODE_WRITE_REQ_QUAD:
case IEEE1394_TCODE_WRITE_REQ_BLOCK:
case IEEE1394_TCODE_READ_REQ_QUAD:
case IEEE1394_TCODE_READ_REQ_BLOCK:
case IEEE1394_TCODE_LOCK_REQ:
fc = sc->sc_ctx_arrq;
break;
case IEEE1394_TCODE_WRITE_RESP:
case IEEE1394_TCODE_READ_RESP_QUAD:
case IEEE1394_TCODE_READ_RESP_BLOCK:
case IEEE1394_TCODE_LOCK_RESP:
fc = sc->sc_ctx_arrs;
break;
default:
return EIO;
}
naddr = ((u_int64_t)key1 << 32) + key2;
for (fh = LIST_FIRST(&fc->fc_handler); fh != NULL;
fh = LIST_NEXT(fh, fh_list)) {
if (fh->fh_tcode == tcode) {
if (fh->fh_key1 == key1 &&
fh->fh_key2 == key2 && fh->fh_key3 == key3)
break;
/* Make sure it's not within a current range. */
addr = ((u_int64_t)fh->fh_key1 << 32) +
fh->fh_key2;
off = fh->fh_key3;
if (key3 &&
(((naddr >= addr) &&
(naddr < (addr + off))) ||
(((naddr + key3) > addr) &&
((naddr + key3) <= (addr + off))) ||
((addr > naddr) &&
(addr < (naddr + key3)))))
if (handler)
return EEXIST;
}
}
}
if (handler == NULL) {
if (fh != NULL) {
LIST_REMOVE(fh, fh_list);
free(fh, M_DEVBUF);
}
if (tcode == IEEE1394_TCODE_STREAM_DATA) {
OHCI_SYNC_RX_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
sc->sc_ctx_as[fc->fc_ctx] = NULL;
fwohci_ctx_free(sc, fc);
}
return 0;
}
if (fh == NULL) {
fh = malloc(sizeof(*fh), M_DEVBUF, M_WAITOK);
LIST_INSERT_HEAD(&fc->fc_handler, fh, fh_list);
}
fh->fh_tcode = tcode;
fh->fh_key1 = key1;
fh->fh_key2 = key2;
fh->fh_key3 = key3;
fh->fh_handler = handler;
fh->fh_handarg = arg;
DPRINTFN(1, ("fwohci_handler_set: ctx %d, tcode %x, key 0x%x, 0x%x, "
"0x%x\n", fc->fc_ctx, tcode, key1, key2, key3));
if (tcode == IEEE1394_TCODE_STREAM_DATA) {
fwohci_ctx_init(sc, fc);
DPRINTFN(1, ("fwohci_handler_set: SYNC desc %ld\n",
(long)(TAILQ_FIRST(&fc->fc_buf)->fb_desc - sc->sc_desc)));
OHCI_SYNC_RX_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_RUN);
}
return 0;
}
/*
* static ieee1394_ir_tag_t
* fwohci_ir_ctx_set(struct device *dev, int channel, int tagbm,
* int bufnum, int maxsize, int flags)
*
* This function will return non-negative value if it succeeds.
* This return value is pointer to the context of isochronous
* transmission. This function will return NULL value if it
* fails.
*/
ieee1394_ir_tag_t
fwohci_ir_ctx_set(struct device *dev, int channel, int tagbm,
int bufnum, int maxsize, int flags)
{
int i, openctx;
struct fwohci_ir_ctx *irc;
struct fwohci_softc *sc = (struct fwohci_softc *)dev;
const char *xname = sc->sc_sc1394.sc1394_dev.dv_xname;
printf("%s: ir_ctx_set channel %d tagbm 0x%x maxsize %d bufnum %d\n",
xname, channel, tagbm, maxsize, bufnum);
/*
* This loop will find the smallest vacant context and check
* whether other channel uses the same channel.
*/
openctx = sc->sc_isoctx;
for (i = 0; i < sc->sc_isoctx; ++i) {
if (sc->sc_ctx_ir[i] == NULL) {
/*
* Find a vacant contet. If this has the
* smallest context number, register it.
*/
if (openctx == sc->sc_isoctx) {
openctx = i;
}
} else {
/*
* This context is used. Check whether this
* context uses the same channel as ours.
*/
if (sc->sc_ctx_ir[i]->irc_channel == channel) {
/* Using same channel. */
printf("%s: channel %d occupied by ctx%d\n",
xname, channel, i);
return NULL;
}
}
}
/*
* If there is a vacant context, allocate isochronous transmit
* context for it.
*/
if (openctx != sc->sc_isoctx) {
printf("%s using ctx %d for iso receive\n", xname, openctx);
if ((irc = fwohci_ir_ctx_construct(sc, openctx, channel,
tagbm, bufnum, maxsize, flags)) == NULL) {
return NULL;
}
#ifndef IR_CTX_OPENTEST
sc->sc_ctx_ir[openctx] = irc;
#else
fwohci_ir_ctx_destruct(irc);
irc = NULL;
#endif
} else {
printf("%s: cannot find any vacant contexts\n", xname);
irc = NULL;
}
return (ieee1394_ir_tag_t)irc;
}
/*
* int fwohci_ir_ctx_clear(struct device *dev, ieee1394_ir_tag_t *ir)
*
* This function will return 0 if it succeed. Otherwise return
* negative value.
*/
int
fwohci_ir_ctx_clear(struct device *dev, ieee1394_ir_tag_t ir)
{
struct fwohci_ir_ctx *irc = (struct fwohci_ir_ctx *)ir;
struct fwohci_softc *sc = irc->irc_sc;
int i;
if (sc->sc_ctx_ir[irc->irc_num] != irc) {
printf("fwohci_ir_ctx_clear: irc differs %p %p\n",
sc->sc_ctx_ir[irc->irc_num], irc);
return -1;
}
i = 0;
while (irc->irc_status & IRC_STATUS_RUN) {
tsleep((void *)irc, PWAIT|PCATCH, "IEEE1394 iso receive", 100);
if (irc->irc_status & IRC_STATUS_RUN) {
if (fwohci_ir_stop(irc) == 0) {
irc->irc_status &= ~IRC_STATUS_RUN;
}
}
if (++i > 20) {
u_int32_t reg
= OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num,
OHCI_SUBREG_ContextControlSet);
printf("fwochi_ir_ctx_clear: "
"Cannot stop iso receive engine\n");
printf("%s: intr IR_CommandPtr 0x%08x "
"ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num,
OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
return EBUSY;
}
}
printf("fwohci_ir_ctx_clear: DMA engine is stopped. get %d frames max queuelen %d pos %d\n",
irc->irc_pktcount, irc->irc_maxqueuelen, irc->irc_maxqueuepos);
fwohci_ir_ctx_destruct(irc);
sc->sc_ctx_ir[irc->irc_num] = NULL;
return 0;
}
ieee1394_it_tag_t
fwohci_it_set(struct ieee1394_softc *isc, int channel, int tagbm)
{
ieee1394_it_tag_t rv;
int tag;
for (tag = 0; tagbm != 0 && (tagbm & 0x01) == 0; tagbm >>= 1, ++tag);
rv = fwohci_it_ctx_set((struct fwohci_softc *)isc, channel, tag, 488);
return rv;
}
/*
* static ieee1394_it_tag_t
* fwohci_it_ctx_set(struct fwohci_softc *sc,
* u_int32_t key1 (channel), u_int32_t key2 (tag), int maxsize)
*
* This function will return non-negative value if it succeeds.
* This return value is pointer to the context of isochronous
* transmission. This function will return NULL value if it
* fails.
*/
static ieee1394_it_tag_t
fwohci_it_ctx_set(struct fwohci_softc *sc, int channel, int tag, int maxsize)
{
int i, openctx;
struct fwohci_it_ctx *itc;
const char *xname = sc->sc_sc1394.sc1394_dev.dv_xname;
#ifdef TEST_CHAIN
extern int fwohci_test_chain(struct fwohci_it_ctx *);
#endif /* TEST_CHAIN */
#ifdef TEST_WRITE
extern void fwohci_test_write(struct fwohci_it_ctx *itc);
#endif /* TEST_WRITE */
printf("%s: it_ctx_set channel %d tag %d maxsize %d\n",
xname, channel, tag, maxsize);
/*
* This loop will find the smallest vacant context and check
* whether other channel uses the same channel.
*/
openctx = sc->sc_itctx;
for (i = 0; i < sc->sc_itctx; ++i) {
if (sc->sc_ctx_it[i] == NULL) {
/*
* Find a vacant contet. If this has the
* smallest context number, register it.
*/
if (openctx == sc->sc_itctx) {
openctx = i;
}
} else {
/*
* This context is used. Check whether this
* context uses the same channel as ours.
*/
if (sc->sc_ctx_it[i]->itc_channel == channel) {
/* Using same channel. */
printf("%s: channel %d occupied by ctx%d\n",
xname, channel, i);
return NULL;
}
}
}
/*
* If there is a vacant context, allocate isochronous transmit
* context for it.
*/
if (openctx != sc->sc_itctx) {
printf("%s using ctx %d for iso trasmit\n", xname, openctx);
if ((itc = fwohci_it_ctx_construct(sc, openctx, channel,
tag, maxsize)) == NULL) {
return NULL;
}
sc->sc_ctx_it[openctx] = itc;
#ifdef TEST_CHAIN
fwohci_test_chain(itc);
#endif /* TEST_CHAIN */
#ifdef TEST_WRITE
fwohci_test_write(itc);
itc = NULL;
#endif /* TEST_WRITE */
} else {
printf("%s: cannot find any vacant contexts\n", xname);
itc = NULL;
}
return (ieee1394_it_tag_t)itc;
}
/*
* int fwohci_it_ctx_clear(ieee1394_it_tag_t *it)
*
* This function will return 0 if it succeed. Otherwise return
* negative value.
*/
int
fwohci_it_ctx_clear(ieee1394_it_tag_t *it)
{
struct fwohci_it_ctx *itc = (struct fwohci_it_ctx *)it;
struct fwohci_softc *sc = itc->itc_sc;
int i;
if (sc->sc_ctx_it[itc->itc_num] != itc) {
printf("fwohci_it_ctx_clear: itc differs %p %p\n",
sc->sc_ctx_it[itc->itc_num], itc);
return -1;
}
fwohci_it_ctx_flush(it);
i = 0;
while (itc->itc_flags & ITC_FLAGS_RUN) {
tsleep((void *)itc, PWAIT|PCATCH, "IEEE1394 iso transmit", 100);
if (itc->itc_flags & ITC_FLAGS_RUN) {
u_int32_t reg;
reg = OHCI_SYNC_TX_DMA_READ(sc, itc->itc_num,
OHCI_SUBREG_ContextControlSet);
if ((reg & OHCI_CTXCTL_WAKE) == 0) {
itc->itc_flags &= ~ITC_FLAGS_RUN;
printf("fwochi_it_ctx_clear: "
"DMA engine stopped without intr\n");
}
printf("%s: %d intr IT_CommandPtr 0x%08x "
"ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname, i,
OHCI_SYNC_TX_DMA_READ(sc, itc->itc_num,
OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
}
if (++i > 20) {
u_int32_t reg
= OHCI_SYNC_TX_DMA_READ(sc, itc->itc_num,
OHCI_SUBREG_ContextControlSet);
printf("fwochi_it_ctx_clear: "
"Cannot stop iso transmit engine\n");
printf("%s: intr IT_CommandPtr 0x%08x "
"ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_TX_DMA_READ(sc, itc->itc_num,
OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
return EBUSY;
}
}
printf("fwohci_it_ctx_clear: DMA engine is stopped.\n");
fwohci_it_ctx_destruct(itc);
sc->sc_ctx_it[itc->itc_num] = NULL;
return 0;
}
/*
* Asynchronous Receive Requests input frontend.
*/
static void
fwohci_arrq_input(struct fwohci_softc *sc, struct fwohci_ctx *fc)
{
int rcode;
u_int16_t len;
u_int32_t key1, key2, off;
u_int64_t addr, naddr;
struct fwohci_handler *fh;
struct fwohci_pkt pkt, res;
/*
* Do not return if next packet is in the buffer, or the next
* packet cannot be received until the next receive interrupt.
*/
while (fwohci_buf_input(sc, fc, &pkt)) {
if (pkt.fp_tcode == OHCI_TCODE_PHY) {
fwohci_phy_input(sc, &pkt);
continue;
}
key1 = pkt.fp_hdr[1] & 0xffff;
key2 = pkt.fp_hdr[2];
if ((pkt.fp_tcode == IEEE1394_TCODE_WRITE_REQ_BLOCK) ||
(pkt.fp_tcode == IEEE1394_TCODE_READ_REQ_BLOCK)) {
len = (pkt.fp_hdr[3] & 0xffff0000) >> 16;
naddr = ((u_int64_t)key1 << 32) + key2;
} else {
len = 0;
naddr = 0; /* XXX: gcc */
}
for (fh = LIST_FIRST(&fc->fc_handler); fh != NULL;
fh = LIST_NEXT(fh, fh_list)) {
if (pkt.fp_tcode == fh->fh_tcode) {
/* Assume length check happens in handler */
if (key1 == fh->fh_key1 &&
key2 == fh->fh_key2) {
rcode = (*fh->fh_handler)(sc,
fh->fh_handarg, &pkt);
break;
}
addr = ((u_int64_t)fh->fh_key1 << 32) +
fh->fh_key2;
off = fh->fh_key3;
/* Check for a range qualifier */
if (len &&
((naddr >= addr) && (naddr < (addr + off))
&& (naddr + len <= (addr + off)))) {
rcode = (*fh->fh_handler)(sc,
fh->fh_handarg, &pkt);
break;
}
}
}
if (fh == NULL) {
rcode = IEEE1394_RCODE_ADDRESS_ERROR;
DPRINTFN(1, ("fwohci_arrq_input: no listener: tcode "
"0x%x, addr=0x%04x %08x\n", pkt.fp_tcode, key1,
key2));
DPRINTFN(2, ("fwohci_arrq_input: no listener: hdr[0]: "
"0x%08x, hdr[1]: 0x%08x, hdr[2]: 0x%08x, hdr[3]: "
"0x%08x\n", pkt.fp_hdr[0], pkt.fp_hdr[1],
pkt.fp_hdr[2], pkt.fp_hdr[3]));
}
if (((*pkt.fp_trail & 0x001f0000) >> 16) !=
OHCI_CTXCTL_EVENT_ACK_PENDING)
continue;
if (rcode != -1) {
memset(&res, 0, sizeof(res));
res.fp_uio.uio_rw = UIO_WRITE;
res.fp_uio.uio_segflg = UIO_SYSSPACE;
fwohci_atrs_output(sc, rcode, &pkt, &res);
}
}
fwohci_buf_next(sc, fc);
OHCI_ASYNC_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_WAKE);
}
/*
* Asynchronous Receive Response input frontend.
*/
static void
fwohci_arrs_input(struct fwohci_softc *sc, struct fwohci_ctx *fc)
{
struct fwohci_pkt pkt;
struct fwohci_handler *fh;
u_int16_t srcid;
int rcode, tlabel;
while (fwohci_buf_input(sc, fc, &pkt)) {
srcid = pkt.fp_hdr[1] >> 16;
rcode = (pkt.fp_hdr[1] & 0x0000f000) >> 12;
tlabel = (pkt.fp_hdr[0] & 0x0000fc00) >> 10;
DPRINTFN(1, ("fwohci_arrs_input: tcode 0x%x, from 0x%04x,"
" tlabel 0x%x, rcode 0x%x, hlen %d, dlen %d\n",
pkt.fp_tcode, srcid, tlabel, rcode, pkt.fp_hlen,
pkt.fp_dlen));
for (fh = LIST_FIRST(&fc->fc_handler); fh != NULL;
fh = LIST_NEXT(fh, fh_list)) {
if (pkt.fp_tcode == fh->fh_tcode &&
(srcid & OHCI_NodeId_NodeNumber) == fh->fh_key1 &&
tlabel == fh->fh_key2) {
(*fh->fh_handler)(sc, fh->fh_handarg, &pkt);
LIST_REMOVE(fh, fh_list);
free(fh, M_DEVBUF);
break;
}
}
if (fh == NULL)
DPRINTFN(1, ("fwohci_arrs_input: no listner\n"));
}
fwohci_buf_next(sc, fc);
OHCI_ASYNC_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_WAKE);
}
/*
* Isochronous Receive input frontend.
*/
static void
fwohci_as_input(struct fwohci_softc *sc, struct fwohci_ctx *fc)
{
int rcode, chan, tag;
struct iovec *iov;
struct fwohci_handler *fh;
struct fwohci_pkt pkt;
#if DOUBLEBUF
if (fc->fc_type == FWOHCI_CTX_ISO_MULTI) {
struct fwohci_buf *fb;
int i;
u_int32_t reg;
/* stop DMA engine before read buffer */
reg = OHCI_SYNC_RX_DMA_READ(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlClear);
DPRINTFN(5, ("ir_input %08x =>", reg));
if (reg & OHCI_CTXCTL_RUN) {
OHCI_SYNC_RX_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
}
DPRINTFN(5, (" %08x\n", OHCI_SYNC_RX_DMA_READ(sc, fc->fc_ctx, OHCI_SUBREG_ContextControlClear)));
i = 0;
while ((reg = OHCI_SYNC_RX_DMA_READ(sc, fc->fc_ctx, OHCI_SUBREG_ContextControlSet)) & OHCI_CTXCTL_ACTIVE) {
delay(10);
if (++i > 10000) {
printf("cannot stop DMA engine 0x%08x\n", reg);
return;
}
}
/* rotate DMA buffer */
fb = TAILQ_FIRST(&fc->fc_buf2);
OHCI_SYNC_RX_DMA_WRITE(sc, fc->fc_ctx, OHCI_SUBREG_CommandPtr,
fb->fb_daddr | 1);
/* start DMA engine */
OHCI_SYNC_RX_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_RUN);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoRecvIntEventClear,
(1 << fc->fc_ctx));
}
#endif
while (fwohci_buf_input_ppb(sc, fc, &pkt)) {
chan = (pkt.fp_hdr[0] & 0x00003f00) >> 8;
tag = (pkt.fp_hdr[0] & 0x0000c000) >> 14;
DPRINTFN(1, ("fwohci_as_input: hdr 0x%08x, tcode 0x%0x, hlen %d"
", dlen %d\n", pkt.fp_hdr[0], pkt.fp_tcode, pkt.fp_hlen,
pkt.fp_dlen));
if (tag == IEEE1394_TAG_GASP &&
fc->fc_type == FWOHCI_CTX_ISO_SINGLE) {
/*
* The pkt with tag=3 is GASP format.
* Move GASP header to header part.
*/
if (pkt.fp_dlen < 8)
continue;
iov = pkt.fp_iov;
/* assuming pkt per buffer mode */
pkt.fp_hdr[1] = ntohl(((u_int32_t *)iov->iov_base)[0]);
pkt.fp_hdr[2] = ntohl(((u_int32_t *)iov->iov_base)[1]);
iov->iov_base = (caddr_t)iov->iov_base + 8;
iov->iov_len -= 8;
pkt.fp_hlen += 8;
pkt.fp_dlen -= 8;
}
for (fh = LIST_FIRST(&fc->fc_handler); fh != NULL;
fh = LIST_NEXT(fh, fh_list)) {
if (pkt.fp_tcode == fh->fh_tcode &&
(chan == fh->fh_key1 ||
fh->fh_key1 == IEEE1394_ISO_CHANNEL_ANY) &&
((1 << tag) & fh->fh_key2) != 0) {
rcode = (*fh->fh_handler)(sc, fh->fh_handarg,
&pkt);
break;
}
}
#ifdef FW_DEBUG
if (fh == NULL) {
DPRINTFN(1, ("fwohci_as_input: no handler\n"));
} else {
DPRINTFN(1, ("fwohci_as_input: rcode %d\n", rcode));
}
#endif
}
fwohci_buf_next(sc, fc);
if (fc->fc_type == FWOHCI_CTX_ISO_SINGLE) {
OHCI_SYNC_RX_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_WAKE);
}
}
/*
* Asynchronous Transmit common routine.
*/
static int
fwohci_at_output(struct fwohci_softc *sc, struct fwohci_ctx *fc,
struct fwohci_pkt *pkt)
{
struct fwohci_buf *fb;
struct fwohci_desc *fd;
struct mbuf *m, *m0;
int i, ndesc, error, off, len;
u_int32_t val;
#ifdef FW_DEBUG
struct iovec *iov;
int tlabel = (pkt->fp_hdr[0] & 0x0000fc00) >> 10;
#endif
if ((sc->sc_nodeid & OHCI_NodeId_NodeNumber) == IEEE1394_BCAST_PHY_ID)
/* We can't send anything during selfid duration */
return EAGAIN;
#ifdef FW_DEBUG
DPRINTFN(1, ("fwohci_at_output: tcode 0x%x, tlabel 0x%x hlen %d, "
"dlen %d", pkt->fp_tcode, tlabel, pkt->fp_hlen, pkt->fp_dlen));
for (i = 0; i < pkt->fp_hlen/4; i++)
DPRINTFN(2, ("%s%08x", i?" ":"\n ", pkt->fp_hdr[i]));
DPRINTFN(2, ("$"));
for (ndesc = 0, iov = pkt->fp_iov;
ndesc < pkt->fp_uio.uio_iovcnt; ndesc++, iov++) {
for (i = 0; i < iov->iov_len; i++)
DPRINTFN(2, ("%s%02x", (i%32)?((i%4)?"":" "):"\n ",
((u_int8_t *)iov->iov_base)[i]));
DPRINTFN(2, ("$"));
}
DPRINTFN(1, ("\n"));
#endif
if ((m = pkt->fp_m) != NULL) {
for (ndesc = 2; m != NULL; m = m->m_next)
ndesc++;
if (ndesc > OHCI_DESC_MAX) {
m0 = NULL;
ndesc = 2;
for (off = 0; off < pkt->fp_dlen; off += len) {
if (m0 == NULL) {
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 != NULL)
M_COPY_PKTHDR(m0, pkt->fp_m);
m = m0;
} else {
MGET(m->m_next, M_DONTWAIT, MT_DATA);
m = m->m_next;
}
if (m != NULL)
MCLGET(m, M_DONTWAIT);
if (m == NULL || (m->m_flags & M_EXT) == 0) {
m_freem(m0);
return ENOMEM;
}
len = pkt->fp_dlen - off;
if (len > m->m_ext.ext_size)
len = m->m_ext.ext_size;
m_copydata(pkt->fp_m, off, len,
mtod(m, caddr_t));
m->m_len = len;
ndesc++;
}
m_freem(pkt->fp_m);
pkt->fp_m = m0;
}
} else
ndesc = 2 + pkt->fp_uio.uio_iovcnt;
if (ndesc > OHCI_DESC_MAX)
return ENOBUFS;
fb = malloc(sizeof(*fb), M_DEVBUF, M_WAITOK);
if (ndesc > 2) {
if ((error = bus_dmamap_create(sc->sc_dmat, pkt->fp_dlen,
OHCI_DESC_MAX - 2, pkt->fp_dlen, 0, BUS_DMA_WAITOK,
&fb->fb_dmamap)) != 0) {
fwohci_desc_put(sc, fb->fb_desc, ndesc);
free(fb, M_DEVBUF);
return error;
}
if (pkt->fp_m != NULL)
error = bus_dmamap_load_mbuf(sc->sc_dmat, fb->fb_dmamap,
pkt->fp_m, BUS_DMA_WAITOK);
else
error = bus_dmamap_load_uio(sc->sc_dmat, fb->fb_dmamap,
&pkt->fp_uio, BUS_DMA_WAITOK);
if (error != 0) {
DPRINTFN(1, ("Can't load DMA map: %d\n", error));
bus_dmamap_destroy(sc->sc_dmat, fb->fb_dmamap);
fwohci_desc_put(sc, fb->fb_desc, ndesc);
free(fb, M_DEVBUF);
return error;
}
ndesc = fb->fb_dmamap->dm_nsegs + 2;
bus_dmamap_sync(sc->sc_dmat, fb->fb_dmamap, 0, pkt->fp_dlen,
BUS_DMASYNC_PREWRITE);
}
fb->fb_nseg = ndesc;
fb->fb_desc = fwohci_desc_get(sc, ndesc);
if (fb->fb_desc == NULL) {
free(fb, M_DEVBUF);
return ENOBUFS;
}
fb->fb_daddr = sc->sc_ddmamap->dm_segs[0].ds_addr +
((caddr_t)fb->fb_desc - (caddr_t)sc->sc_desc);
fb->fb_m = pkt->fp_m;
fb->fb_callback = pkt->fp_callback;
fb->fb_statuscb = pkt->fp_statuscb;
fb->fb_statusarg = pkt->fp_statusarg;
fd = fb->fb_desc;
fd->fd_flags = OHCI_DESC_IMMED;
fd->fd_reqcount = pkt->fp_hlen;
fd->fd_data = 0;
fd->fd_branch = 0;
fd->fd_status = 0;
if (fc->fc_ctx == OHCI_CTX_ASYNC_TX_RESPONSE) {
i = 3; /* XXX: 3 sec */
val = OHCI_CSR_READ(sc, OHCI_REG_IsochronousCycleTimer);
fd->fd_timestamp = ((val >> 12) & 0x1fff) |
((((val >> 25) + i) & 0x7) << 13);
} else
fd->fd_timestamp = 0;
memcpy(fd + 1, pkt->fp_hdr, pkt->fp_hlen);
for (i = 0; i < ndesc - 2; i++) {
fd = fb->fb_desc + 2 + i;
fd->fd_flags = 0;
fd->fd_reqcount = fb->fb_dmamap->dm_segs[i].ds_len;
fd->fd_data = fb->fb_dmamap->dm_segs[i].ds_addr;
fd->fd_branch = 0;
fd->fd_status = 0;
fd->fd_timestamp = 0;
}
fd->fd_flags |= OHCI_DESC_LAST | OHCI_DESC_BRANCH;
fd->fd_flags |= OHCI_DESC_INTR_ALWAYS;
#ifdef FW_DEBUG
DPRINTFN(1, ("fwohci_at_output: desc %ld",
(long)(fb->fb_desc - sc->sc_desc)));
for (i = 0; i < ndesc * 4; i++)
DPRINTFN(2, ("%s%08x", i&7?" ":"\n ",
((u_int32_t *)fb->fb_desc)[i]));
DPRINTFN(1, ("\n"));
#endif
val = OHCI_ASYNC_DMA_READ(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlClear);
if (val & OHCI_CTXCTL_RUN) {
if (fc->fc_branch == NULL) {
OHCI_ASYNC_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
goto run;
}
*fc->fc_branch = fb->fb_daddr | ndesc;
OHCI_ASYNC_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_WAKE);
} else {
run:
OHCI_ASYNC_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_CommandPtr, fb->fb_daddr | ndesc);
OHCI_ASYNC_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_RUN);
}
fc->fc_branch = &fd->fd_branch;
fc->fc_bufcnt++;
TAILQ_INSERT_TAIL(&fc->fc_buf, fb, fb_list);
pkt->fp_m = NULL;
return 0;
}
static void
fwohci_at_done(struct fwohci_softc *sc, struct fwohci_ctx *fc, int force)
{
struct fwohci_buf *fb;
struct fwohci_desc *fd;
struct fwohci_pkt pkt;
int i;
while ((fb = TAILQ_FIRST(&fc->fc_buf)) != NULL) {
fd = fb->fb_desc;
#ifdef FW_DEBUG
DPRINTFN(1, ("fwohci_at_done: %sdesc %ld (%d)",
force ? "force " : "", (long)(fd - sc->sc_desc),
fb->fb_nseg));
for (i = 0; i < fb->fb_nseg * 4; i++)
DPRINTFN(2, ("%s%08x", i&7?" ":"\n ",
((u_int32_t *)fd)[i]));
DPRINTFN(1, ("\n"));
#endif
if (fb->fb_nseg > 2)
fd += fb->fb_nseg - 1;
if (!force && !(fd->fd_status & OHCI_CTXCTL_ACTIVE))
break;
TAILQ_REMOVE(&fc->fc_buf, fb, fb_list);
if (fc->fc_branch == &fd->fd_branch) {
OHCI_ASYNC_DMA_WRITE(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlClear, OHCI_CTXCTL_RUN);
fc->fc_branch = NULL;
for (i = 0; i < OHCI_LOOP; i++) {
if (!(OHCI_ASYNC_DMA_READ(sc, fc->fc_ctx,
OHCI_SUBREG_ContextControlClear) &
OHCI_CTXCTL_ACTIVE))
break;
DELAY(10);
}
}
if (fb->fb_statuscb) {
memset(&pkt, 0, sizeof(pkt));
pkt.fp_status = fd->fd_status;
memcpy(pkt.fp_hdr, fd + 1, sizeof(pkt.fp_hdr[0]));
/* Indicate this is just returning the status bits. */
pkt.fp_tcode = -1;
(*fb->fb_statuscb)(sc, fb->fb_statusarg, &pkt);
fb->fb_statuscb = NULL;
fb->fb_statusarg = NULL;
}
fwohci_desc_put(sc, fb->fb_desc, fb->fb_nseg);
if (fb->fb_nseg > 2)
bus_dmamap_destroy(sc->sc_dmat, fb->fb_dmamap);
fc->fc_bufcnt--;
if (fb->fb_callback) {
(*fb->fb_callback)(sc->sc_sc1394.sc1394_if, fb->fb_m);
fb->fb_callback = NULL;
} else if (fb->fb_m != NULL)
m_freem(fb->fb_m);
free(fb, M_DEVBUF);
}
}
/*
* Asynchronous Transmit Response -- in response of request packet.
*/
static void
fwohci_atrs_output(struct fwohci_softc *sc, int rcode, struct fwohci_pkt *req,
struct fwohci_pkt *res)
{
if (((*req->fp_trail & 0x001f0000) >> 16) !=
OHCI_CTXCTL_EVENT_ACK_PENDING)
return;
res->fp_hdr[0] = (req->fp_hdr[0] & 0x0000fc00) | 0x00000100;
res->fp_hdr[1] = (req->fp_hdr[1] & 0xffff0000) | (rcode << 12);
switch (req->fp_tcode) {
case IEEE1394_TCODE_WRITE_REQ_QUAD:
case IEEE1394_TCODE_WRITE_REQ_BLOCK:
res->fp_tcode = IEEE1394_TCODE_WRITE_RESP;
res->fp_hlen = 12;
break;
case IEEE1394_TCODE_READ_REQ_QUAD:
res->fp_tcode = IEEE1394_TCODE_READ_RESP_QUAD;
res->fp_hlen = 16;
res->fp_dlen = 0;
if (res->fp_uio.uio_iovcnt == 1 && res->fp_iov[0].iov_len == 4)
res->fp_hdr[3] =
*(u_int32_t *)res->fp_iov[0].iov_base;
res->fp_uio.uio_iovcnt = 0;
break;
case IEEE1394_TCODE_READ_REQ_BLOCK:
case IEEE1394_TCODE_LOCK_REQ:
if (req->fp_tcode == IEEE1394_TCODE_LOCK_REQ)
res->fp_tcode = IEEE1394_TCODE_LOCK_RESP;
else
res->fp_tcode = IEEE1394_TCODE_READ_RESP_BLOCK;
res->fp_hlen = 16;
res->fp_dlen = res->fp_uio.uio_resid;
res->fp_hdr[3] = res->fp_dlen << 16;
break;
}
res->fp_hdr[0] |= (res->fp_tcode << 4);
fwohci_at_output(sc, sc->sc_ctx_atrs, res);
}
/*
* APPLICATION LAYER SERVICES
*/
/*
* Retrieve Global UID from GUID ROM
*/
static int
fwohci_guidrom_init(struct fwohci_softc *sc)
{
int i, n, off;
u_int32_t val1, val2;
/* Extract the Global UID
*/
val1 = OHCI_CSR_READ(sc, OHCI_REG_GUIDHi);
val2 = OHCI_CSR_READ(sc, OHCI_REG_GUIDLo);
if (val1 != 0 || val2 != 0) {
sc->sc_sc1394.sc1394_guid[0] = (val1 >> 24) & 0xff;
sc->sc_sc1394.sc1394_guid[1] = (val1 >> 16) & 0xff;
sc->sc_sc1394.sc1394_guid[2] = (val1 >> 8) & 0xff;
sc->sc_sc1394.sc1394_guid[3] = (val1 >> 0) & 0xff;
sc->sc_sc1394.sc1394_guid[4] = (val2 >> 24) & 0xff;
sc->sc_sc1394.sc1394_guid[5] = (val2 >> 16) & 0xff;
sc->sc_sc1394.sc1394_guid[6] = (val2 >> 8) & 0xff;
sc->sc_sc1394.sc1394_guid[7] = (val2 >> 0) & 0xff;
} else {
val1 = OHCI_CSR_READ(sc, OHCI_REG_Version);
if ((val1 & OHCI_Version_GUID_ROM) == 0)
return -1;
OHCI_CSR_WRITE(sc, OHCI_REG_Guid_Rom, OHCI_Guid_AddrReset);
for (i = 0; i < OHCI_LOOP; i++) {
val1 = OHCI_CSR_READ(sc, OHCI_REG_Guid_Rom);
if (!(val1 & OHCI_Guid_AddrReset))
break;
DELAY(10);
}
off = OHCI_BITVAL(val1, OHCI_Guid_MiniROM) + 4;
val2 = 0;
for (n = 0; n < off + sizeof(sc->sc_sc1394.sc1394_guid); n++) {
OHCI_CSR_WRITE(sc, OHCI_REG_Guid_Rom,
OHCI_Guid_RdStart);
for (i = 0; i < OHCI_LOOP; i++) {
val1 = OHCI_CSR_READ(sc, OHCI_REG_Guid_Rom);
if (!(val1 & OHCI_Guid_RdStart))
break;
DELAY(10);
}
if (n < off)
continue;
val1 = OHCI_BITVAL(val1, OHCI_Guid_RdData);
sc->sc_sc1394.sc1394_guid[n - off] = val1;
val2 |= val1;
}
if (val2 == 0)
return -1;
}
return 0;
}
/*
* Initialization for Configuration ROM (no DMA context)
*/
#define CFR_MAXUNIT 20
struct configromctx {
u_int32_t *ptr;
int curunit;
struct {
u_int32_t *start;
int length;
u_int32_t *refer;
int refunit;
} unit[CFR_MAXUNIT];
};
#define CFR_PUT_DATA4(cfr, d1, d2, d3, d4) \
(*(cfr)->ptr++ = (((d1)<<24) | ((d2)<<16) | ((d3)<<8) | (d4)))
#define CFR_PUT_DATA1(cfr, d) (*(cfr)->ptr++ = (d))
#define CFR_PUT_VALUE(cfr, key, d) (*(cfr)->ptr++ = ((key)<<24) | (d))
#define CFR_PUT_CRC(cfr, n) \
(*(cfr)->unit[n].start = ((cfr)->unit[n].length << 16) | \
fwohci_crc16((cfr)->unit[n].start + 1, (cfr)->unit[n].length))
#define CFR_START_UNIT(cfr, n) \
do { \
if ((cfr)->unit[n].refer != NULL) { \
*(cfr)->unit[n].refer |= \
(cfr)->ptr - (cfr)->unit[n].refer; \
CFR_PUT_CRC(cfr, (cfr)->unit[n].refunit); \
} \
(cfr)->curunit = (n); \
(cfr)->unit[n].start = (cfr)->ptr++; \
} while (0 /* CONSTCOND */)
#define CFR_PUT_REFER(cfr, key, n) \
do { \
(cfr)->unit[n].refer = (cfr)->ptr; \
(cfr)->unit[n].refunit = (cfr)->curunit; \
*(cfr)->ptr++ = (key) << 24; \
} while (0 /* CONSTCOND */)
#define CFR_END_UNIT(cfr) \
do { \
(cfr)->unit[(cfr)->curunit].length = (cfr)->ptr - \
((cfr)->unit[(cfr)->curunit].start + 1); \
CFR_PUT_CRC(cfr, (cfr)->curunit); \
} while (0 /* CONSTCOND */)
static u_int16_t
fwohci_crc16(u_int32_t *ptr, int len)
{
int shift;
u_int32_t crc, sum, data;
crc = 0;
while (len-- > 0) {
data = *ptr++;
for (shift = 28; shift >= 0; shift -= 4) {
sum = ((crc >> 12) ^ (data >> shift)) & 0x000f;
crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ sum;
}
crc &= 0xffff;
}
return crc;
}
static void
fwohci_configrom_init(struct fwohci_softc *sc)
{
int i, val;
struct fwohci_buf *fb;
u_int32_t *hdr;
struct configromctx cfr;
fb = &sc->sc_buf_cnfrom;
memset(&cfr, 0, sizeof(cfr));
cfr.ptr = hdr = (u_int32_t *)fb->fb_buf;
/* headers */
CFR_START_UNIT(&cfr, 0);
CFR_PUT_DATA1(&cfr, OHCI_CSR_READ(sc, OHCI_REG_BusId));
CFR_PUT_DATA1(&cfr, OHCI_CSR_READ(sc, OHCI_REG_BusOptions));
CFR_PUT_DATA1(&cfr, OHCI_CSR_READ(sc, OHCI_REG_GUIDHi));
CFR_PUT_DATA1(&cfr, OHCI_CSR_READ(sc, OHCI_REG_GUIDLo));
CFR_END_UNIT(&cfr);
/* copy info_length from crc_length */
*hdr |= (*hdr & 0x00ff0000) << 8;
OHCI_CSR_WRITE(sc, OHCI_REG_ConfigROMhdr, *hdr);
/* root directory */
CFR_START_UNIT(&cfr, 1);
CFR_PUT_VALUE(&cfr, 0x03, 0x00005e); /* vendor id */
CFR_PUT_REFER(&cfr, 0x81, 2); /* textual descriptor offset */
CFR_PUT_VALUE(&cfr, 0x0c, 0x0083c0); /* node capability */
/* spt,64,fix,lst,drq */
#ifdef INET
CFR_PUT_REFER(&cfr, 0xd1, 3); /* IPv4 unit directory */
#endif /* INET */
#ifdef INET6
CFR_PUT_REFER(&cfr, 0xd1, 4); /* IPv6 unit directory */
#endif /* INET6 */
CFR_END_UNIT(&cfr);
CFR_START_UNIT(&cfr, 2);
CFR_PUT_VALUE(&cfr, 0, 0); /* textual descriptor */
CFR_PUT_DATA1(&cfr, 0); /* minimal ASCII */
CFR_PUT_DATA4(&cfr, 'N', 'e', 't', 'B');
CFR_PUT_DATA4(&cfr, 'S', 'D', 0x00, 0x00);
CFR_END_UNIT(&cfr);
#ifdef INET
/* IPv4 unit directory */
CFR_START_UNIT(&cfr, 3);
CFR_PUT_VALUE(&cfr, 0x12, 0x00005e); /* unit spec id */
CFR_PUT_REFER(&cfr, 0x81, 6); /* textual descriptor offset */
CFR_PUT_VALUE(&cfr, 0x13, 0x000001); /* unit sw version */
CFR_PUT_REFER(&cfr, 0x81, 7); /* textual descriptor offset */
CFR_PUT_REFER(&cfr, 0x95, 8); /* Unit location */
CFR_END_UNIT(&cfr);
CFR_START_UNIT(&cfr, 6);
CFR_PUT_VALUE(&cfr, 0, 0); /* textual descriptor */
CFR_PUT_DATA1(&cfr, 0); /* minimal ASCII */
CFR_PUT_DATA4(&cfr, 'I', 'A', 'N', 'A');
CFR_END_UNIT(&cfr);
CFR_START_UNIT(&cfr, 7);
CFR_PUT_VALUE(&cfr, 0, 0); /* textual descriptor */
CFR_PUT_DATA1(&cfr, 0); /* minimal ASCII */
CFR_PUT_DATA4(&cfr, 'I', 'P', 'v', '4');
CFR_END_UNIT(&cfr);
CFR_START_UNIT(&cfr, 8); /* Spec's valid addr range. */
CFR_PUT_DATA1(&cfr, FW_FIFO_HI);
CFR_PUT_DATA1(&cfr, (FW_FIFO_LO | 0x1));
CFR_PUT_DATA1(&cfr, FW_FIFO_HI);
CFR_PUT_DATA1(&cfr, FW_FIFO_LO);
CFR_END_UNIT(&cfr);
#endif /* INET */
#ifdef INET6
/* IPv6 unit directory */
CFR_START_UNIT(&cfr, 4);
CFR_PUT_VALUE(&cfr, 0x12, 0x00005e); /* unit spec id */
CFR_PUT_REFER(&cfr, 0x81, 9); /* textual descriptor offset */
CFR_PUT_VALUE(&cfr, 0x13, 0x000002); /* unit sw version */
/* XXX: TBA by IANA */
CFR_PUT_REFER(&cfr, 0x81, 10); /* textual descriptor offset */
CFR_PUT_REFER(&cfr, 0x95, 11); /* Unit location */
CFR_END_UNIT(&cfr);
CFR_START_UNIT(&cfr, 9);
CFR_PUT_VALUE(&cfr, 0, 0); /* textual descriptor */
CFR_PUT_DATA1(&cfr, 0); /* minimal ASCII */
CFR_PUT_DATA4(&cfr, 'I', 'A', 'N', 'A');
CFR_END_UNIT(&cfr);
CFR_START_UNIT(&cfr, 10);
CFR_PUT_VALUE(&cfr, 0, 0); /* textual descriptor */
CFR_PUT_DATA1(&cfr, 0);
CFR_PUT_DATA4(&cfr, 'I', 'P', 'v', '6');
CFR_END_UNIT(&cfr);
CFR_START_UNIT(&cfr, 11); /* Spec's valid addr range. */
CFR_PUT_DATA1(&cfr, FW_FIFO_HI);
CFR_PUT_DATA1(&cfr, (FW_FIFO_LO | 0x1));
CFR_PUT_DATA1(&cfr, FW_FIFO_HI);
CFR_PUT_DATA1(&cfr, FW_FIFO_LO);
CFR_END_UNIT(&cfr);
#endif /* INET6 */
fb->fb_off = cfr.ptr - hdr;
#ifdef FW_DEBUG
DPRINTF(("%s: Config ROM:", sc->sc_sc1394.sc1394_dev.dv_xname));
for (i = 0; i < fb->fb_off; i++)
DPRINTF(("%s%08x", i&7?" ":"\n ", hdr[i]));
DPRINTF(("\n"));
#endif /* FW_DEBUG */
/*
* Make network byte order for DMA
*/
for (i = 0; i < fb->fb_off; i++)
HTONL(hdr[i]);
bus_dmamap_sync(sc->sc_dmat, fb->fb_dmamap, 0,
(caddr_t)cfr.ptr - fb->fb_buf, BUS_DMASYNC_PREWRITE);
OHCI_CSR_WRITE(sc, OHCI_REG_ConfigROMmap,
fb->fb_dmamap->dm_segs[0].ds_addr);
/* This register is only valid on OHCI 1.1. */
val = OHCI_CSR_READ(sc, OHCI_REG_Version);
if ((OHCI_Version_GET_Version(val) == 1) &&
(OHCI_Version_GET_Revision(val) == 1))
OHCI_CSR_WRITE(sc, OHCI_REG_HCControlSet,
OHCI_HCControl_BIBImageValid);
/* Only allow quad reads of the rom. */
for (i = 0; i < fb->fb_off; i++)
fwohci_handler_set(sc, IEEE1394_TCODE_READ_REQ_QUAD,
CSR_BASE_HI, CSR_BASE_LO + CSR_CONFIG_ROM + (i * 4), 0,
fwohci_configrom_input, NULL);
}
static int
fwohci_configrom_input(struct fwohci_softc *sc, void *arg,
struct fwohci_pkt *pkt)
{
struct fwohci_pkt res;
u_int32_t loc, *rom;
/* This will be used as an array index so size accordingly. */
loc = pkt->fp_hdr[2] - (CSR_BASE_LO + CSR_CONFIG_ROM);
if ((loc & 0x03) != 0) {
/* alignment error */
return IEEE1394_RCODE_ADDRESS_ERROR;
}
else
loc /= 4;
rom = (u_int32_t *)sc->sc_buf_cnfrom.fb_buf;
DPRINTFN(1, ("fwohci_configrom_input: ConfigRom[0x%04x]: 0x%08x\n", loc,
ntohl(rom[loc])));
memset(&res, 0, sizeof(res));
res.fp_hdr[3] = rom[loc];
fwohci_atrs_output(sc, IEEE1394_RCODE_COMPLETE, pkt, &res);
return -1;
}
/*
* SelfID buffer (no DMA context)
*/
static void
fwohci_selfid_init(struct fwohci_softc *sc)
{
struct fwohci_buf *fb;
fb = &sc->sc_buf_selfid;
#ifdef DIAGNOSTIC
if ((fb->fb_dmamap->dm_segs[0].ds_addr & 0x7ff) != 0)
panic("fwohci_selfid_init: not aligned: %ld (%ld) %p",
(unsigned long)fb->fb_dmamap->dm_segs[0].ds_addr,
(unsigned long)fb->fb_dmamap->dm_segs[0].ds_len, fb->fb_buf);
#endif
memset(fb->fb_buf, 0, fb->fb_dmamap->dm_segs[0].ds_len);
bus_dmamap_sync(sc->sc_dmat, fb->fb_dmamap, 0,
fb->fb_dmamap->dm_segs[0].ds_len, BUS_DMASYNC_PREREAD);
OHCI_CSR_WRITE(sc, OHCI_REG_SelfIDBuffer,
fb->fb_dmamap->dm_segs[0].ds_addr);
}
static int
fwohci_selfid_input(struct fwohci_softc *sc)
{
int i;
u_int32_t count, val, gen;
u_int32_t *buf;
buf = (u_int32_t *)sc->sc_buf_selfid.fb_buf;
val = OHCI_CSR_READ(sc, OHCI_REG_SelfIDCount);
again:
if (val & OHCI_SelfID_Error) {
printf("%s: SelfID Error\n", sc->sc_sc1394.sc1394_dev.dv_xname);
return -1;
}
count = OHCI_BITVAL(val, OHCI_SelfID_Size);
bus_dmamap_sync(sc->sc_dmat, sc->sc_buf_selfid.fb_dmamap,
0, count << 2, BUS_DMASYNC_POSTREAD);
gen = OHCI_BITVAL(buf[0], OHCI_SelfID_Gen);
#ifdef FW_DEBUG
DPRINTFN(1, ("%s: SelfID: 0x%08x", sc->sc_sc1394.sc1394_dev.dv_xname,
val));
for (i = 0; i < count; i++)
DPRINTFN(2, ("%s%08x", i&7?" ":"\n ", buf[i]));
DPRINTFN(1, ("\n"));
#endif /* FW_DEBUG */
for (i = 1; i < count; i += 2) {
if (buf[i] != ~buf[i + 1])
break;
if (buf[i] & 0x00000001)
continue; /* more pkt */
if (buf[i] & 0x00800000)
continue; /* external id */
sc->sc_rootid = (buf[i] & 0x3f000000) >> 24;
if ((buf[i] & 0x00400800) == 0x00400800)
sc->sc_irmid = sc->sc_rootid;
}
val = OHCI_CSR_READ(sc, OHCI_REG_SelfIDCount);
if (OHCI_BITVAL(val, OHCI_SelfID_Gen) != gen) {
if (OHCI_BITVAL(val, OHCI_SelfID_Gen) !=
OHCI_BITVAL(buf[0], OHCI_SelfID_Gen))
goto again;
DPRINTF(("%s: SelfID Gen mismatch (%d, %d)\n",
sc->sc_sc1394.sc1394_dev.dv_xname, gen,
OHCI_BITVAL(val, OHCI_SelfID_Gen)));
return -1;
}
if (i != count) {
printf("%s: SelfID corrupted (%d, 0x%08x, 0x%08x)\n",
sc->sc_sc1394.sc1394_dev.dv_xname, i, buf[i], buf[i + 1]);
#if 1
if (i == 1 && buf[i] == 0 && buf[i + 1] == 0) {
/*
* XXX: CXD3222 sometimes fails to DMA
* selfid packet??
*/
sc->sc_rootid = (count - 1) / 2 - 1;
sc->sc_irmid = sc->sc_rootid;
} else
#endif
return -1;
}
val = OHCI_CSR_READ(sc, OHCI_REG_NodeId);
if ((val & OHCI_NodeId_IDValid) == 0) {
sc->sc_nodeid = 0xffff; /* invalid */
printf("%s: nodeid is invalid\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
return -1;
}
sc->sc_nodeid = val & 0xffff;
sc->sc_sc1394.sc1394_node_id = sc->sc_nodeid & OHCI_NodeId_NodeNumber;
DPRINTF(("%s: nodeid=0x%04x(%d), rootid=%d, irmid=%d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, sc->sc_nodeid,
sc->sc_nodeid & OHCI_NodeId_NodeNumber, sc->sc_rootid,
sc->sc_irmid));
if ((sc->sc_nodeid & OHCI_NodeId_NodeNumber) > sc->sc_rootid)
return -1;
if ((sc->sc_nodeid & OHCI_NodeId_NodeNumber) == sc->sc_rootid)
OHCI_CSR_WRITE(sc, OHCI_REG_LinkControlSet,
OHCI_LinkControl_CycleMaster);
else
OHCI_CSR_WRITE(sc, OHCI_REG_LinkControlClear,
OHCI_LinkControl_CycleMaster);
return 0;
}
/*
* some CSRs are handled by driver.
*/
static void
fwohci_csr_init(struct fwohci_softc *sc)
{
int i;
static u_int32_t csr[] = {
CSR_STATE_CLEAR, CSR_STATE_SET, CSR_SB_CYCLE_TIME,
CSR_SB_BUS_TIME, CSR_SB_BUSY_TIMEOUT, CSR_SB_BUS_MANAGER_ID,
CSR_SB_CHANNEL_AVAILABLE_HI, CSR_SB_CHANNEL_AVAILABLE_LO,
CSR_SB_BROADCAST_CHANNEL
};
for (i = 0; i < sizeof(csr) / sizeof(csr[0]); i++) {
fwohci_handler_set(sc, IEEE1394_TCODE_WRITE_REQ_QUAD,
CSR_BASE_HI, CSR_BASE_LO + csr[i], 0, fwohci_csr_input,
NULL);
fwohci_handler_set(sc, IEEE1394_TCODE_READ_REQ_QUAD,
CSR_BASE_HI, CSR_BASE_LO + csr[i], 0, fwohci_csr_input,
NULL);
}
sc->sc_csr[CSR_SB_BROADCAST_CHANNEL] = 31; /*XXX*/
}
static int
fwohci_csr_input(struct fwohci_softc *sc, void *arg, struct fwohci_pkt *pkt)
{
struct fwohci_pkt res;
u_int32_t reg;
/*
* XXX need to do special functionality other than just r/w...
*/
reg = pkt->fp_hdr[2] - CSR_BASE_LO;
if ((reg & 0x03) != 0) {
/* alignment error */
return IEEE1394_RCODE_ADDRESS_ERROR;
}
DPRINTFN(1, ("fwohci_csr_input: CSR[0x%04x]: 0x%08x", reg,
*(u_int32_t *)(&sc->sc_csr[reg])));
if (pkt->fp_tcode == IEEE1394_TCODE_WRITE_REQ_QUAD) {
DPRINTFN(1, (" -> 0x%08x\n",
ntohl(*(u_int32_t *)pkt->fp_iov[0].iov_base)));
*(u_int32_t *)&sc->sc_csr[reg] =
ntohl(*(u_int32_t *)pkt->fp_iov[0].iov_base);
} else {
DPRINTFN(1, ("\n"));
res.fp_hdr[3] = htonl(*(u_int32_t *)&sc->sc_csr[reg]);
res.fp_iov[0].iov_base = &res.fp_hdr[3];
res.fp_iov[0].iov_len = 4;
res.fp_uio.uio_resid = 4;
res.fp_uio.uio_iovcnt = 1;
fwohci_atrs_output(sc, IEEE1394_RCODE_COMPLETE, pkt, &res);
return -1;
}
return IEEE1394_RCODE_COMPLETE;
}
/*
* Mapping between nodeid and unique ID (EUI-64).
*
* Track old mappings and simply update their devices with the new id's when
* they match an existing EUI. This allows proper renumeration of the bus.
*/
static void
fwohci_uid_collect(struct fwohci_softc *sc)
{
int i;
struct fwohci_uidtbl *fu;
struct ieee1394_softc *iea;
LIST_FOREACH(iea, &sc->sc_nodelist, sc1394_node)
iea->sc1394_node_id = 0xffff;
if (sc->sc_uidtbl != NULL)
free(sc->sc_uidtbl, M_DEVBUF);
sc->sc_uidtbl = malloc(sizeof(*fu) * (sc->sc_rootid + 1), M_DEVBUF,
M_NOWAIT|M_ZERO); /* XXX M_WAITOK requires locks */
if (sc->sc_uidtbl == NULL)
return;
for (i = 0, fu = sc->sc_uidtbl; i <= sc->sc_rootid; i++, fu++) {
if (i == (sc->sc_nodeid & OHCI_NodeId_NodeNumber)) {
memcpy(fu->fu_uid, sc->sc_sc1394.sc1394_guid, 8);
fu->fu_valid = 3;
iea = (struct ieee1394_softc *)sc->sc_sc1394.sc1394_if;
if (iea) {
iea->sc1394_node_id = i;
DPRINTF(("%s: Updating nodeid to %d\n",
iea->sc1394_dev.dv_xname,
iea->sc1394_node_id));
}
} else {
fu->fu_valid = 0;
fwohci_uid_req(sc, i);
}
}
if (sc->sc_rootid == 0)
fwohci_check_nodes(sc);
}
static void
fwohci_uid_req(struct fwohci_softc *sc, int phyid)
{
struct fwohci_pkt pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.fp_tcode = IEEE1394_TCODE_READ_REQ_QUAD;
pkt.fp_hlen = 12;
pkt.fp_dlen = 0;
pkt.fp_hdr[0] = 0x00000100 | (sc->sc_tlabel << 10) |
(pkt.fp_tcode << 4);
pkt.fp_hdr[1] = ((0xffc0 | phyid) << 16) | CSR_BASE_HI;
pkt.fp_hdr[2] = CSR_BASE_LO + CSR_CONFIG_ROM + 12;
fwohci_handler_set(sc, IEEE1394_TCODE_READ_RESP_QUAD, phyid,
sc->sc_tlabel, 0, fwohci_uid_input, (void *)0);
sc->sc_tlabel = (sc->sc_tlabel + 1) & 0x3f;
fwohci_at_output(sc, sc->sc_ctx_atrq, &pkt);
pkt.fp_hdr[0] = 0x00000100 | (sc->sc_tlabel << 10) |
(pkt.fp_tcode << 4);
pkt.fp_hdr[2] = CSR_BASE_LO + CSR_CONFIG_ROM + 16;
fwohci_handler_set(sc, IEEE1394_TCODE_READ_RESP_QUAD, phyid,
sc->sc_tlabel, 0, fwohci_uid_input, (void *)1);
sc->sc_tlabel = (sc->sc_tlabel + 1) & 0x3f;
fwohci_at_output(sc, sc->sc_ctx_atrq, &pkt);
}
static int
fwohci_uid_input(struct fwohci_softc *sc, void *arg, struct fwohci_pkt *res)
{
struct fwohci_uidtbl *fu;
struct ieee1394_softc *iea;
struct ieee1394_attach_args fwa;
int i, n, done, rcode, found;
found = 0;
n = (res->fp_hdr[1] >> 16) & OHCI_NodeId_NodeNumber;
rcode = (res->fp_hdr[1] & 0x0000f000) >> 12;
if (rcode != IEEE1394_RCODE_COMPLETE ||
sc->sc_uidtbl == NULL ||
n > sc->sc_rootid)
return 0;
fu = &sc->sc_uidtbl[n];
if (arg == 0) {
memcpy(fu->fu_uid, res->fp_iov[0].iov_base, 4);
fu->fu_valid |= 0x1;
} else {
memcpy(fu->fu_uid + 4, res->fp_iov[0].iov_base, 4);
fu->fu_valid |= 0x2;
}
#ifdef FW_DEBUG
if (fu->fu_valid == 0x3)
DPRINTFN(1, ("fwohci_uid_input: "
"Node %d, UID %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", n,
fu->fu_uid[0], fu->fu_uid[1], fu->fu_uid[2], fu->fu_uid[3],
fu->fu_uid[4], fu->fu_uid[5], fu->fu_uid[6], fu->fu_uid[7]));
#endif
if (fu->fu_valid == 0x3) {
LIST_FOREACH(iea, &sc->sc_nodelist, sc1394_node)
if (memcmp(iea->sc1394_guid, fu->fu_uid, 8) == 0) {
found = 1;
iea->sc1394_node_id = n;
DPRINTF(("%s: Updating nodeid to %d\n",
iea->sc1394_dev.dv_xname,
iea->sc1394_node_id));
if (iea->sc1394_callback.sc1394_reset)
iea->sc1394_callback.sc1394_reset(iea,
iea->sc1394_callback.sc1394_resetarg);
break;
}
if (!found) {
strcpy(fwa.name, "fwnode");
memcpy(fwa.uid, fu->fu_uid, 8);
fwa.nodeid = n;
iea = (struct ieee1394_softc *)
config_found_sm_loc(&sc->sc_sc1394.sc1394_dev,
"fwbus", NULL, &fwa,
fwohci_print, fwohci_submatch);
if (iea != NULL)
LIST_INSERT_HEAD(&sc->sc_nodelist, iea,
sc1394_node);
}
}
done = 1;
for (i = 0; i < sc->sc_rootid + 1; i++) {
fu = &sc->sc_uidtbl[i];
if (fu->fu_valid != 0x3) {
done = 0;
break;
}
}
if (done)
fwohci_check_nodes(sc);
return 0;
}
static void
fwohci_check_nodes(struct fwohci_softc *sc)
{
struct device *detach = NULL;
struct ieee1394_softc *iea;
LIST_FOREACH(iea, &sc->sc_nodelist, sc1394_node) {
/*
* Have to defer detachment until the next
* loop iteration since config_detach
* free's the softc and the loop iterator
* needs data from the softc to move
* forward.
*/
if (detach) {
config_detach(detach, 0);
detach = NULL;
}
if (iea->sc1394_node_id == 0xffff) {
detach = (struct device *)iea;
LIST_REMOVE(iea, sc1394_node);
}
}
if (detach)
config_detach(detach, 0);
}
static int
fwohci_uid_lookup(struct fwohci_softc *sc, const u_int8_t *uid)
{
struct fwohci_uidtbl *fu;
int n;
static const u_int8_t bcast[] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
fu = sc->sc_uidtbl;
if (fu == NULL) {
if (memcmp(uid, bcast, sizeof(bcast)) == 0)
return IEEE1394_BCAST_PHY_ID;
fwohci_uid_collect(sc); /* try to get */
return -1;
}
for (n = 0; n <= sc->sc_rootid; n++, fu++) {
if (fu->fu_valid == 0x3 && memcmp(fu->fu_uid, uid, 8) == 0)
return n;
}
if (memcmp(uid, bcast, sizeof(bcast)) == 0)
return IEEE1394_BCAST_PHY_ID;
for (n = 0, fu = sc->sc_uidtbl; n <= sc->sc_rootid; n++, fu++) {
if (fu->fu_valid != 0x3) {
/*
* XXX: need timer before retransmission
*/
fwohci_uid_req(sc, n);
}
}
return -1;
}
/*
* functions to support network interface
*/
static int
fwohci_if_inreg(struct device *self, u_int32_t offhi, u_int32_t offlo,
void (*handler)(struct device *, struct mbuf *))
{
struct fwohci_softc *sc = (struct fwohci_softc *)self;
fwohci_handler_set(sc, IEEE1394_TCODE_WRITE_REQ_BLOCK, offhi, offlo, 0,
handler ? fwohci_if_input : NULL, handler);
fwohci_handler_set(sc, IEEE1394_TCODE_STREAM_DATA,
(sc->sc_csr[CSR_SB_BROADCAST_CHANNEL] & IEEE1394_ISOCH_MASK) |
OHCI_ASYNC_STREAM,
1 << IEEE1394_TAG_GASP, 0,
handler ? fwohci_if_input : NULL, handler);
return 0;
}
static int
fwohci_if_input(struct fwohci_softc *sc, void *arg, struct fwohci_pkt *pkt)
{
int n, len;
struct mbuf *m;
struct iovec *iov;
void (*handler)(struct device *, struct mbuf *) = arg;
#ifdef FW_DEBUG
int i;
DPRINTFN(1, ("fwohci_if_input: tcode=0x%x, dlen=%d", pkt->fp_tcode,
pkt->fp_dlen));
for (i = 0; i < pkt->fp_hlen/4; i++)
DPRINTFN(2, ("%s%08x", i?" ":"\n ", pkt->fp_hdr[i]));
DPRINTFN(2, ("$"));
for (n = 0, len = pkt->fp_dlen; len > 0; len -= i, n++){
iov = &pkt->fp_iov[n];
for (i = 0; i < iov->iov_len; i++)
DPRINTFN(2, ("%s%02x", (i%32)?((i%4)?"":" "):"\n ",
((u_int8_t *)iov->iov_base)[i]));
DPRINTFN(2, ("$"));
}
DPRINTFN(1, ("\n"));
#endif /* FW_DEBUG */
len = pkt->fp_dlen;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return IEEE1394_RCODE_COMPLETE;
m->m_len = 16;
if (len + m->m_len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return IEEE1394_RCODE_COMPLETE;
}
}
n = (pkt->fp_hdr[1] >> 16) & OHCI_NodeId_NodeNumber;
if (sc->sc_uidtbl == NULL || n > sc->sc_rootid ||
sc->sc_uidtbl[n].fu_valid != 0x3) {
printf("%s: packet from unknown node: phy id %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, n);
m_freem(m);
fwohci_uid_req(sc, n);
return IEEE1394_RCODE_COMPLETE;
}
memcpy(mtod(m, caddr_t), sc->sc_uidtbl[n].fu_uid, 8);
if (pkt->fp_tcode == IEEE1394_TCODE_STREAM_DATA) {
m->m_flags |= M_BCAST;
mtod(m, u_int32_t *)[2] = mtod(m, u_int32_t *)[3] = 0;
} else {
mtod(m, u_int32_t *)[2] = htonl(pkt->fp_hdr[1]);
mtod(m, u_int32_t *)[3] = htonl(pkt->fp_hdr[2]);
}
mtod(m, u_int8_t *)[8] = n; /*XXX: node id for debug */
mtod(m, u_int8_t *)[9] =
(*pkt->fp_trail >> (16 + OHCI_CTXCTL_SPD_BITPOS)) &
((1 << OHCI_CTXCTL_SPD_BITLEN) - 1);
m->m_pkthdr.rcvif = NULL; /* set in child */
m->m_pkthdr.len = len + m->m_len;
/*
* We may use receive buffer by external mbuf instead of copy here.
* But asynchronous receive buffer must be operate in buffer fill
* mode, so that each receive buffer will shared by multiple mbufs.
* If upper layer doesn't free mbuf soon, e.g. application program
* is suspended, buffer must be reallocated.
* Isochronous buffer must be operate in packet buffer mode, and
* it is easy to map receive buffer to external mbuf. But it is
* used for broadcast/multicast only, and is expected not so
* performance sensitive for now.
* XXX: The performance may be important for multicast case,
* so we should revisit here later.
* -- onoe
*/
n = 0;
iov = pkt->fp_uio.uio_iov;
while (len > 0) {
memcpy(mtod(m, caddr_t) + m->m_len, iov->iov_base,
iov->iov_len);
m->m_len += iov->iov_len;
len -= iov->iov_len;
iov++;
}
(*handler)(sc->sc_sc1394.sc1394_if, m);
return IEEE1394_RCODE_COMPLETE;
}
static int
fwohci_if_input_iso(struct fwohci_softc *sc, void *arg, struct fwohci_pkt *pkt)
{
int n, len;
int chan, tag;
struct mbuf *m;
struct iovec *iov;
void (*handler)(struct device *, struct mbuf *) = arg;
#ifdef FW_DEBUG
int i;
#endif
chan = (pkt->fp_hdr[0] & 0x00003f00) >> 8;
tag = (pkt->fp_hdr[0] & 0x0000c000) >> 14;
#ifdef FW_DEBUG
DPRINTFN(1, ("fwohci_if_input_iso: "
"tcode=0x%x, chan=%d, tag=%x, dlen=%d",
pkt->fp_tcode, chan, tag, pkt->fp_dlen));
for (i = 0; i < pkt->fp_hlen/4; i++)
DPRINTFN(2, ("%s%08x", i?" ":"\n\t", pkt->fp_hdr[i]));
DPRINTFN(2, ("$"));
for (n = 0, len = pkt->fp_dlen; len > 0; len -= i, n++){
iov = &pkt->fp_iov[n];
for (i = 0; i < iov->iov_len; i++)
DPRINTFN(2, ("%s%02x",
(i%32)?((i%4)?"":" "):"\n\t",
((u_int8_t *)iov->iov_base)[i]));
DPRINTFN(2, ("$"));
}
DPRINTFN(2, ("\n"));
#endif /* FW_DEBUG */
len = pkt->fp_dlen;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return IEEE1394_RCODE_COMPLETE;
m->m_len = 16;
if (m->m_len + len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return IEEE1394_RCODE_COMPLETE;
}
}
m->m_flags |= M_BCAST;
if (tag == IEEE1394_TAG_GASP) {
n = (pkt->fp_hdr[1] >> 16) & OHCI_NodeId_NodeNumber;
if (sc->sc_uidtbl == NULL || n > sc->sc_rootid ||
sc->sc_uidtbl[n].fu_valid != 0x3) {
printf("%s: packet from unknown node: phy id %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, n);
m_freem(m);
return IEEE1394_RCODE_COMPLETE;
}
memcpy(mtod(m, caddr_t), sc->sc_uidtbl[n].fu_uid, 8);
mtod(m, u_int32_t *)[2] = htonl(pkt->fp_hdr[1]);
mtod(m, u_int32_t *)[3] = htonl(pkt->fp_hdr[2]);
mtod(m, u_int8_t *)[8] = n; /*XXX: node id for debug */
mtod(m, u_int8_t *)[9] =
(*pkt->fp_trail >> (16 + OHCI_CTXCTL_SPD_BITPOS)) &
((1 << OHCI_CTXCTL_SPD_BITLEN) - 1);
}
mtod(m, u_int8_t *)[14] = chan;
mtod(m, u_int8_t *)[15] = tag;
m->m_pkthdr.rcvif = NULL; /* set in child */
m->m_pkthdr.len = len + m->m_len;
/*
* We may use receive buffer by external mbuf instead of copy here.
* But asynchronous receive buffer must be operate in buffer fill
* mode, so that each receive buffer will shared by multiple mbufs.
* If upper layer doesn't free mbuf soon, e.g. application program
* is suspended, buffer must be reallocated.
* Isochronous buffer must be operate in packet buffer mode, and
* it is easy to map receive buffer to external mbuf. But it is
* used for broadcast/multicast only, and is expected not so
* performance sensitive for now.
* XXX: The performance may be important for multicast case,
* so we should revisit here later.
* -- onoe
*/
n = 0;
iov = pkt->fp_uio.uio_iov;
while (len > 0) {
memcpy(mtod(m, caddr_t) + m->m_len, iov->iov_base,
iov->iov_len);
m->m_len += iov->iov_len;
len -= iov->iov_len;
iov++;
}
(*handler)(sc->sc_sc1394.sc1394_if, m);
return IEEE1394_RCODE_COMPLETE;
}
static int
fwohci_if_output(struct device *self, struct mbuf *m0,
void (*callback)(struct device *, struct mbuf *))
{
struct fwohci_softc *sc = (struct fwohci_softc *)self;
struct fwohci_pkt pkt;
u_int8_t *p;
int n = 0, error, spd, hdrlen, maxrec; /* XXX: gcc */
#ifdef FW_DEBUG
struct mbuf *m;
#endif
p = mtod(m0, u_int8_t *);
if (m0->m_flags & (M_BCAST | M_MCAST)) {
spd = IEEE1394_SPD_S100; /*XXX*/
maxrec = 512; /*XXX*/
hdrlen = 8;
} else {
n = fwohci_uid_lookup(sc, p);
if (n < 0) {
printf("%s: nodeid unknown:"
" %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
error = EHOSTUNREACH;
goto end;
}
if (n == IEEE1394_BCAST_PHY_ID) {
printf("%s: broadcast with !M_MCAST\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
#ifdef FW_DEBUG
DPRINTFN(2, ("packet:"));
for (m = m0; m != NULL; m = m->m_next) {
for (n = 0; n < m->m_len; n++)
DPRINTFN(2, ("%s%02x", (n%32)?
((n%4)?"":" "):"\n ",
mtod(m, u_int8_t *)[n]));
DPRINTFN(2, ("$"));
}
DPRINTFN(2, ("\n"));
#endif
error = EHOSTUNREACH;
goto end;
}
maxrec = 2 << p[8];
spd = p[9];
hdrlen = 0;
}
if (spd > sc->sc_sc1394.sc1394_link_speed) {
DPRINTF(("fwohci_if_output: spd (%d) is faster than %d\n",
spd, sc->sc_sc1394.sc1394_link_speed));
spd = sc->sc_sc1394.sc1394_link_speed;
}
if (maxrec > (512 << spd)) {
DPRINTF(("fwohci_if_output: maxrec (%d) is larger for spd (%d)"
"\n", maxrec, spd));
maxrec = 512 << spd;
}
while (maxrec > sc->sc_sc1394.sc1394_max_receive) {
DPRINTF(("fwohci_if_output: maxrec (%d) is larger than"
" %d\n", maxrec, sc->sc_sc1394.sc1394_max_receive));
maxrec >>= 1;
}
if (maxrec < 512) {
DPRINTF(("fwohci_if_output: maxrec (%d) is smaller than "
"minimum\n", maxrec));
maxrec = 512;
}
m_adj(m0, 16 - hdrlen);
if (m0->m_pkthdr.len > maxrec) {
DPRINTF(("fwohci_if_output: packet too big: hdr %d, pktlen "
"%d, maxrec %d\n", hdrlen, m0->m_pkthdr.len, maxrec));
error = E2BIG; /*XXX*/
goto end;
}
memset(&pkt, 0, sizeof(pkt));
pkt.fp_uio.uio_iov = pkt.fp_iov;
pkt.fp_uio.uio_segflg = UIO_SYSSPACE;
pkt.fp_uio.uio_rw = UIO_WRITE;
if (m0->m_flags & (M_BCAST | M_MCAST)) {
/* construct GASP header */
p = mtod(m0, u_int8_t *);
p[0] = sc->sc_nodeid >> 8;
p[1] = sc->sc_nodeid & 0xff;
p[2] = 0x00; p[3] = 0x00; p[4] = 0x5e;
p[5] = 0x00; p[6] = 0x00; p[7] = 0x01;
pkt.fp_tcode = IEEE1394_TCODE_STREAM_DATA;
pkt.fp_hlen = 8;
pkt.fp_hdr[0] = (spd << 16) | (IEEE1394_TAG_GASP << 14) |
((sc->sc_csr[CSR_SB_BROADCAST_CHANNEL] &
OHCI_NodeId_NodeNumber) << 8);
pkt.fp_hdr[1] = m0->m_pkthdr.len << 16;
} else {
pkt.fp_tcode = IEEE1394_TCODE_WRITE_REQ_BLOCK;
pkt.fp_hlen = 16;
pkt.fp_hdr[0] = 0x00800100 | (sc->sc_tlabel << 10) |
(spd << 16);
pkt.fp_hdr[1] =
(((sc->sc_nodeid & OHCI_NodeId_BusNumber) | n) << 16) |
(p[10] << 8) | p[11];
pkt.fp_hdr[2] = (p[12]<<24) | (p[13]<<16) | (p[14]<<8) | p[15];
pkt.fp_hdr[3] = m0->m_pkthdr.len << 16;
sc->sc_tlabel = (sc->sc_tlabel + 1) & 0x3f;
}
pkt.fp_hdr[0] |= (pkt.fp_tcode << 4);
pkt.fp_dlen = m0->m_pkthdr.len;
pkt.fp_m = m0;
pkt.fp_callback = callback;
error = fwohci_at_output(sc, sc->sc_ctx_atrq, &pkt);
m0 = pkt.fp_m;
end:
if (m0 != NULL) {
if (callback)
(*callback)(sc->sc_sc1394.sc1394_if, m0);
else
m_freem(m0);
}
return error;
}
/*
* High level routines to provide abstraction to attaching layers to
* send/receive data.
*/
/*
* These break down into 4 routines as follows:
*
* int fwohci_read(struct ieee1394_abuf *)
*
* This routine will attempt to read a region from the requested node.
* A callback must be provided which will be called when either the completed
* read is done or an unrecoverable error occurs. This is mainly a convenience
* routine since it will encapsulate retrying a region as quadlet vs. block
* reads and recombining all the returned data. This could also be done with a
* series of write/inreg's for each packet sent.
*
* int fwohci_write(struct ieee1394_abuf *)
*
* The work horse main entry point for putting packets on the bus. This is the
* generalized interface for fwnode/etc code to put packets out onto the bus.
* It accepts all standard ieee1394 tcodes (XXX: only a few today) and
* optionally will callback via a func pointer to the calling code with the
* resulting ACK code from the packet. If the ACK code is to be ignored (i.e.
* no cb) then the write routine will take care of free'ing the abuf since the
* fwnode/etc code won't have any knowledge of when to do this. This allows for
* simple one-off packets to be sent from the upper-level code without worrying
* about a callback for cleanup.
*
* int fwohci_inreg(struct ieee1394_abuf *, int)
*
* This is very simple. It evals the abuf passed in and registers an internal
* handler as the callback for packets received for that operation.
* The integer argument specifies whether on a block read/write operation to
* allow sub-regions to be read/written (in block form) as well.
*
* XXX: This whole structure needs to be redone as a list of regions and
* operations allowed on those regions.
*
* int fwohci_unreg(struct ieee1394_abuf *, int)
*
* This simply unregisters the respective callback done via inreg for items
* which only need to register an area for a one-time operation (like a status
* buffer a remote node will write to when the current operation is done). The
* int argument specifies the same behavior as inreg, except in reverse (i.e.
* it unregisters).
*/
static int
fwohci_read(struct ieee1394_abuf *ab)
{
struct fwohci_pkt pkt;
struct ieee1394_softc *sc = ab->ab_req;
struct fwohci_softc *psc =
(struct fwohci_softc *)sc->sc1394_dev.dv_parent;
struct fwohci_cb *fcb;
u_int32_t high, lo;
int rv, tcode;
/* Have to have a callback when reading. */
if (ab->ab_cb == NULL)
return -1;
fcb = malloc(sizeof(struct fwohci_cb), M_DEVBUF, M_WAITOK);
fcb->ab = ab;
fcb->count = 0;
fcb->abuf_valid = 1;
high = ((ab->ab_addr & 0x0000ffff00000000ULL) >> 32);
lo = (ab->ab_addr & 0x00000000ffffffffULL);
memset(&pkt, 0, sizeof(pkt));
pkt.fp_hdr[1] = ((0xffc0 | ab->ab_req->sc1394_node_id) << 16) | high;
pkt.fp_hdr[2] = lo;
pkt.fp_dlen = 0;
if (ab->ab_length == 4) {
pkt.fp_tcode = IEEE1394_TCODE_READ_REQ_QUAD;
tcode = IEEE1394_TCODE_READ_RESP_QUAD;
pkt.fp_hlen = 12;
} else {
pkt.fp_tcode = IEEE1394_TCODE_READ_REQ_BLOCK;
pkt.fp_hlen = 16;
tcode = IEEE1394_TCODE_READ_RESP_BLOCK;
pkt.fp_hdr[3] = (ab->ab_length << 16);
}
pkt.fp_hdr[0] = 0x00000100 | (sc->sc1394_link_speed << 16) |
(psc->sc_tlabel << 10) | (pkt.fp_tcode << 4);
pkt.fp_statusarg = fcb;
pkt.fp_statuscb = fwohci_read_resp;
rv = fwohci_handler_set(psc, tcode, ab->ab_req->sc1394_node_id,
psc->sc_tlabel, 0, fwohci_read_resp, fcb);
if (rv)
return rv;
rv = fwohci_at_output(psc, psc->sc_ctx_atrq, &pkt);
if (rv)
fwohci_handler_set(psc, tcode, ab->ab_req->sc1394_node_id,
psc->sc_tlabel, 0, NULL, NULL);
psc->sc_tlabel = (psc->sc_tlabel + 1) & 0x3f;
fcb->count = 1;
return rv;
}
static int
fwohci_write(struct ieee1394_abuf *ab)
{
struct fwohci_pkt pkt;
struct ieee1394_softc *sc = ab->ab_req;
struct fwohci_softc *psc =
(struct fwohci_softc *)sc->sc1394_dev.dv_parent;
u_int32_t high, lo;
int rv;
if (ab->ab_tcode == IEEE1394_TCODE_WRITE_REQ_BLOCK) {
if (ab->ab_length > IEEE1394_MAX_REC(sc->sc1394_max_receive)) {
DPRINTF(("Packet too large: %d\n", ab->ab_length));
return E2BIG;
}
}
if (ab->ab_length >
IEEE1394_MAX_ASYNCH_FOR_SPEED(sc->sc1394_link_speed)) {
DPRINTF(("Packet too large: %d\n", ab->ab_length));
return E2BIG;
}
if (ab->ab_data && ab->ab_uio)
panic("Can't call with uio and data set");
if ((ab->ab_data == NULL) && (ab->ab_uio == NULL))
panic("One of either ab_data or ab_uio must be set");
memset(&pkt, 0, sizeof(pkt));
pkt.fp_tcode = ab->ab_tcode;
if (ab->ab_data) {
pkt.fp_uio.uio_iov = pkt.fp_iov;
pkt.fp_uio.uio_segflg = UIO_SYSSPACE;
pkt.fp_uio.uio_rw = UIO_WRITE;
} else
memcpy(&pkt.fp_uio, ab->ab_uio, sizeof(struct uio));
pkt.fp_statusarg = ab;
pkt.fp_statuscb = fwohci_write_ack;
switch (ab->ab_tcode) {
case IEEE1394_TCODE_WRITE_RESP:
pkt.fp_hlen = 12;
case IEEE1394_TCODE_READ_RESP_QUAD:
case IEEE1394_TCODE_READ_RESP_BLOCK:
if (!pkt.fp_hlen)
pkt.fp_hlen = 16;
high = ab->ab_retlen;
ab->ab_retlen = 0;
lo = 0;
pkt.fp_hdr[0] = 0x00000100 | (sc->sc1394_link_speed << 16) |
(ab->ab_tlabel << 10) | (pkt.fp_tcode << 4);
break;
default:
pkt.fp_hlen = 16;
high = ((ab->ab_addr & 0x0000ffff00000000ULL) >> 32);
lo = (ab->ab_addr & 0x00000000ffffffffULL);
pkt.fp_hdr[0] = 0x00000100 | (sc->sc1394_link_speed << 16) |
(psc->sc_tlabel << 10) | (pkt.fp_tcode << 4);
psc->sc_tlabel = (psc->sc_tlabel + 1) & 0x3f;
break;
}
pkt.fp_hdr[1] = ((0xffc0 | ab->ab_req->sc1394_node_id) << 16) | high;
pkt.fp_hdr[2] = lo;
if (pkt.fp_hlen == 16) {
if (ab->ab_length == 4) {
pkt.fp_hdr[3] = ab->ab_data[0];
pkt.fp_dlen = 0;
} else {
pkt.fp_hdr[3] = (ab->ab_length << 16);
pkt.fp_dlen = ab->ab_length;
if (ab->ab_data) {
pkt.fp_uio.uio_iovcnt = 1;
pkt.fp_uio.uio_resid = ab->ab_length;
pkt.fp_iov[0].iov_base = ab->ab_data;
pkt.fp_iov[0].iov_len = ab->ab_length;
}
}
}
switch (ab->ab_tcode) {
case IEEE1394_TCODE_WRITE_RESP:
case IEEE1394_TCODE_READ_RESP_QUAD:
case IEEE1394_TCODE_READ_RESP_BLOCK:
rv = fwohci_at_output(psc, psc->sc_ctx_atrs, &pkt);
break;
default:
rv = fwohci_at_output(psc, psc->sc_ctx_atrq, &pkt);
break;
}
return rv;
}
static int
fwohci_read_resp(struct fwohci_softc *sc, void *arg, struct fwohci_pkt *pkt)
{
struct fwohci_cb *fcb = arg;
struct ieee1394_abuf *ab = fcb->ab;
struct fwohci_pkt newpkt;
u_int32_t *cur, high, lo;
int i, tcode, rcode, status, rv;
/*
* Both the ACK handling and normal response callbacks are handled here.
* The main reason for this is the various error conditions that can
* occur trying to block read some areas and the ways that gets reported
* back to calling station. This is a variety of ACK codes, responses,
* etc which makes it much more difficult to process if both aren't
* handled here.
*/
/* Check for status packet. */
if (pkt->fp_tcode == -1) {
status = pkt->fp_status & OHCI_DESC_STATUS_ACK_MASK;
rcode = -1;
tcode = (pkt->fp_hdr[0] >> 4) & 0xf;
if ((status != OHCI_CTXCTL_EVENT_ACK_COMPLETE) &&
(status != OHCI_CTXCTL_EVENT_ACK_PENDING))
DPRINTFN(2, ("Got status packet: 0x%02x\n",
(unsigned int)status));
fcb->count--;
/*
* Got all the ack's back and the buffer is invalid (i.e. the
* callback has been called. Clean up.
*/
if (fcb->abuf_valid == 0) {
if (fcb->count == 0)
free(fcb, M_DEVBUF);
return IEEE1394_RCODE_COMPLETE;
}
} else {
status = -1;
tcode = pkt->fp_tcode;
rcode = (pkt->fp_hdr[1] & 0x0000f000) >> 12;
}
/*
* Some area's (like the config rom want to be read as quadlets only.
*
* The current ideas to try are:
*
* Got an ACK_TYPE_ERROR on a block read.
*
* Got either RCODE_TYPE or RCODE_ADDRESS errors in a block read
* response.
*
* In all cases construct a new packet for a quadlet read and let
* mutli_resp handle the iteration over the space.
*/
if (((status == OHCI_CTXCTL_EVENT_ACK_TYPE_ERROR) &&
(tcode == IEEE1394_TCODE_READ_REQ_BLOCK)) ||
(((rcode == IEEE1394_RCODE_TYPE_ERROR) ||
(rcode == IEEE1394_RCODE_ADDRESS_ERROR)) &&
(tcode == IEEE1394_TCODE_READ_RESP_BLOCK))) {
/* Read the area in quadlet chunks (internally track this). */
memset(&newpkt, 0, sizeof(newpkt));
high = ((ab->ab_addr & 0x0000ffff00000000ULL) >> 32);
lo = (ab->ab_addr & 0x00000000ffffffffULL);
newpkt.fp_tcode = IEEE1394_TCODE_READ_REQ_QUAD;
newpkt.fp_hlen = 12;
newpkt.fp_dlen = 0;
newpkt.fp_hdr[1] =
((0xffc0 | ab->ab_req->sc1394_node_id) << 16) | high;
newpkt.fp_hdr[2] = lo;
newpkt.fp_hdr[0] = 0x00000100 | (sc->sc_tlabel << 10) |
(newpkt.fp_tcode << 4);
rv = fwohci_handler_set(sc, IEEE1394_TCODE_READ_RESP_QUAD,
ab->ab_req->sc1394_node_id, sc->sc_tlabel, 0,
fwohci_read_multi_resp, fcb);
if (rv) {
(*ab->ab_cb)(ab, -1);
goto cleanup;
}
newpkt.fp_statusarg = fcb;
newpkt.fp_statuscb = fwohci_read_resp;
rv = fwohci_at_output(sc, sc->sc_ctx_atrq, &newpkt);
if (rv) {
fwohci_handler_set(sc, IEEE1394_TCODE_READ_RESP_QUAD,
ab->ab_req->sc1394_node_id, sc->sc_tlabel, 0, NULL,
NULL);
(*ab->ab_cb)(ab, -1);
goto cleanup;
}
fcb->count++;
sc->sc_tlabel = (sc->sc_tlabel + 1) & 0x3f;
return IEEE1394_RCODE_COMPLETE;
} else if ((rcode != -1) || ((status != -1) &&
(status != OHCI_CTXCTL_EVENT_ACK_COMPLETE) &&
(status != OHCI_CTXCTL_EVENT_ACK_PENDING))) {
/*
* Recombine all the iov data into 1 chunk for higher
* level code.
*/
if (rcode != -1) {
cur = ab->ab_data;
for (i = 0; i < pkt->fp_uio.uio_iovcnt; i++) {
/*
* Make sure and don't exceed the buffer
* allocated for return.
*/
if ((ab->ab_retlen + pkt->fp_iov[i].iov_len) >
ab->ab_length) {
memcpy(cur, pkt->fp_iov[i].iov_base,
(ab->ab_length - ab->ab_retlen));
ab->ab_retlen = ab->ab_length;
break;
}
memcpy(cur, pkt->fp_iov[i].iov_base,
pkt->fp_iov[i].iov_len);
cur += pkt->fp_iov[i].iov_len;
ab->ab_retlen += pkt->fp_iov[i].iov_len;
}
}
if (status != -1)
/* XXX: Need a complete tlabel interface. */
for (i = 0; i < 64; i++)
fwohci_handler_set(sc,
IEEE1394_TCODE_READ_RESP_QUAD,
ab->ab_req->sc1394_node_id, i, 0, NULL,
NULL);
(*ab->ab_cb)(ab, rcode);
goto cleanup;
} else
/* Good ack packet. */
return IEEE1394_RCODE_COMPLETE;
/* Can't get here unless ab->ab_cb has been called. */
cleanup:
fcb->abuf_valid = 0;
if (fcb->count == 0)
free(fcb, M_DEVBUF);
return IEEE1394_RCODE_COMPLETE;
}
static int
fwohci_read_multi_resp(struct fwohci_softc *sc, void *arg,
struct fwohci_pkt *pkt)
{
struct fwohci_cb *fcb = arg;
struct ieee1394_abuf *ab = fcb->ab;
struct fwohci_pkt newpkt;
u_int32_t high, lo;
int rcode, rv;
/*
* Bad return codes from the wire, just return what's already in the
* buf.
*/
/* Make sure a response packet didn't arrive after a bad ACK. */
if (fcb->abuf_valid == 0)
return IEEE1394_RCODE_COMPLETE;
rcode = (pkt->fp_hdr[1] & 0x0000f000) >> 12;
if (rcode) {
(*ab->ab_cb)(ab, rcode);
goto cleanup;
}
if ((ab->ab_retlen + pkt->fp_iov[0].iov_len) > ab->ab_length) {
memcpy(((char *)ab->ab_data + ab->ab_retlen),
pkt->fp_iov[0].iov_base, (ab->ab_length - ab->ab_retlen));
ab->ab_retlen = ab->ab_length;
} else {
memcpy(((char *)ab->ab_data + ab->ab_retlen),
pkt->fp_iov[0].iov_base, 4);
ab->ab_retlen += 4;
}
/* Still more, loop and read 4 more bytes. */
if (ab->ab_retlen < ab->ab_length) {
memset(&newpkt, 0, sizeof(newpkt));
high = ((ab->ab_addr & 0x0000ffff00000000ULL) >> 32);
lo = (ab->ab_addr & 0x00000000ffffffffULL) + ab->ab_retlen;
newpkt.fp_tcode = IEEE1394_TCODE_READ_REQ_QUAD;
newpkt.fp_hlen = 12;
newpkt.fp_dlen = 0;
newpkt.fp_hdr[1] =
((0xffc0 | ab->ab_req->sc1394_node_id) << 16) | high;
newpkt.fp_hdr[2] = lo;
newpkt.fp_hdr[0] = 0x00000100 | (sc->sc_tlabel << 10) |
(newpkt.fp_tcode << 4);
newpkt.fp_statusarg = fcb;
newpkt.fp_statuscb = fwohci_read_resp;
/*
* Bad return code. Just give up and return what's
* come in now.
*/
rv = fwohci_handler_set(sc, IEEE1394_TCODE_READ_RESP_QUAD,
ab->ab_req->sc1394_node_id, sc->sc_tlabel, 0,
fwohci_read_multi_resp, fcb);
if (rv)
(*ab->ab_cb)(ab, -1);
else {
rv = fwohci_at_output(sc, sc->sc_ctx_atrq, &newpkt);
if (rv) {
fwohci_handler_set(sc,
IEEE1394_TCODE_READ_RESP_QUAD,
ab->ab_req->sc1394_node_id, sc->sc_tlabel,
0, NULL, NULL);
(*ab->ab_cb)(ab, -1);
} else {
sc->sc_tlabel = (sc->sc_tlabel + 1) & 0x3f;
fcb->count++;
return IEEE1394_RCODE_COMPLETE;
}
}
} else
(*ab->ab_cb)(ab, IEEE1394_RCODE_COMPLETE);
cleanup:
/* Can't get here unless ab_cb has been called. */
fcb->abuf_valid = 0;
if (fcb->count == 0)
free(fcb, M_DEVBUF);
return IEEE1394_RCODE_COMPLETE;
}
static int
fwohci_write_ack(struct fwohci_softc *sc, void *arg, struct fwohci_pkt *pkt)
{
struct ieee1394_abuf *ab = arg;
u_int16_t status;
status = pkt->fp_status & OHCI_DESC_STATUS_ACK_MASK;
if ((status != OHCI_CTXCTL_EVENT_ACK_COMPLETE) &&
(status != OHCI_CTXCTL_EVENT_ACK_PENDING))
DPRINTF(("Got status packet: 0x%02x\n",
(unsigned int)status));
/* No callback means this level should free the buffers. */
if (ab->ab_cb)
(*ab->ab_cb)(ab, status);
else {
if (ab->ab_data)
free(ab->ab_data, M_1394DATA);
free(ab, M_1394DATA);
}
return IEEE1394_RCODE_COMPLETE;
}
static int
fwohci_inreg(struct ieee1394_abuf *ab, int allow)
{
struct ieee1394_softc *sc = ab->ab_req;
struct fwohci_softc *psc =
(struct fwohci_softc *)sc->sc1394_dev.dv_parent;
u_int32_t high, lo;
int rv;
high = ((ab->ab_addr & 0x0000ffff00000000ULL) >> 32);
lo = (ab->ab_addr & 0x00000000ffffffffULL);
rv = 0;
switch (ab->ab_tcode) {
case IEEE1394_TCODE_READ_REQ_QUAD:
case IEEE1394_TCODE_WRITE_REQ_QUAD:
if (ab->ab_cb)
rv = fwohci_handler_set(psc, ab->ab_tcode, high, lo, 0,
fwohci_parse_input, ab);
else
fwohci_handler_set(psc, ab->ab_tcode, high, lo, 0, NULL,
NULL);
break;
case IEEE1394_TCODE_READ_REQ_BLOCK:
case IEEE1394_TCODE_WRITE_REQ_BLOCK:
if (allow) {
if (ab->ab_cb) {
rv = fwohci_handler_set(psc, ab->ab_tcode,
high, lo, ab->ab_length,
fwohci_parse_input, ab);
if (rv)
fwohci_handler_set(psc, ab->ab_tcode,
high, lo, ab->ab_length, NULL,
NULL);
ab->ab_subok = 1;
} else
fwohci_handler_set(psc, ab->ab_tcode, high, lo,
ab->ab_length, NULL, NULL);
} else {
if (ab->ab_cb)
rv = fwohci_handler_set(psc, ab->ab_tcode, high,
lo, 0, fwohci_parse_input, ab);
else
fwohci_handler_set(psc, ab->ab_tcode, high, lo,
0, NULL, NULL);
}
break;
default:
DPRINTF(("Invalid registration tcode: %d\n", ab->ab_tcode));
return -1;
break;
}
return rv;
}
static int
fwohci_unreg(struct ieee1394_abuf *ab, int allow)
{
void *save;
int rv;
save = ab->ab_cb;
ab->ab_cb = NULL;
rv = fwohci_inreg(ab, allow);
ab->ab_cb = save;
return rv;
}
static int
fwohci_parse_input(struct fwohci_softc *sc, void *arg, struct fwohci_pkt *pkt)
{
struct ieee1394_abuf *ab = (struct ieee1394_abuf *)arg;
u_int64_t addr;
u_int8_t *cur;
int i, count, ret;
ab->ab_tcode = (pkt->fp_hdr[0] >> 4) & 0xf;
ab->ab_tlabel = (pkt->fp_hdr[0] >> 10) & 0x3f;
addr = (((u_int64_t)(pkt->fp_hdr[1] & 0xffff) << 32) | pkt->fp_hdr[2]);
/* Make sure it's always 0 in case this gets reused multiple times. */
ab->ab_retlen = 0;
switch (ab->ab_tcode) {
case IEEE1394_TCODE_READ_REQ_QUAD:
ab->ab_retlen = 4;
/* Response's (if required) will come from callback code */
ret = -1;
break;
case IEEE1394_TCODE_READ_REQ_BLOCK:
ab->ab_retlen = (pkt->fp_hdr[3] >> 16) & 0xffff;
if (ab->ab_subok) {
if ((addr + ab->ab_retlen) >
(ab->ab_addr + ab->ab_length))
return IEEE1394_RCODE_ADDRESS_ERROR;
} else
if (ab->ab_retlen != ab->ab_length)
return IEEE1394_RCODE_ADDRESS_ERROR;
/* Response's (if required) will come from callback code */
ret = -1;
break;
case IEEE1394_TCODE_WRITE_REQ_QUAD:
ab->ab_retlen = 4;
/* Fall through. */
case IEEE1394_TCODE_WRITE_REQ_BLOCK:
if (!ab->ab_retlen)
ab->ab_retlen = (pkt->fp_hdr[3] >> 16) & 0xffff;
if (ab->ab_subok) {
if ((addr + ab->ab_retlen) >
(ab->ab_addr + ab->ab_length))
return IEEE1394_RCODE_ADDRESS_ERROR;
} else
if (ab->ab_retlen > ab->ab_length)
return IEEE1394_RCODE_ADDRESS_ERROR;
if (ab->ab_tcode == IEEE1394_TCODE_WRITE_REQ_QUAD)
ab->ab_data[0] = pkt->fp_hdr[3];
else {
count = 0;
cur = (u_int8_t *)ab->ab_data + (addr - ab->ab_addr);
for (i = 0; i < pkt->fp_uio.uio_iovcnt; i++) {
memcpy(cur, pkt->fp_iov[i].iov_base,
pkt->fp_iov[i].iov_len);
cur += pkt->fp_iov[i].iov_len;
count += pkt->fp_iov[i].iov_len;
}
if (ab->ab_retlen != count)
panic("Packet claims %d length "
"but only %d bytes returned\n",
ab->ab_retlen, count);
}
ret = IEEE1394_RCODE_COMPLETE;
break;
default:
panic("Got a callback for a tcode that wasn't requested: %d",
ab->ab_tcode);
break;
}
if (ab->ab_cb) {
ab->ab_retaddr = addr;
ab->ab_cb(ab, IEEE1394_RCODE_COMPLETE);
}
return ret;
}
static int
fwohci_submatch(struct device *parent, struct cfdata *cf,
const locdesc_t *ldesc, void *aux)
{
struct ieee1394_attach_args *fwa = aux;
/* Both halves must be filled in for a match. */
if ((cf->fwbuscf_idhi == FWBUS_UNK_IDHI &&
cf->fwbuscf_idlo == FWBUS_UNK_IDLO) ||
(cf->fwbuscf_idhi == ntohl(*((u_int32_t *)&fwa->uid[0])) &&
cf->fwbuscf_idlo == ntohl(*((u_int32_t *)&fwa->uid[4]))))
return (config_match(parent, cf, aux));
return 0;
}
int
fwohci_detach(struct fwohci_softc *sc, int flags)
{
int rv = 0;
if (sc->sc_sc1394.sc1394_if != NULL)
rv = config_detach(sc->sc_sc1394.sc1394_if, flags);
if (rv != 0)
return (rv);
callout_stop(&sc->sc_selfid_callout);
if (sc->sc_powerhook != NULL)
powerhook_disestablish(sc->sc_powerhook);
if (sc->sc_shutdownhook != NULL)
shutdownhook_disestablish(sc->sc_shutdownhook);
return (rv);
}
int
fwohci_activate(struct device *self, enum devact act)
{
struct fwohci_softc *sc = (struct fwohci_softc *)self;
int s, rv = 0;
s = splhigh();
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if (sc->sc_sc1394.sc1394_if != NULL)
rv = config_deactivate(sc->sc_sc1394.sc1394_if);
break;
}
splx(s);
return (rv);
}
#ifdef FW_DEBUG
static void
fwohci_show_intr(struct fwohci_softc *sc, u_int32_t intmask)
{
printf("%s: intmask=0x%08x:", sc->sc_sc1394.sc1394_dev.dv_xname,
intmask);
if (intmask & OHCI_Int_CycleTooLong)
printf(" CycleTooLong");
if (intmask & OHCI_Int_UnrecoverableError)
printf(" UnrecoverableError");
if (intmask & OHCI_Int_CycleInconsistent)
printf(" CycleInconsistent");
if (intmask & OHCI_Int_BusReset)
printf(" BusReset");
if (intmask & OHCI_Int_SelfIDComplete)
printf(" SelfIDComplete");
if (intmask & OHCI_Int_LockRespErr)
printf(" LockRespErr");
if (intmask & OHCI_Int_PostedWriteErr)
printf(" PostedWriteErr");
if (intmask & OHCI_Int_ReqTxComplete)
printf(" ReqTxComplete(0x%04x)",
OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_TX_REQUEST,
OHCI_SUBREG_ContextControlClear));
if (intmask & OHCI_Int_RespTxComplete)
printf(" RespTxComplete(0x%04x)",
OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_TX_RESPONSE,
OHCI_SUBREG_ContextControlClear));
if (intmask & OHCI_Int_ARRS)
printf(" ARRS(0x%04x)",
OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_RX_RESPONSE,
OHCI_SUBREG_ContextControlClear));
if (intmask & OHCI_Int_ARRQ)
printf(" ARRQ(0x%04x)",
OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_RX_REQUEST,
OHCI_SUBREG_ContextControlClear));
if (intmask & OHCI_Int_IsochRx)
printf(" IsochRx(0x%08x)",
OHCI_CSR_READ(sc, OHCI_REG_IsoRecvIntEventClear));
if (intmask & OHCI_Int_IsochTx)
printf(" IsochTx(0x%08x)",
OHCI_CSR_READ(sc, OHCI_REG_IsoXmitIntEventClear));
if (intmask & OHCI_Int_RQPkt)
printf(" RQPkt(0x%04x)",
OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_RX_REQUEST,
OHCI_SUBREG_ContextControlClear));
if (intmask & OHCI_Int_RSPkt)
printf(" RSPkt(0x%04x)",
OHCI_ASYNC_DMA_READ(sc, OHCI_CTX_ASYNC_RX_RESPONSE,
OHCI_SUBREG_ContextControlClear));
printf("\n");
}
static void
fwohci_show_phypkt(struct fwohci_softc *sc, u_int32_t val)
{
u_int8_t key, phyid;
key = (val & 0xc0000000) >> 30;
phyid = (val & 0x3f000000) >> 24;
printf("%s: PHY packet from %d: ",
sc->sc_sc1394.sc1394_dev.dv_xname, phyid);
switch (key) {
case 0:
printf("PHY Config:");
if (val & 0x00800000)
printf(" ForceRoot");
if (val & 0x00400000)
printf(" Gap=%x", (val & 0x003f0000) >> 16);
printf("\n");
break;
case 1:
printf("Link-on\n");
break;
case 2:
printf("SelfID:");
if (val & 0x00800000) {
printf(" #%d", (val & 0x00700000) >> 20);
} else {
if (val & 0x00400000)
printf(" LinkActive");
printf(" Gap=%x", (val & 0x003f0000) >> 16);
printf(" Spd=S%d", 100 << ((val & 0x0000c000) >> 14));
if (val & 0x00000800)
printf(" Cont");
if (val & 0x00000002)
printf(" InitiateBusReset");
}
if (val & 0x00000001)
printf(" +");
printf("\n");
break;
default:
printf("unknown: 0x%08x\n", val);
break;
}
}
#endif /* FW_DEBUG */
#if 0
void fwohci_dumpreg(struct ieee1394_softc *, struct fwiso_regdump *);
void
fwohci_dumpreg(struct ieee1394_softc *isc, struct fwiso_regdump *fr)
{
struct fwohci_softc *sc = (struct fwohci_softc *)isc;
#if 0
u_int32_t val;
printf("%s: dump reg\n", isc->sc1394_dev.dv_xname);
printf("\tNodeID reg 0x%08x\n",
OHCI_CSR_READ(sc, OHCI_REG_NodeId));
val = OHCI_CSR_READ(sc, OHCI_REG_IsochronousCycleTimer);
printf("\tIsoCounter 0x%08x, %d %d %d", val,
(val >> 25) & 0xfe, (val >> 12) & 0x1fff, val & 0xfff);
val = OHCI_CSR_READ(sc, OHCI_REG_IntMaskSet);
printf(" IntMask 0x%08x, %s\n", val,
val & OHCI_Int_IsochTx ? "isoTx" : "");
val = OHCI_SYNC_TX_DMA_READ(sc, 0, OHCI_SUBREG_ContextControlSet);
printf("\tIT_CommandPtr 0x%08x ContextCtrl 0x%08x%s%s%s%s\n",
OHCI_SYNC_TX_DMA_READ(sc, 0, OHCI_SUBREG_CommandPtr),
val,
val & OHCI_CTXCTL_RUN ? " run" : "",
val & OHCI_CTXCTL_WAKE ? " wake" : "",
val & OHCI_CTXCTL_DEAD ? " dead" : "",
val & OHCI_CTXCTL_ACTIVE ? " active" : "");
#endif
fr->fr_nodeid = OHCI_CSR_READ(sc, OHCI_REG_NodeId);
fr->fr_isocounter = OHCI_CSR_READ(sc, OHCI_REG_IsochronousCycleTimer);
fr->fr_intmask = OHCI_CSR_READ(sc, OHCI_REG_IntMaskSet);
fr->fr_it0_commandptr = OHCI_SYNC_TX_DMA_READ(sc, 0, OHCI_SUBREG_CommandPtr);
fr->fr_it0_contextctrl = OHCI_SYNC_TX_DMA_READ(sc, 0, OHCI_SUBREG_ContextControlSet);
}
#endif
u_int16_t
fwohci_cycletimer(struct fwohci_softc *sc)
{
u_int32_t reg;
reg = OHCI_CSR_READ(sc, OHCI_REG_IsochronousCycleTimer);
return (reg >> 12)&0xffff;
}
u_int16_t
fwohci_it_cycletimer(ieee1394_it_tag_t it)
{
struct fwohci_it_ctx *itc = (struct fwohci_it_ctx *)it;
return fwohci_cycletimer(itc->itc_sc);
}
/*
* return value: if positive value, number of DMA buffer segments. If
* negative value, error happens. Never zero.
*/
static int
fwohci_misc_dmabuf_alloc(bus_dma_tag_t dmat, int dsize, int segno,
bus_dma_segment_t *segp, bus_dmamap_t *dmapp, void **mapp,
const char *xname)
{
int nsegs;
int error;
printf("fwohci_misc_desc_alloc: dsize %d segno %d\n", dsize, segno);
if ((error = bus_dmamem_alloc(dmat, dsize, PAGE_SIZE, 0,
segp, segno, &nsegs, 0)) != 0) {
printf("%s: unable to allocate descriptor buffer, error = %d\n",
xname, error);
goto fail_0;
}
DPRINTF(("fwohci_misc_desc_alloc: %d segment[s]\n", nsegs));
if ((error = bus_dmamem_map(dmat, segp, nsegs, dsize, (caddr_t *)mapp,
BUS_DMA_COHERENT | BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to map descriptor buffer, error = %d\n",
xname, error);
goto fail_1;
}
DPRINTF(("fwohci_misc_desc_alloc: %s map ok\n", xname));
#ifdef FWOHCI_DEBUG
{
int loop;
for (loop = 0; loop < nsegs; ++loop) {
printf("\t%.2d: 0x%lx - 0x%lx\n", loop,
(long)segp[loop].ds_addr,
(long)segp[loop].ds_addr + segp[loop].ds_len - 1);
}
}
#endif /* FWOHCI_DEBUG */
if ((error = bus_dmamap_create(dmat, dsize, nsegs, dsize,
0, BUS_DMA_WAITOK, dmapp)) != 0) {
printf("%s: unable to create descriptor buffer DMA map, "
"error = %d\n", xname, error);
goto fail_2;
}
DPRINTF(("fwohci_misc_dmabuf_alloc: bus_dmamem_create success\n"));
if ((error = bus_dmamap_load(dmat, *dmapp, *mapp, dsize, NULL,
BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to load descriptor buffer DMA map, "
"error = %d\n", xname, error);
goto fail_3;
}
DPRINTF(("fwohci_it_desc_alloc: bus_dmamem_load success\n"));
return nsegs;
fail_3:
bus_dmamap_destroy(dmat, *dmapp);
fail_2:
bus_dmamem_unmap(dmat, *mapp, dsize);
fail_1:
bus_dmamem_free(dmat, segp, nsegs);
fail_0:
return error;
}
static void
fwohci_misc_dmabuf_free(bus_dma_tag_t dmat, int dsize, int nsegs,
bus_dma_segment_t *segp, bus_dmamap_t *dmapp, caddr_t map)
{
bus_dmamap_destroy(dmat, *dmapp);
bus_dmamem_unmap(dmat, map, dsize);
bus_dmamem_free(dmat, segp, nsegs);
}
/*
* Isochronous receive service
*/
/*
* static struct fwohci_ir_ctx *
* fwohci_ir_ctx_construct(struct fwohci_softc *sc, int no, int ch, int tagbm,
* int bufnum, int maxsize, int flags)
*/
static struct fwohci_ir_ctx *
fwohci_ir_ctx_construct(struct fwohci_softc *sc, int no, int ch, int tagbm,
int bufnum, int maxsize, int flags)
{
struct fwohci_ir_ctx *irc;
int i;
printf("fwohci_ir_construct(%s, %d, %d, %x, %d, %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, no, ch, tagbm, bufnum, maxsize);
if ((irc = malloc(sizeof(*irc), M_DEVBUF, M_WAITOK|M_ZERO)) == NULL) {
return NULL;
}
irc->irc_sc = sc;
irc->irc_num = no;
irc->irc_status = 0;
irc->irc_channel = ch;
irc->irc_tagbm = tagbm;
irc->irc_desc_num = bufnum;
irc->irc_flags = flags;
/* add header */
maxsize += 8;
/* rounding up */
for (i = 32; i < maxsize; i <<= 1);
printf("fwohci_ir_ctx_construct: maxsize %d => %d\n",
maxsize, i);
maxsize = i;
irc->irc_maxsize = maxsize;
irc->irc_buf_totalsize = bufnum * maxsize;
if (fwohci_ir_buf_setup(irc)) {
/* cannot alloc descriptor */
return NULL;
}
irc->irc_readtop = irc->irc_desc_map;
irc->irc_writeend = irc->irc_desc_map + irc->irc_desc_num - 1;
irc->irc_savedbranch = irc->irc_writeend->fd_branch;
irc->irc_writeend->fd_branch = 0;
/* sync */
if (fwohci_ir_stop(irc) || fwohci_ir_init(irc)) {
return NULL;
}
irc->irc_status |= IRC_STATUS_READY;
return irc;
}
/*
* static void fwohci_ir_ctx_destruct(struct fwohci_ir_ctx *irc)
*
* This function release all DMA buffers and itself.
*/
static void
fwohci_ir_ctx_destruct(struct fwohci_ir_ctx *irc)
{
fwohci_misc_dmabuf_free(irc->irc_sc->sc_dmat, irc->irc_buf_totalsize,
irc->irc_buf_nsegs, irc->irc_buf_segs,
&irc->irc_buf_dmamap, (caddr_t)irc->irc_buf);
fwohci_misc_dmabuf_free(irc->irc_sc->sc_dmat,
irc->irc_desc_size,
irc->irc_desc_nsegs, &irc->irc_desc_seg,
&irc->irc_desc_dmamap, (caddr_t)irc->irc_desc_map);
free(irc, M_DEVBUF);
}
/*
* static int fwohci_ir_buf_setup(struct fwohci_ir_ctx *irc)
*
* Allocates descriptors for context DMA dedicated for
* isochronous receive.
*
* This function returns 0 (zero) if it succeeds. Otherwise,
* return negative value.
*/
static int
fwohci_ir_buf_setup(struct fwohci_ir_ctx *irc)
{
int nsegs;
struct fwohci_desc *fd;
u_int32_t branch;
int bufno = 0; /* DMA segment */
bus_size_t bufused = 0; /* offset in a DMA segment */
irc->irc_desc_size = irc->irc_desc_num * sizeof(struct fwohci_desc);
nsegs = fwohci_misc_dmabuf_alloc(irc->irc_sc->sc_dmat,
irc->irc_desc_size, 1, &irc->irc_desc_seg, &irc->irc_desc_dmamap,
(void **)&irc->irc_desc_map,
irc->irc_sc->sc_sc1394.sc1394_dev.dv_xname);
if (nsegs < 0) {
printf("fwohci_ir_buf_alloc: cannot get descriptor\n");
return -1;
}
irc->irc_desc_nsegs = nsegs;
nsegs = fwohci_misc_dmabuf_alloc(irc->irc_sc->sc_dmat,
irc->irc_buf_totalsize, 16, irc->irc_buf_segs,
&irc->irc_buf_dmamap, (void **)&irc->irc_buf,
irc->irc_sc->sc_sc1394.sc1394_dev.dv_xname);
if (nsegs < 0) {
printf("fwohci_ir_buf_alloc: cannot get DMA buffer\n");
fwohci_misc_dmabuf_free(irc->irc_sc->sc_dmat,
irc->irc_desc_size,
irc->irc_desc_nsegs, &irc->irc_desc_seg,
&irc->irc_desc_dmamap, (caddr_t)irc->irc_desc_map);
return -1;
}
irc->irc_buf_nsegs = nsegs;
branch = irc->irc_desc_dmamap->dm_segs[0].ds_addr
+ sizeof(struct fwohci_desc);
bufno = 0;
bufused = 0;
for (fd = irc->irc_desc_map;
fd < irc->irc_desc_map + irc->irc_desc_num; ++fd) {
fd->fd_flags = OHCI_DESC_INPUT | OHCI_DESC_LAST
| OHCI_DESC_STATUS | OHCI_DESC_BRANCH;
if (irc->irc_flags & IEEE1394_IR_SHORTDELAY) {
fd->fd_flags |= OHCI_DESC_INTR_ALWAYS;
}
#if 0
if ((fd - irc->irc_desc_map) % 64 == 0) {
fd->fd_flags |= OHCI_DESC_INTR_ALWAYS;
}
#endif
fd->fd_reqcount = irc->irc_maxsize;
fd->fd_status = fd->fd_rescount = 0;
fd->fd_branch = branch | 0x01;
branch += sizeof(struct fwohci_desc);
/* physical addr to data? */
fd->fd_data =
(u_int32_t)((irc->irc_buf_segs[bufno].ds_addr + bufused));
bufused += irc->irc_maxsize;
if (bufused > irc->irc_buf_segs[bufno].ds_len) {
bufused = 0;
if (++bufno == irc->irc_buf_nsegs) {
/* fail */
printf("fwohci_ir_buf_setup fail\n");
fwohci_misc_dmabuf_free(irc->irc_sc->sc_dmat,
irc->irc_desc_size,
irc->irc_desc_nsegs, &irc->irc_desc_seg,
&irc->irc_desc_dmamap,
(caddr_t)irc->irc_desc_map);
fwohci_misc_dmabuf_free(irc->irc_sc->sc_dmat,
irc->irc_buf_totalsize,
irc->irc_buf_nsegs, irc->irc_buf_segs,
&irc->irc_buf_dmamap,
(caddr_t)irc->irc_buf);
return -1;
}
}
#ifdef FWOHCI_DEBUG
if (fd < irc->irc_desc_map + 4
|| (fd > irc->irc_desc_map + irc->irc_desc_num - 4)) {
printf("fwohci_ir_buf_setup: desc %d %p buf %08x"
" size %d branch %08x\n",
fd - irc->irc_desc_map, fd, fd->fd_data,
fd->fd_reqcount, fd->fd_branch);
}
#endif /* FWOHCI_DEBUG */
}
--fd;
fd->fd_branch = irc->irc_desc_dmamap->dm_segs[0].ds_addr | 1;
DPRINTF(("fwohci_ir_buf_setup: desc %d %p buf %08x size %d branch %08x\n",
(int)(fd - irc->irc_desc_map), fd, fd->fd_data, fd->fd_reqcount,
fd->fd_branch));
return 0;
}
/*
* static void fwohci_ir_init(struct fwohci_ir_ctx *irc)
*
* This function initialise DMA engine.
*/
static int
fwohci_ir_init(struct fwohci_ir_ctx *irc)
{
struct fwohci_softc *sc = irc->irc_sc;
int n = irc->irc_num;
u_int32_t ctxmatch;
ctxmatch = irc->irc_channel & IEEE1394_ISO_CHANNEL_MASK;
if (irc->irc_channel & IEEE1394_ISO_CHANNEL_ANY) {
OHCI_SYNC_RX_DMA_WRITE(sc, n,
OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_RX_MULTI_CHAN_MODE);
/* Receive all the isochronous channels */
OHCI_CSR_WRITE(sc, OHCI_REG_IRMultiChanMaskHiSet, 0xffffffff);
OHCI_CSR_WRITE(sc, OHCI_REG_IRMultiChanMaskLoSet, 0xffffffff);
ctxmatch = 0;
}
ctxmatch |= ((irc->irc_tagbm & 0x0f) << OHCI_CTXMATCH_TAG_BITPOS);
OHCI_SYNC_RX_DMA_WRITE(sc, n, OHCI_SUBREG_ContextMatch, ctxmatch);
OHCI_SYNC_RX_DMA_WRITE(sc, n, OHCI_SUBREG_ContextControlClear,
OHCI_CTXCTL_RX_BUFFER_FILL | OHCI_CTXCTL_RX_CYCLE_MATCH_ENABLE);
OHCI_SYNC_RX_DMA_WRITE(sc, n, OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_RX_ISOCH_HEADER);
printf("fwohci_ir_init\n");
return 0;
}
/*
* static int fwohci_ir_start(struct fwohci_ir_ctx *irc)
*
* This function starts DMA engine. This function must call
* after fwohci_ir_init() and active bit of context control
* register negated. This function will not check it.
*/
static int
fwohci_ir_start(struct fwohci_ir_ctx *irc)
{
struct fwohci_softc *sc = irc->irc_sc;
int startidx = irc->irc_readtop - irc->irc_desc_map;
u_int32_t startaddr;
startaddr = irc->irc_desc_dmamap->dm_segs[0].ds_addr
+ sizeof(struct fwohci_desc)*startidx;
OHCI_SYNC_RX_DMA_WRITE(sc, irc->irc_num, OHCI_SUBREG_CommandPtr,
startaddr | 1);
OHCI_CSR_WRITE(sc, OHCI_REG_IsoRecvIntEventClear,
(1 << irc->irc_num));
OHCI_SYNC_RX_DMA_WRITE(sc, irc->irc_num,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_RUN);
printf("fwohci_ir_start: CmdPtr %08x Ctx %08x startidx %d\n",
OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num, OHCI_SUBREG_CommandPtr),
OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num, OHCI_SUBREG_ContextControlSet),
startidx);
irc->irc_status &= ~IRC_STATUS_READY;
irc->irc_status |= IRC_STATUS_RUN;
if ((irc->irc_flags & IEEE1394_IR_TRIGGER_CIP_SYNC) == 0) {
irc->irc_status |= IRC_STATUS_RECEIVE;
}
return 0;
}
/*
* static int fwohci_ir_stop(struct fwohci_ir_ctx *irc)
*
* This function stops DMA engine.
*/
static int
fwohci_ir_stop(struct fwohci_ir_ctx *irc)
{
struct fwohci_softc *sc = irc->irc_sc;
int i;
printf("fwohci_ir_stop\n");
OHCI_SYNC_RX_DMA_WRITE(sc, irc->irc_num,
OHCI_SUBREG_ContextControlClear,
OHCI_CTXCTL_RUN | OHCI_CTXCTL_DEAD);
i = 0;
while (OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num,
OHCI_SUBREG_ContextControlSet) & OHCI_CTXCTL_ACTIVE) {
#if 0
u_int32_t reg = OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num,
OHCI_SUBREG_ContextControlClear);
printf("%s: %d intr IR_CommandPtr 0x%08x "
"ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname, i,
OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num,
OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
#endif
if (i > 20) {
printf("fwohci_ir_stop: %s does not stop\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
return 1;
}
DELAY(10);
}
irc->irc_status &= ~IRC_STATUS_RUN;
return 0;
}
static void
fwohci_ir_intr(struct fwohci_softc *sc, struct fwohci_ir_ctx *irc)
{
const char *xname = sc->sc_sc1394.sc1394_dev.dv_xname;
u_int32_t cmd, ctx;
int idx;
struct fwohci_desc *fd;
sc->sc_isocnt.ev_count++;
if (!(irc->irc_status & IRC_STATUS_RUN)) {
printf("fwohci_ir_intr: not running\n");
return;
}
bus_dmamap_sync(sc->sc_dmat, irc->irc_desc_dmamap,
0, irc->irc_desc_size, BUS_DMASYNC_PREREAD);
ctx = OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num,
OHCI_SUBREG_ContextControlSet);
cmd = OHCI_SYNC_RX_DMA_READ(sc, irc->irc_num,
OHCI_SUBREG_CommandPtr);
#define OHCI_CTXCTL_RUNNING (OHCI_CTXCTL_RUN|OHCI_CTXCTL_ACTIVE)
#define OHCI_CTXCTL_RUNNING_MASK (OHCI_CTXCTL_RUNNING|OHCI_CTXCTL_DEAD)
idx = (cmd & 0xfffffff8) - (u_int32_t)irc->irc_desc_dmamap->dm_segs[0].ds_addr;
idx /= sizeof(struct fwohci_desc);
if ((ctx & OHCI_CTXCTL_RUNNING_MASK) == OHCI_CTXCTL_RUNNING) {
if (irc->irc_waitchan != NULL) {
DPRINTF(("fwohci_ir_intr: wakeup "
"ctx %d CmdPtr %08x Ctxctl %08x idx %d\n",
irc->irc_num, cmd, ctx, idx));
#ifdef FWOHCI_WAIT_DEBUG
irc->irc_cycle[1] = fwohci_cycletimer(irc->irc_sc);
#endif
wakeup(irc->irc_waitchan);
}
selwakeup(&irc->irc_sel);
return;
}
fd = irc->irc_desc_map + idx;
printf("fwohci_ir_intr: %s error "
"ctx %d CmdPtr %08x Ctxctl %08x idx %d\n", xname,
irc->irc_num, cmd, ctx, idx);
printf("\tfd flag %x branch %x stat %x rescnt %x total pkt %d\n",
fd->fd_flags, fd->fd_branch, fd->fd_status,fd->fd_rescount,
irc->irc_pktcount);
}
/*
* static int fwohci_ir_ctx_packetnum(struct fwohci_ir_ctx *irc)
*
* This function obtains the lenth of descriptors with data.
*/
static int
fwohci_ir_ctx_packetnum(struct fwohci_ir_ctx *irc)
{
struct fwohci_desc *fd = irc->irc_readtop;
int i = 0;
/* XXX SYNC */
while (fd->fd_status != 0) {
if (fd == irc->irc_readtop && i > 0) {
printf("descriptor filled %d at %d\n", i,
irc->irc_pktcount);
#ifdef FWOHCI_WAIT_DEBUG
irc->irc_cycle[2] = fwohci_cycletimer(irc->irc_sc);
printf("cycletimer %d:%d %d:%d %d:%d\n",
irc->irc_cycle[0]>>13, irc->irc_cycle[0]&0x1fff,
irc->irc_cycle[1]>>13, irc->irc_cycle[1]&0x1fff,
irc->irc_cycle[2]>>13, irc->irc_cycle[2]&0x1fff);
#endif
break;
}
++i;
++fd;
if (fd == irc->irc_desc_map + irc->irc_desc_num) {
fd = irc->irc_desc_map;
}
}
return i;
}
/*
* int fwohci_ir_read(struct device *dev, ieee1394_ir_tag_t tag,
* struct uio *uio, int headoffs, int flags)
*
* This function reads data from fwohci's isochronous receive
* buffer.
*/
int
fwohci_ir_read(struct device *dev, ieee1394_ir_tag_t tag, struct uio *uio,
int headoffs, int flags)
{
struct fwohci_ir_ctx *irc = (struct fwohci_ir_ctx *)tag;
int packetnum;
int copylen, hdrshim, fwisohdrsiz;
struct fwohci_desc *fd, *fdprev = NULL; /* XXX fdprev use is suspect */
u_int8_t *data;
int status = 0;
u_int32_t tmpbranch;
int pktcount_prev = irc->irc_pktcount;
#ifdef FW_DEBUG
int totalread = 0;
#endif
if (irc->irc_status & IRC_STATUS_READY) {
printf("fwohci_ir_read: starting iso read engine\n");
fwohci_ir_start(irc);
}
packetnum = fwohci_ir_ctx_packetnum(irc);
DPRINTF(("fwohci_ir_read resid %lu DMA buf %d\n",
(unsigned long)uio->uio_resid, packetnum));
if (packetnum == 0) {
return EAGAIN;
}
#ifdef USEDRAIN
if (packetnum > irc->irc_desc_num - irc->irc_desc_num/4) {
packetnum -= fwohci_ir_ctx_drain(irc);
if (irc->irc_pktcount != 0) {
printf("fwohci_ir_read overrun %d\n",
irc->irc_pktcount);
}
}
#endif /* USEDRAIN */
fdprev = fd = irc->irc_readtop;
#if 0
if ((irc->irc_status & IRC_STATUS_RECEIVE) == 0
&& irc->irc_flags & IEEE1394_IR_TRIGGER_CIP_SYNC) {
unsigned int s;
int i = 0;
while (fd->fd_status != 0) {
s = data[14] << 8;
s |= data[15];
if (s != 0x0000ffffu) {
DPRINTF(("find header %x at %d\n",
s, irc->irc_pktcount));
irc->irc_status |= IRC_STATUS_RECEIVE;
break;
}
fd->fd_rescount = 0;
fd->fd_status = 0;
fdprev = fd;
if (++fd == irc->irc_desc_map + irc->irc_desc_num) {
fd = irc->irc_desc_map;
data = irc->irc_buf;
}
++i;
}
/* XXX SYNC */
if (i > 0) {
tmpbranch = fdprev->fd_branch;
fdprev->fd_branch = 0;
irc->irc_writeend->fd_branch = irc->irc_savedbranch;
irc->irc_writeend = fdprev;
irc->irc_savedbranch = tmpbranch;
}
/* XXX SYNC */
if (fd->fd_status == 0) {
return EAGAIN;
}
}
#endif
hdrshim = 8;
fwisohdrsiz = 0;
data = irc->irc_buf + (fd - irc->irc_desc_map) * irc->irc_maxsize;
if (irc->irc_flags & IEEE1394_IR_NEEDHEADER) {
fwisohdrsiz = sizeof(struct fwiso_header);
}
while (fd->fd_status != 0 &&
(copylen = fd->fd_reqcount - fd->fd_rescount - hdrshim - headoffs)
+ fwisohdrsiz <= uio->uio_resid) {
DPRINTF(("pkt %04x:%04x uiomove %p, %d\n",
fd->fd_status, fd->fd_rescount,
(void *)(data + 8 + headoffs), copylen));
if ((irc->irc_status & IRC_STATUS_RECEIVE) == 0) {
DPRINTF(("[%d]", copylen));
if (irc->irc_pktcount > 1000) {
printf("no header found\n");
status = EIO;
break; /* XXX */
}
} else {
DPRINTF(("<%d>", copylen));
}
if ((irc->irc_status & IRC_STATUS_RECEIVE) == 0
&& irc->irc_flags & IEEE1394_IR_TRIGGER_CIP_SYNC
&& copylen > 0) {
unsigned int s;
s = data[14] << 8;
s |= data[15];
if (s != 0x0000ffffu) {
DPRINTF(("find header %x at %d\n",
s, irc->irc_pktcount));
irc->irc_status |= IRC_STATUS_RECEIVE;
}
}
if (irc->irc_status & IRC_STATUS_RECEIVE) {
if (copylen > 0) {
if (irc->irc_flags & IEEE1394_IR_NEEDHEADER) {
struct fwiso_header fh;
fh.fh_timestamp = htonl((*(u_int32_t *)data) & 0xffff);
fh.fh_speed = htonl((fd->fd_status >> 5)& 0x00000007);
fh.fh_capture_size = htonl(copylen + 4);
fh.fh_iso_header = htonl(*(u_int32_t *)(data + 4));
status = uiomove((void *)&fh,
sizeof(fh), uio);
if (status != 0) {
/* An error happens */
printf("uio error in hdr\n");
break;
}
}
status = uiomove((void *)(data + 8 + headoffs),
copylen, uio);
if (status != 0) {
/* An error happens */
printf("uio error\n");
break;
}
#ifdef FW_DEBUG
totalread += copylen;
#endif
}
}
fd->fd_rescount = 0;
fd->fd_status = 0;
#if 0
/* advance writeend pointer and fill branch */
tmpbranch = fd->fd_branch;
fd->fd_branch = 0;
irc->irc_writeend->fd_branch = irc->irc_savedbranch;
irc->irc_writeend = fd;
irc->irc_savedbranch = tmpbranch;
#endif
fdprev = fd;
data += irc->irc_maxsize;
if (++fd == irc->irc_desc_map + irc->irc_desc_num) {
fd = irc->irc_desc_map;
data = irc->irc_buf;
}
++irc->irc_pktcount;
}
#if 1
if (irc->irc_pktcount != pktcount_prev) {
/* XXX SYNC */
tmpbranch = fdprev->fd_branch;
fdprev->fd_branch = 0;
irc->irc_writeend->fd_branch = irc->irc_savedbranch;
irc->irc_writeend = fdprev;
irc->irc_savedbranch = tmpbranch;
/* XXX SYNC */
}
#endif
if (!(OHCI_SYNC_RX_DMA_READ(irc->irc_sc, irc->irc_num,
OHCI_SUBREG_ContextControlClear) & OHCI_CTXCTL_ACTIVE)) {
/* do wake */
OHCI_SYNC_RX_DMA_WRITE(irc->irc_sc, irc->irc_num,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_WAKE);
}
if (packetnum > irc->irc_maxqueuelen) {
irc->irc_maxqueuelen = packetnum;
irc->irc_maxqueuepos = irc->irc_pktcount;
}
if (irc->irc_pktcount == pktcount_prev) {
#if 0
printf("fwohci_ir_read: process 0 packet, total %d\n",
irc->irc_pktcount);
if (++pktfail > 30) {
return 0;
}
#endif
return EAGAIN;
}
irc->irc_readtop = fd;
DPRINTF(("fwochi_ir_read: process %d packet, total %d\n",
totalread, irc->irc_pktcount));
return status;
}
/*
* int fwohci_ir_wait(struct device *dev, ieee1394_ir_tag_t tag,
* void *wchan, char *name)
*
* This function waits till new data comes.
*/
int
fwohci_ir_wait(struct device *dev, ieee1394_ir_tag_t tag, void *wchan, char *name)
{
struct fwohci_ir_ctx *irc = (struct fwohci_ir_ctx *)tag;
struct fwohci_desc *fd;
int pktnum;
int stat;
if ((pktnum = fwohci_ir_ctx_packetnum(irc)) > 4) {
DPRINTF(("fwohci_ir_wait enough data %d\n", pktnum));
return 0;
}
fd = irc->irc_readtop + 32;
if (fd >= irc->irc_desc_map + irc->irc_desc_num) {
fd -= irc->irc_desc_num;
}
irc->irc_waitchan = wchan;
if ((irc->irc_flags & IEEE1394_IR_SHORTDELAY) == 0) {
fd->fd_flags |= OHCI_DESC_INTR_ALWAYS;
DPRINTF(("fwohci_ir_wait stops %d set intr %d\n",
(int)(irc->irc_readtop - irc->irc_desc_map),
(int)(fd - irc->irc_desc_map)));
/* XXX SYNC */
}
#ifdef FWOHCI_WAIT_DEBUG
irc->irc_cycle[0] = fwohci_cycletimer(irc->irc_sc);
#endif
irc->irc_status |= IRC_STATUS_SLEEPING;
if ((stat = tsleep(wchan, PCATCH|PRIBIO, name, hz*10)) != 0) {
irc->irc_waitchan = NULL;
fd->fd_flags &= ~OHCI_DESC_INTR_ALWAYS;
if (stat == EWOULDBLOCK) {
printf("fwohci_ir_wait: timeout\n");
return EIO;
} else {
return EINTR;
}
}
irc->irc_waitchan = NULL;
if ((irc->irc_flags & IEEE1394_IR_SHORTDELAY) == 0) {
fd->fd_flags &= ~OHCI_DESC_INTR_ALWAYS;
/* XXX SYNC */
}
DPRINTF(("fwohci_ir_wait: wakeup\n"));
return 0;
}
/*
* int fwohci_ir_select(struct device *dev, ieee1394_ir_tag_t tag,
* struct proc *p)
*
* This function returns the number of packets in queue.
*/
int
fwohci_ir_select(struct device *dev, ieee1394_ir_tag_t tag, struct proc *p)
{
struct fwohci_ir_ctx *irc = (struct fwohci_ir_ctx *)tag;
int pktnum;
if (irc->irc_status & IRC_STATUS_READY) {
printf("fwohci_ir_select: starting iso read engine\n");
fwohci_ir_start(irc);
}
if ((pktnum = fwohci_ir_ctx_packetnum(irc)) == 0) {
selrecord(p, &irc->irc_sel);
}
return pktnum;
}
#ifdef USEDRAIN
/*
* int fwohci_ir_ctx_drain(struct fwohci_ir_ctx *irc)
*
* This function will drain all the packets in receive DMA
* buffer.
*/
static int
fwohci_ir_ctx_drain(struct fwohci_ir_ctx *irc)
{
struct fwohci_desc *fd = irc->irc_readtop;
u_int32_t reg;
int count = 0;
reg = OHCI_SYNC_RX_DMA_READ(irc->irc_sc, irc->irc_num,
OHCI_SUBREG_ContextControlClear);
printf("fwohci_ir_ctx_drain ctx%s%s%s%s\n",
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
if ((reg & OHCI_CTXCTL_RUNNING_MASK) == OHCI_CTXCTL_RUN) {
/* DMA engine is stopped */
u_int32_t startadr;
for (fd = irc->irc_desc_map;
fd < irc->irc_desc_map + irc->irc_desc_num;
++fd) {
fd->fd_status = 0;
}
/* Restore branch addr of the last descriptor */
irc->irc_writeend->fd_branch = irc->irc_savedbranch;
irc->irc_readtop = irc->irc_desc_map;
irc->irc_writeend = irc->irc_desc_map + irc->irc_desc_num - 1;
irc->irc_savedbranch = irc->irc_writeend->fd_branch;
irc->irc_writeend->fd_branch = 0;
count = irc->irc_desc_num;
OHCI_SYNC_RX_DMA_WRITE(irc->irc_sc, irc->irc_num,
OHCI_SUBREG_ContextControlClear,
OHCI_CTXCTL_RUN | OHCI_CTXCTL_DEAD);
startadr = (u_int32_t)irc->irc_desc_dmamap->dm_segs[0].ds_addr;
printf("fwohci_ir_ctx_drain: remove %d pkts\n", count);
OHCI_SYNC_RX_DMA_WRITE(irc->irc_sc, irc->irc_num,
OHCI_SUBREG_CommandPtr, startadr | 1);
OHCI_SYNC_RX_DMA_WRITE(irc->irc_sc, irc->irc_num,
OHCI_SUBREG_ContextControlSet, OHCI_CTXCTL_RUN);
} else {
const int removecount = irc->irc_desc_num/2;
u_int32_t tmpbranch;
for (count = 0; count < removecount; ++count) {
if (fd->fd_status == 0) {
break;
}
fd->fd_status = 0;
tmpbranch = fd->fd_branch;
fd->fd_branch = 0;
irc->irc_writeend->fd_branch = irc->irc_savedbranch;
irc->irc_writeend = fd;
irc->irc_savedbranch = tmpbranch;
if (++fd == irc->irc_desc_map + irc->irc_desc_num) {
fd = irc->irc_desc_map;
}
++count;
}
printf("fwohci_ir_ctx_drain: remove %d pkts\n", count);
}
return count;
}
#endif /* USEDRAIN */
/*
* service routines for isochronous transmit
*/
struct fwohci_it_ctx *
fwohci_it_ctx_construct(struct fwohci_softc *sc, int no, int ch, int tag, int maxsize)
{
struct fwohci_it_ctx *itc;
size_t dmastrsize;
struct fwohci_it_dmabuf *dmastr;
struct fwohci_desc *desc;
bus_addr_t descphys;
int nodesc;
int i, j;
if ((itc = malloc(sizeof(*itc), M_DEVBUF, M_NOWAIT|M_ZERO)) == NULL) {
return itc;
}
itc->itc_num = no;
itc->itc_flags = 0;
itc->itc_sc = sc;
itc->itc_bufnum = FWOHCI_IT_BUFNUM;
itc->itc_channel = ch;
itc->itc_tag = tag;
itc->itc_speed = OHCI_CTXCTL_SPD_100; /* XXX */
itc->itc_outpkt = 0;
itc->itc_maxsize = maxsize;
dmastrsize = sizeof(struct fwohci_it_dmabuf)*itc->itc_bufnum;
if ((dmastr = malloc(dmastrsize, M_DEVBUF, M_NOWAIT|M_ZERO)) == NULL) {
goto error_1;
}
itc->itc_buf = dmastr;
/*
* Get memory for descriptors. One buffer will have 256
* packet entry and 1 trailing descriptor for writing scratch.
* 4-byte space for scratch.
*/
itc->itc_descsize = (256*3 + 1)*itc->itc_bufnum;
if (fwohci_it_desc_alloc(itc)) {
printf("%s: cannot get enough memory for descriptor\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
goto error_2;
}
/* prepare DMA buffer */
nodesc = itc->itc_descsize/itc->itc_bufnum;
desc = (struct fwohci_desc *)itc->itc_descmap;
descphys = itc->itc_dseg.ds_addr;
for (i = 0; i < itc->itc_bufnum; ++i) {
if (fwohci_itd_construct(itc, &dmastr[i], i, desc,
descphys, nodesc,
itc->itc_maxsize, itc->itc_scratch_paddr)) {
goto error_3;
}
desc += nodesc;
descphys += sizeof(struct fwohci_desc)*nodesc;
}
#if 1
itc->itc_buf_start = itc->itc_buf;
itc->itc_buf_end = itc->itc_buf;
itc->itc_buf_linkend = itc->itc_buf;
#else
itc->itc_bufidx_start = 0;
itc->itc_bufidx_end = 0;
itc->itc_bufidx_linkend = 0;
#endif
itc->itc_buf_cnt = 0;
itc->itc_waitchan = NULL;
*itc->itc_scratch = 0xffffffff;
return itc;
error_3:
for (j = 0; j < i; ++j) {
fwohci_itd_destruct(&dmastr[j]);
}
fwohci_it_desc_free(itc);
error_2:
free(itc->itc_buf, M_DEVBUF);
error_1:
free(itc, M_DEVBUF);
return NULL;
}
void
fwohci_it_ctx_destruct(struct fwohci_it_ctx *itc)
{
int i;
for (i = 0; i < itc->itc_bufnum; ++i) {
fwohci_itd_destruct(&itc->itc_buf[i]);
}
fwohci_it_desc_free(itc);
free(itc, M_DEVBUF);
}
/*
* static int fwohci_it_desc_alloc(struct fwohci_it_ctx *itc)
*
* Allocates descriptors for context DMA dedicated for
* isochronous transmit.
*
* This function returns 0 (zero) if it succeeds. Otherwise,
* return negative value.
*/
static int
fwohci_it_desc_alloc(struct fwohci_it_ctx *itc)
{
bus_dma_tag_t dmat = itc->itc_sc->sc_dmat;
const char *xname = itc->itc_sc->sc_sc1394.sc1394_dev.dv_xname;
int error, dsize;
/* add for scratch */
itc->itc_descsize++;
/* rounding up to 256 */
if ((itc->itc_descsize & 0x0ff) != 0) {
itc->itc_descsize =
(itc->itc_descsize & ~0x0ff) + 0x100;
}
/* remove for scratch */
itc->itc_descsize--;
printf("%s: fwohci_it_desc_alloc will allocate %d descs\n",
xname, itc->itc_descsize);
/*
* allocate descriptor buffer
*/
dsize = sizeof(struct fwohci_desc) * itc->itc_descsize;
printf("%s: fwohci_it_desc_alloc: descriptor %d, dsize %d\n",
xname, itc->itc_descsize, dsize);
if ((error = bus_dmamem_alloc(dmat, dsize, PAGE_SIZE, 0,
&itc->itc_dseg, 1, &itc->itc_dnsegs, 0)) != 0) {
printf("%s: unable to allocate descriptor buffer, error = %d\n",
xname, error);
goto fail_0;
}
printf("fwohci_it_desc_alloc: %d segment[s]\n", itc->itc_dnsegs);
if ((error = bus_dmamem_map(dmat, &itc->itc_dseg,
itc->itc_dnsegs, dsize, (caddr_t *)&itc->itc_descmap,
BUS_DMA_COHERENT | BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to map descriptor buffer, error = %d\n",
xname, error);
goto fail_1;
}
printf("fwohci_it_desc_alloc: bus_dmamem_map success dseg %lx:%lx\n",
(long)itc->itc_dseg.ds_addr, (long)itc->itc_dseg.ds_len);
if ((error = bus_dmamap_create(dmat, dsize, itc->itc_dnsegs,
dsize, 0, BUS_DMA_WAITOK, &itc->itc_ddmamap)) != 0) {
printf("%s: unable to create descriptor buffer DMA map, "
"error = %d\n", xname, error);
goto fail_2;
}
printf("fwohci_it_desc_alloc: bus_dmamem_create success\n");
{
int loop;
for (loop = 0; loop < itc->itc_ddmamap->dm_nsegs; ++loop) {
printf("\t%.2d: 0x%lx - 0x%lx\n", loop,
(long)itc->itc_ddmamap->dm_segs[loop].ds_addr,
(long)itc->itc_ddmamap->dm_segs[loop].ds_addr +
(long)itc->itc_ddmamap->dm_segs[loop].ds_len - 1);
}
}
if ((error = bus_dmamap_load(dmat, itc->itc_ddmamap,
itc->itc_descmap, dsize, NULL, BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to load descriptor buffer DMA map, "
"error = %d\n", xname, error);
goto fail_3;
}
printf("%s: fwohci_it_desc_alloc: get DMA memory phys:0x%08x vm:%p\n",
xname, (int)itc->itc_ddmamap->dm_segs[0].ds_addr, itc->itc_descmap);
itc->itc_scratch = (u_int32_t *)(itc->itc_descmap
+ (sizeof(struct fwohci_desc))*itc->itc_descsize);
itc->itc_scratch_paddr =
itc->itc_ddmamap->dm_segs[0].ds_addr
+ (sizeof(struct fwohci_desc))*itc->itc_descsize;
printf("%s: scratch %p, 0x%x\n", xname, itc->itc_scratch,
(int)itc->itc_scratch_paddr);
/* itc->itc_scratch_paddr = vtophys(itc->itc_scratch); */
return 0;
fail_3:
bus_dmamap_destroy(dmat, itc->itc_ddmamap);
fail_2:
bus_dmamem_unmap(dmat, (caddr_t)itc->itc_descmap, dsize);
fail_1:
bus_dmamem_free(dmat, &itc->itc_dseg, itc->itc_dnsegs);
fail_0:
itc->itc_dnsegs = 0;
itc->itc_descmap = NULL;
return error;
}
static void
fwohci_it_desc_free(struct fwohci_it_ctx *itc)
{
bus_dma_tag_t dmat = itc->itc_sc->sc_dmat;
int dsize = sizeof(struct fwohci_desc) * itc->itc_descsize + 4;
bus_dmamap_destroy(dmat, itc->itc_ddmamap);
bus_dmamem_unmap(dmat, (caddr_t)itc->itc_descmap, dsize);
bus_dmamem_free(dmat, &itc->itc_dseg, itc->itc_dnsegs);
itc->itc_dnsegs = 0;
itc->itc_descmap = NULL;
}
/*
* int fwohci_it_ctx_writedata(ieee1394_it_tag_t it, int ndata,
* struct ieee1394_it_datalist *itdata, int flags)
*
* This function will write packet data to DMA buffer in the
* context. This function will parse ieee1394_it_datalist
* command and fill DMA buffer. This function will return the
* number of written packets, or error code if the return value
* is negative.
*
* When this funtion returns positive value but smaller than
* ndata, it reaches at the ent of DMA buffer.
*/
int
fwohci_it_ctx_writedata(ieee1394_it_tag_t it, int ndata,
struct ieee1394_it_datalist *itdata, int flags)
{
struct fwohci_it_ctx *itc = (struct fwohci_it_ctx *)it;
int rv;
int writepkt = 0;
volatile struct fwohci_it_dmabuf *itd;
int i = 0;
itd = itc->itc_buf_end;
while (ndata > 0) {
int s;
if (fwohci_itd_isfull(itd) || fwohci_itd_islocked(itd)) {
if (itc->itc_buf_cnt == itc->itc_bufnum) {
/* no space to write */
printf("sleeping: start linkend end %d %d %d "
"bufcnt %d\n",
itc->itc_buf_start->itd_num,
itc->itc_buf_linkend->itd_num,
itc->itc_buf_end->itd_num,
itc->itc_buf_cnt);
itc->itc_waitchan = itc;
if (tsleep(itc->itc_waitchan,
PCATCH, "fwohci it", 0) == EWOULDBLOCK) {
itc->itc_waitchan = NULL;
printf("fwohci0 signal\n");
break;
}
printf("waking: start linkend end %d %d %d\n",
itc->itc_buf_start->itd_num,
itc->itc_buf_linkend->itd_num,
itc->itc_buf_end->itd_num);
itc->itc_waitchan = itc;
i = 0;
} else {
/*
* Use next buffer. This DMA buffer is full
* or locked.
*/
INC_BUF(itc, itd);
}
}
if (++i > 10) {
panic("why loop so much %d", itc->itc_buf_cnt);
break;
}
s = splbio();
if (fwohci_itd_hasdata(itd) == 0) {
++itc->itc_buf_cnt;
DPRINTF(("<buf cnt %d>\n", itc->itc_buf_cnt));
}
rv = fwohci_itd_writedata(itd, ndata, itdata);
DPRINTF(("fwohci_it_ctx_writedata: buf %d ndata %d rv %d\n",
itd->itd_num, ndata, rv));
if (itc->itc_buf_start == itc->itc_buf_linkend
&& (itc->itc_flags & ITC_FLAGS_RUN) != 0) {
#ifdef DEBUG_USERADD
printf("fwohci_it_ctx_writedata: emergency!\n");
#endif
if (itc->itc_buf_linkend != itc->itc_buf_end
&& fwohci_itd_hasdata(itc->itc_buf_end)) {
volatile struct fwohci_it_dmabuf *itdn = itc->itc_buf_linkend;
INC_BUF(itc, itdn);
printf("connecting %d after %d\n",
itdn->itd_num,
itc->itc_buf_linkend->itd_num);
if (fwohci_itd_link(itc->itc_buf_linkend, itdn)) {
printf("fwohci_it_ctx_writedata:"
" cannot link correctly\n");
splx(s);
return -1;
}
itc->itc_buf_linkend = itdn;
}
}
splx(s);
if (rv < 0) {
/* some errors happend */
break;
}
writepkt += rv;
ndata -= rv;
itdata += rv;
itc->itc_buf_end = itd;
}
/* Start DMA engine if stopped */
if ((itc->itc_flags & ITC_FLAGS_RUN) == 0) {
if (itc->itc_buf_cnt > itc->itc_bufnum - 1 || flags) {
/* run */
printf("fwohci_itc_ctl_writedata: DMA engine start\n");
fwohci_it_ctx_run(itc);
}
}
return writepkt;
}
static void
fwohci_it_ctx_run(struct fwohci_it_ctx *itc)
{
struct fwohci_softc *sc = itc->itc_sc;
int ctx = itc->itc_num;
volatile struct fwohci_it_dmabuf *itd =
(volatile struct fwohci_it_dmabuf *)itc->itc_buf_start;
u_int32_t reg;
int i;
if (itc->itc_flags & ITC_FLAGS_RUN) {
return;
}
itc->itc_flags |= ITC_FLAGS_RUN;
/*
* dirty, but I can't imagine better place to save branch addr
* of top DMA buffer and substitute 0 to it.
*/
itd->itd_savedbranch = itd->itd_lastdesc->fd_branch;
itd->itd_lastdesc->fd_branch = 0;
if (itc->itc_buf_cnt > 1) {
volatile struct fwohci_it_dmabuf *itdn = itd;
#if 0
INC_BUF(itc, itdn);
if (fwohci_itd_link(itd, itdn)) {
printf("fwohci_it_ctx_run: cannot link correctly\n");
return;
}
itc->itc_buf_linkend = itdn;
#else
for (;;) {
INC_BUF(itc, itdn);
if (itdn == itc->itc_buf_end) {
break;
}
if (fwohci_itd_link(itd, itdn)) {
printf("fwohci_it_ctx_run: cannot link\n");
return;
}
itd = itdn;
}
itc->itc_buf_linkend = itd;
#endif
} else {
itd->itd_lastdesc->fd_flags |= OHCI_DESC_INTR_ALWAYS;
itc->itc_buf_linkend = itc->itc_buf_end;
itc->itc_buf_end->itd_flags |= ITD_FLAGS_LOCK;
/* sanity check */
if (itc->itc_buf_end != itc->itc_buf_start) {
printf("buf start & end differs %p %p\n",
itc->itc_buf_end, itc->itc_buf_start);
}
#if 0
{
u_int32_t *fdp;
u_int32_t adr;
int i;
printf("fwohci_it_ctx_run: itc_buf_cnt 1, DMA buf %d\n",
itd->itd_num);
printf(" last desc %p npacket %d, %d 0x%04x%04x",
itd->itd_lastdesc, itd->itd_npacket,
(itd->itd_lastdesc - itd->itd_desc)/3,
itd->itd_lastdesc->fd_flags,
itd->itd_lastdesc->fd_reqcount);
fdp = (u_int32_t *)itd->itd_desc;
adr = (u_int32_t)itd->itd_desc_phys; /* XXX */
for (i = 0; i < 7*4; ++i) {
if (i % 4 == 0) {
printf("\n%x:", adr + 4*i);
}
printf(" %08x", fdp[i]);
}
if (itd->itd_npacket > 4) {
printf("\n...");
i = (itd->itd_npacket - 2)*12 + 4;
} else {
i = 2*12 + 4;
}
for (;i < itd->itd_npacket*12 + 4; ++i) {
if (i % 4 == 0) {
printf("\n%x:", adr + 4*i);
}
printf(" %08x", fdp[i]);
}
printf("\n");
}
#endif
}
{
struct fwohci_desc *fd;
printf("fwohci_it_ctx_run: link start linkend end %d %d %d\n",
itc->itc_buf_start->itd_num,
itc->itc_buf_linkend->itd_num,
itc->itc_buf_end->itd_num);
fd = itc->itc_buf_start->itd_desc;
if ((fd->fd_flags & 0xff00) != OHCI_DESC_STORE_VALUE) {
printf("fwohci_it_ctx_run: start buf not with STORE\n");
}
fd += 3;
if ((fd->fd_flags & OHCI_DESC_INTR_ALWAYS) == 0) {
printf("fwohci_it_ctx_run: start buf does not have intr\n");
}
fd = itc->itc_buf_linkend->itd_desc;
if ((fd->fd_flags & 0xff00) != OHCI_DESC_STORE_VALUE) {
printf("fwohci_it_ctx_run: linkend buf not with STORE\n");
}
fd += 3;
if ((fd->fd_flags & OHCI_DESC_INTR_ALWAYS) == 0) {
printf("fwohci_it_ctx_run: linkend buf does not have intr\n");
}
}
*itc->itc_scratch = 0xffffffff;
OHCI_SYNC_TX_DMA_WRITE(sc, ctx, OHCI_SUBREG_ContextControlClear,
0xffff0000);
reg = OHCI_SYNC_TX_DMA_READ(sc, ctx, OHCI_SUBREG_ContextControlSet);
printf("fwohci_it_ctx_run start for ctx %d\n", ctx);
printf("%s: bfr IT_CommandPtr 0x%08x ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_TX_DMA_READ(sc, ctx, OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
OHCI_SYNC_TX_DMA_WRITE(sc, ctx, OHCI_SUBREG_ContextControlClear,
OHCI_CTXCTL_RUN);
reg = OHCI_SYNC_TX_DMA_READ(sc, ctx, OHCI_SUBREG_ContextControlSet);
i = 0;
while (reg & (OHCI_CTXCTL_ACTIVE | OHCI_CTXCTL_RUN)) {
delay(100);
if (++i > 1000) {
printf("%s: cannot stop iso transmit engine\n",
sc->sc_sc1394.sc1394_dev.dv_xname);
break;
}
reg = OHCI_SYNC_TX_DMA_READ(sc, ctx,
OHCI_SUBREG_ContextControlSet);
}
printf("%s: itm IT_CommandPtr 0x%08x ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_TX_DMA_READ(sc, ctx, OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
printf("%s: writing CommandPtr to 0x%08x\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
(int)itc->itc_buf_start->itd_desc_phys);
OHCI_SYNC_TX_DMA_WRITE(sc, ctx, OHCI_SUBREG_CommandPtr,
fwohci_itd_list_head(itc->itc_buf_start) | 4);
OHCI_SYNC_TX_DMA_WRITE(sc, ctx, OHCI_SUBREG_ContextControlSet,
OHCI_CTXCTL_RUN | OHCI_CTXCTL_WAKE);
reg = OHCI_SYNC_TX_DMA_READ(sc, ctx, OHCI_SUBREG_ContextControlSet);
printf("%s: aft IT_CommandPtr 0x%08x ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_TX_DMA_READ(sc, ctx, OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
}
int
fwohci_it_ctx_flush(ieee1394_it_tag_t it)
{
struct fwohci_it_ctx *itc = (struct fwohci_it_ctx *)it;
int rv = 0;
if ((itc->itc_flags & ITC_FLAGS_RUN) == 0
&& itc->itc_buf_cnt > 0) {
printf("fwohci_it_ctx_flush: %s flushing\n",
itc->itc_sc->sc_sc1394.sc1394_dev.dv_xname);
fwohci_it_ctx_run(itc);
rv = 1;
}
return rv;
}
/*
* static void fwohci_it_intr(struct fwohci_softc *sc,
* struct fwochi_it_ctx *itc)
*
* This function is the interrupt handler for isochronous
* transmit interrupt. This function will 1) unlink used
* (already transmitted) buffers, 2) link new filled buffers, if
* necessary and 3) say some free DMA buffers exist to
* fwiso_write()
*/
static void
fwohci_it_intr(struct fwohci_softc *sc, struct fwohci_it_ctx *itc)
{
volatile struct fwohci_it_dmabuf *itd, *newstartbuf;
u_int16_t scratchval;
u_int32_t reg;
reg = OHCI_SYNC_TX_DMA_READ(sc, itc->itc_num,
OHCI_SUBREG_ContextControlSet);
/* print out debug info */
#ifdef FW_DEBUG
printf("fwohci_it_intr: CTX %d\n", itc->itc_num);
printf("fwohci_it_intr: %s: IT_CommandPtr 0x%08x "
"ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_TX_DMA_READ(sc, itc->itc_num, OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
printf("fwohci_it_intr: %s: scratch %x start %d end %d valid %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, *itc->itc_scratch,
itc->itc_buf_start->itd_num, itc->itc_buf_end->itd_num,
itc->itc_buf_cnt);
{
u_int32_t cntlstatus
= OHCI_CSR_READ(sc, OHCI_REG_IsochronousCycleTimer);
printf("\t\tIsoCounter 0x%08x, %d %d %d\n", cntlstatus,
(cntlstatus >> 25) & 0xfe, (cntlstatus >> 12) & 0x1fff,
cntlstatus & 0xfff);
}
#endif /* FW_DEBUG */
/* end print out debug info */
scratchval = (*itc->itc_scratch) & 0x0000ffff;
*itc->itc_scratch = 0xffffffff;
if ((reg & OHCI_CTXCTL_ACTIVE) == 0 && scratchval != 0xffff) {
/* DMA engine has been stopped */
printf("DMA engine stopped\n");
printf("fwohci_it_intr: %s: IT_CommandPtr 0x%08x "
"ContextCtrl 0x%08x%s%s%s%s\n",
sc->sc_sc1394.sc1394_dev.dv_xname,
OHCI_SYNC_TX_DMA_READ(sc, itc->itc_num, OHCI_SUBREG_CommandPtr),
reg,
reg & OHCI_CTXCTL_RUN ? " run" : "",
reg & OHCI_CTXCTL_WAKE ? " wake" : "",
reg & OHCI_CTXCTL_DEAD ? " dead" : "",
reg & OHCI_CTXCTL_ACTIVE ? " active" : "");
printf("fwohci_it_intr: %s: scratch %x start %d end %d valid %d\n",
sc->sc_sc1394.sc1394_dev.dv_xname, *itc->itc_scratch,
itc->itc_buf_start->itd_num, itc->itc_buf_end->itd_num,
itc->itc_buf_cnt);
{
u_int32_t xreg
= OHCI_CSR_READ(sc, OHCI_REG_IsochronousCycleTimer);
printf("\t\tIsoCounter 0x%08x, %d %d %d\n", reg,
(xreg >> 25) & 0xfe, (xreg >> 12) & 0x1fff,
xreg & 0xfff);
}
printf("\t\tbranch of lastdesc 0x%08x\n",
itc->itc_buf_start->itd_lastdesc->fd_branch);
scratchval = 0xffff;
itc->itc_flags &= ~ITC_FLAGS_RUN;
}
/* unlink old buffers */
if (scratchval != 0xffff) {
/* normal path */
newstartbuf = &itc->itc_buf[scratchval];
} else {
/* DMA engine stopped */
newstartbuf = itc->itc_buf_linkend;
INC_BUF(itc, newstartbuf);
}
itd = itc->itc_buf_start;
itc->itc_buf_start = newstartbuf;
while (itd != newstartbuf) {
itc->itc_outpkt += itd->itd_npacket;
fwohci_itd_unlink(itd);
INC_BUF(itc, itd);
--itc->itc_buf_cnt;
DPRINTF(("<buf cnt %d>\n", itc->itc_buf_cnt));
}
#ifdef DEBUG_USERADD
if (scratchval != 0xffff) {
printf("fwohci0: intr start %d dataend %d %d\n", scratchval,
itc->itc_buf_end->itd_num, itc->itc_outpkt);
}
#endif
if (scratchval == 0xffff) {
/* no data supplied */
printf("fwohci_it_intr: no it data. output total %d\n",
itc->itc_outpkt);
if (itc->itc_buf_cnt > 0) {
printf("fwohci_it_intr: it DMA stops "
"w/ valid databuf %d buf %d data %d"
" intr reg 0x%08x\n",
itc->itc_buf_cnt,
itc->itc_buf_end->itd_num,
fwohci_itd_hasdata(itc->itc_buf_end),
OHCI_CSR_READ(sc, OHCI_REG_IntEventSet));
} else {
/* All the data gone */
itc->itc_buf_start
= itc->itc_buf_end
= itc->itc_buf_linkend
= &itc->itc_buf[0];
printf("fwohci_it_intr: all packets gone\n");
}
itc->itc_flags &= ~ITC_FLAGS_RUN;
OHCI_SYNC_TX_DMA_WRITE(sc, itc->itc_num,
OHCI_SUBREG_ContextControlClear, 0xffffffff);
OHCI_SYNC_TX_DMA_WRITE(sc, itc->itc_num,
OHCI_SUBREG_CommandPtr, 0);
OHCI_SYNC_TX_DMA_WRITE(sc, itc->itc_num,
OHCI_SUBREG_ContextControlClear, 0x1f);
/* send message */
if (itc->itc_waitchan != NULL) {
wakeup(itc->itc_waitchan);
}
return;
}
#if 0
/* unlink old buffers */
newstartbuf = &itc->itc_buf[scratchval];
itd = (struct fwohci_it_dmabuf *)itc->itc_buf_start;
itc->itc_buf_start = newstartbuf;
while (itd != newstartbuf) {
itc->itc_outpkt += itd->itd_npacket;
fwohci_itd_unlink(itd);
INC_BUF(itc, itd);
--itc->itc_buf_cnt;
DPRINTF(("<buf cnt %d>\n", itc->itc_buf_cnt));
}
#endif
/* sanity check */
{
int startidx, endidx, linkendidx;
startidx = itc->itc_buf_start->itd_num;
endidx = itc->itc_buf_end->itd_num;
linkendidx = itc->itc_buf_linkend->itd_num;
if (startidx < endidx) {
if (linkendidx < startidx
|| endidx < linkendidx) {
printf("funny, linkend is not between start "
"and end [%d, %d]: %d\n",
startidx, endidx, linkendidx);
}
} else if (startidx > endidx) {
if (linkendidx < startidx
&& endidx < linkendidx) {
printf("funny, linkend is not between start "
"and end [%d, %d]: %d\n",
startidx, endidx, linkendidx);
}
} else {
if (linkendidx != startidx) {
printf("funny, linkend is not between start "
"and end [%d, %d]: %d\n",
startidx, endidx, linkendidx);
}
}
}
/* link if some valid DMA buffers exist */
if (itc->itc_buf_cnt > 1
&& itc->itc_buf_linkend != itc->itc_buf_end) {
volatile struct fwohci_it_dmabuf *itdprev;
int i;
DPRINTF(("CTX %d: start linkend dataend bufs %d, %d, %d, %d\n",
itc->itc_num,
itc->itc_buf_start->itd_num,
itc->itc_buf_linkend->itd_num,
itc->itc_buf_end->itd_num,
itc->itc_buf_cnt));
itd = itdprev = itc->itc_buf_linkend;
INC_BUF(itc, itd);
#if 0
if (fwohci_itd_isfilled(itd) || itc->itc_buf_cnt == 2) {
while (itdprev != itc->itc_buf_end) {
if (fwohci_itd_link(itdprev, itd)) {
break;
}
itdprev = itd;
INC_BUF(itc, itd);
}
itc->itc_buf_linkend = itdprev;
}
#endif
i = 0;
while (itdprev != itc->itc_buf_end) {
if (!fwohci_itd_isfilled(itd) && itc->itc_buf_cnt > 2) {
break;
}
if (fwohci_itd_link(itdprev, itd)) {
break;
}
itdprev = itd;
INC_BUF(itc, itd);
itc->itc_buf_linkend = itdprev;
++i;
}
if (i > 0) {
DPRINTF(("CTX %d: start linkend dataend bufs %d, %d, %d, %d\n",
itc->itc_num,
itc->itc_buf_start->itd_num,
itc->itc_buf_linkend->itd_num,
itc->itc_buf_end->itd_num,
itc->itc_buf_cnt));
}
} else {
volatile struct fwohci_it_dmabuf *le;
le = itc->itc_buf_linkend;
printf("CTX %d: start linkend dataend bufs %d, %d, %d, %d no buffer added\n",
itc->itc_num,
itc->itc_buf_start->itd_num,
itc->itc_buf_linkend->itd_num,
itc->itc_buf_end->itd_num,
itc->itc_buf_cnt);
printf("\tlast descriptor %s %04x %08x\n",
le->itd_lastdesc->fd_flags & OHCI_DESC_INTR_ALWAYS ? "intr" : "",
le->itd_lastdesc->fd_flags,
le->itd_lastdesc->fd_branch);
}
/* send message */
if (itc->itc_waitchan != NULL) {
/* */
wakeup(itc->itc_waitchan);
}
}
/*
* int fwohci_itd_construct(struct fwohci_it_ctx *itc,
* struct fwohci_it_dmabuf *itd, int num,
* struct fwohci_desc *desc, bus_addr_t phys,
* int descsize, int maxsize, paddr_t scratch)
*
*
*
*/
int
fwohci_itd_construct(struct fwohci_it_ctx *itc, struct fwohci_it_dmabuf *itd,
int num, struct fwohci_desc *desc, bus_addr_t phys, int descsize,
int maxsize, paddr_t scratch)
{
const char *xname = itc->itc_sc->sc_sc1394.sc1394_dev.dv_xname;
struct fwohci_desc *fd;
struct fwohci_desc *descend;
int npkt;
int bufno = 0; /* DMA segment */
bus_size_t bufused = 0; /* offset in a DMA segment */
int roundsize;
int tag = itc->itc_tag;
int ch = itc->itc_channel;
itd->itd_ctx = itc;
itd->itd_num = num;
if (descsize > 1024*3) {
printf("%s: fwohci_itd_construct[%d] descsize %d too big\n",
xname, num, descsize);
return -1;
}
itd->itd_desc = desc;
itd->itd_descsize = descsize;
itd->itd_desc_phys = phys;
itd->itd_lastdesc = desc;
itd->itd_npacket = 0;
printf("%s: fwohci_itd_construct[%d] desc %p descsize %d, maxsize %d\n",
xname, itd->itd_num, itd->itd_desc, itd->itd_descsize, maxsize);
if (descsize < 4) {
/* too small descriptor array. at least 4 */
return -1;
}
/* count up how many packet can handle */
itd->itd_maxpacket = (descsize - 1)/3;
/* rounding up to power of 2. minimum 16 */
roundsize = 16;
for (roundsize = 16; roundsize < maxsize; roundsize <<= 1);
itd->itd_maxsize = roundsize;
printf("\t\tdesc%d [%x, %lx]\n", itd->itd_num,
(u_int32_t)phys,
(unsigned long)((u_int32_t)phys
+ (itd->itd_maxpacket*3 + 1)*sizeof(struct fwohci_desc)));
printf("%s: fwohci_itd_construct[%d] npkt %d maxsize round up to %d\n",
xname, itd->itd_num, itd->itd_maxpacket, itd->itd_maxsize);
/* obtain DMA buffer */
if (fwohci_itd_dmabuf_alloc(itd)) {
/* cannot allocate memory for DMA buffer */
return -1;
}
/*
* make descriptor chain
*
* First descriptor group has a STORE_VALUE, OUTPUT_IMMEDIATE
* and OUTPUT_LAST descriptors Second and after that, a
* descriptor group has an OUTPUT_IMMEDIATE and an OUTPUT_LAST
* descriptor.
*/
descend = desc + descsize;
/* set store value descriptor for 1st descriptor group */
desc->fd_flags = OHCI_DESC_STORE_VALUE;
desc->fd_reqcount = num; /* write number of DMA buffer class */
desc->fd_data = scratch; /* at physical memory 'scratch' */
desc->fd_branch = 0;
desc->fd_status = desc->fd_rescount = 0;
itd->itd_store = desc;
itd->itd_store_phys = phys;
++desc;
phys += 16;
npkt = 0;
/* make OUTPUT_DESC chain for packets */
for (fd = desc; fd + 2 < descend; fd += 3, ++npkt) {
struct fwohci_desc *fi = fd;
struct fwohci_desc *fl = fd + 2;
u_int32_t *fi_data = (u_int32_t *)(fd + 1);
#if 0
if (npkt > itd->itd_maxpacket - 3) {
printf("%s: %3d fi fl %p %p\n", xname, npkt, fi,fl);
}
#endif
fi->fd_reqcount = 8; /* data size for OHCI command */
fi->fd_flags = OHCI_DESC_IMMED;
fi->fd_data = 0;
fi->fd_branch = 0; /* branch for error */
fi->fd_status = fi->fd_rescount = 0;
/* channel and tag is unchanged */
*fi_data = OHCI_ITHEADER_VAL(TAG, tag) |
OHCI_ITHEADER_VAL(CHAN, ch) |
OHCI_ITHEADER_VAL(TCODE, IEEE1394_TCODE_STREAM_DATA);
*++fi_data = 0;
*++fi_data = 0;
*++fi_data = 0;
fl->fd_flags = OHCI_DESC_OUTPUT | OHCI_DESC_LAST |
OHCI_DESC_BRANCH;
fl->fd_branch =
(phys + sizeof(struct fwohci_desc)*(npkt + 1)*3) | 0x03;
fl->fd_status = fl->fd_rescount = 0;
#ifdef FW_DEBUG
if (npkt > itd->itd_maxpacket - 3) {
DPRINTF(("%s: %3d fi fl fl branch %p %p 0x%x\n",
xname, npkt, fi, fl, (int)fl->fd_branch));
}
#endif
/* physical addr to data? */
fl->fd_data =
(u_int32_t)((itd->itd_seg[bufno].ds_addr + bufused));
bufused += itd->itd_maxsize;
if (bufused > itd->itd_seg[bufno].ds_len) {
bufused = 0;
if (++bufno == itd->itd_nsegs) {
/* fail */
break;
}
}
}
#if 0
if (itd->itd_num == 0) {
u_int32_t *fdp;
u_int32_t adr;
int i = 0;
fdp = (u_int32_t *)itd->itd_desc;
adr = (u_int32_t)itd->itd_desc_phys; /* XXX */
printf("fwohci_itd_construct: audit DMA desc chain. %d\n",
itd->itd_maxpacket);
for (i = 0; i < itd->itd_maxpacket*12 + 4; ++i) {
if (i % 4 == 0) {
printf("\n%x:", adr + 4*i);
}
printf(" %08x", fdp[i]);
}
printf("\n");
}
#endif
/* last branch should be 0 */
--fd;
fd->fd_branch = 0;
printf("%s: pkt %d %d maxdesc %p\n",
xname, npkt, itd->itd_maxpacket, descend);
return 0;
}
void
fwohci_itd_destruct(struct fwohci_it_dmabuf *itd)
{
const char *xname = itd->itd_ctx->itc_sc->sc_sc1394.sc1394_dev.dv_xname;
printf("%s: fwohci_itd_destruct %d\n", xname, itd->itd_num);
fwohci_itd_dmabuf_free(itd);
}
/*
* static int fwohci_itd_dmabuf_alloc(struct fwohci_it_dmabuf *itd)
*
* This function allocates DMA memory for fwohci_it_dmabuf. This
* function will return 0 when it succeeds and return non-zero
* value when it fails.
*/
static int
fwohci_itd_dmabuf_alloc(struct fwohci_it_dmabuf *itd)
{
const char *xname = itd->itd_ctx->itc_sc->sc_sc1394.sc1394_dev.dv_xname;
bus_dma_tag_t dmat = itd->itd_ctx->itc_sc->sc_dmat;
int dmasize = itd->itd_maxsize * itd->itd_maxpacket;
int error;
DPRINTF(("%s: fwohci_itd_dmabuf_alloc[%d] dmasize %d maxpkt %d\n",
xname, itd->itd_num, dmasize, itd->itd_maxpacket));
if ((error = bus_dmamem_alloc(dmat, dmasize, PAGE_SIZE, 0,
itd->itd_seg, FWOHCI_MAX_ITDATASEG, &itd->itd_nsegs, 0)) != 0) {
printf("%s: unable to allocate data buffer, error = %d\n",
xname, error);
goto fail_0;
}
/* checking memory range */
#ifdef FW_DEBUG
{
int loop;
for (loop = 0; loop < itd->itd_nsegs; ++loop) {
DPRINTF(("\t%.2d: 0x%lx - 0x%lx\n", loop,
(long)itd->itd_seg[loop].ds_addr,
(long)itd->itd_seg[loop].ds_addr
+ (long)itd->itd_seg[loop].ds_len - 1));
}
}
#endif
if ((error = bus_dmamem_map(dmat, itd->itd_seg, itd->itd_nsegs,
dmasize, (caddr_t *)&itd->itd_buf,
BUS_DMA_COHERENT | BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to map data buffer, error = %d\n",
xname, error);
goto fail_1;
}
DPRINTF(("fwohci_it_data_alloc[%d]: bus_dmamem_map addr %p\n",
itd->itd_num, itd->itd_buf));
if ((error = bus_dmamap_create(dmat, /*chunklen*/dmasize,
itd->itd_nsegs, dmasize, 0, BUS_DMA_WAITOK,
&itd->itd_dmamap)) != 0) {
printf("%s: unable to create data buffer DMA map, "
"error = %d\n", xname, error);
goto fail_2;
}
DPRINTF(("fwohci_it_data_alloc: bus_dmamem_create\n"));
if ((error = bus_dmamap_load(dmat, itd->itd_dmamap,
itd->itd_buf, dmasize, NULL, BUS_DMA_WAITOK)) != 0) {
printf("%s: unable to load data buffer DMA map, error = %d\n",
xname, error);
goto fail_3;
}
DPRINTF(("fwohci_itd_dmabuf_alloc: load DMA memory vm %p\n",
itd->itd_buf));
DPRINTF(("\tmapsize %ld nsegs %d\n",
(long)itd->itd_dmamap->dm_mapsize, itd->itd_dmamap->dm_nsegs));
#ifdef FW_DEBUG
{
int loop;
for (loop = 0; loop < itd->itd_dmamap->dm_nsegs; ++loop) {
DPRINTF(("\t%.2d: 0x%lx - 0x%lx\n", loop,
(long)itd->itd_dmamap->dm_segs[loop].ds_addr,
(long)itd->itd_dmamap->dm_segs[loop].ds_addr +
(long)itd->itd_dmamap->dm_segs[loop].ds_len - 1));
}
}
#endif
return 0;
fail_3:
bus_dmamap_destroy(dmat, itd->itd_dmamap);
fail_2:
bus_dmamem_unmap(dmat, (caddr_t)itd->itd_buf, dmasize);
fail_1:
bus_dmamem_free(dmat, itd->itd_seg, itd->itd_nsegs);
fail_0:
itd->itd_nsegs = 0;
itd->itd_maxpacket = 0;
return error;
}
/*
* static void fwohci_itd_dmabuf_free(struct fwohci_it_dmabuf *itd)
*
* This function will release memory resource allocated by
* fwohci_itd_dmabuf_alloc().
*/
static void
fwohci_itd_dmabuf_free(struct fwohci_it_dmabuf *itd)
{
bus_dma_tag_t dmat = itd->itd_ctx->itc_sc->sc_dmat;
int dmasize = itd->itd_maxsize * itd->itd_maxpacket;
bus_dmamap_destroy(dmat, itd->itd_dmamap);
bus_dmamem_unmap(dmat, (caddr_t)itd->itd_buf, dmasize);
bus_dmamem_free(dmat, itd->itd_seg, itd->itd_nsegs);
itd->itd_nsegs = 0;
itd->itd_maxpacket = 0;
}
/*
* int fwohci_itd_link(struct fwohci_it_dmabuf *itd,
* struct fwohci_it_dmabuf *itdc)
*
* This function will concatinate two descriptor chains in dmabuf
* itd and itdc. The descriptor link in itdc follows one in itd.
* This function will move interrrupt packet from the end of itd
* to the top of itdc.
*
* This function will return 0 whel this funcion suceeds. If an
* error happens, return a negative value.
*/
int
fwohci_itd_link(volatile struct fwohci_it_dmabuf *itd,
volatile struct fwohci_it_dmabuf *itdc)
{
struct fwohci_desc *fd1, *fdc;
if (itdc->itd_lastdesc == itdc->itd_desc) {
/* no valid data */
printf("fwohci_itd_link: no data\n");
return -1;
}
if (itdc->itd_flags & ITD_FLAGS_LOCK) {
/* used already */
printf("fwohci_itd_link: link locked\n");
return -1;
}
itdc->itd_flags |= ITD_FLAGS_LOCK;
/* for the first one */
itd->itd_flags |= ITD_FLAGS_LOCK;
DPRINTF(("linking %d after %d: add %d pkts\n",
itdc->itd_num, itd->itd_num, itdc->itd_npacket));
/* XXX: should sync cache */
fd1 = itd->itd_lastdesc;
fdc = itdc->itd_desc + 3; /* OUTPUT_LAST in the first descriptor */
/* sanity check */
#define OUTPUT_LAST_DESC (OHCI_DESC_OUTPUT | OHCI_DESC_LAST | OHCI_DESC_BRANCH)
if ((fd1->fd_flags & OUTPUT_LAST_DESC) != OUTPUT_LAST_DESC) {
printf("funny! not OUTPUT_LAST descriptor %p\n", fd1);
}
if (itd->itd_lastdesc - itd->itd_desc != 3 * itd->itd_npacket) {
printf("funny! packet number inconsistency %ld <=> %ld\n",
(long)(itd->itd_lastdesc - itd->itd_desc),
(long)(3*itd->itd_npacket));
}
fd1->fd_flags &= ~OHCI_DESC_INTR_ALWAYS;
fdc->fd_flags |= OHCI_DESC_INTR_ALWAYS;
fd1->fd_branch = itdc->itd_desc_phys | 4;
itdc->itd_lastdesc->fd_flags |= OHCI_DESC_INTR_ALWAYS;
/* save branch addr of lastdesc and substitute 0 to it */
itdc->itd_savedbranch = itdc->itd_lastdesc->fd_branch;
itdc->itd_lastdesc->fd_branch = 0;
DPRINTF(("%s: link (%d %d), add pkt %d/%d branch 0x%x next saved 0x%x\n",
itd->itd_ctx->itc_sc->sc_sc1394.sc1394_dev.dv_xname,
itd->itd_num, itdc->itd_num,
itdc->itd_npacket, itdc->itd_maxpacket,
(int)fd1->fd_branch, (int)itdc->itd_savedbranch));
/* XXX: should sync cache */
return 0;
}
/*
* int fwohci_itd_unlink(struct fwohci_it_dmabuf *itd)
*
* This function will unlink the descriptor chain from valid link
* of descriptors. The target descriptor is specified by the
* arguent.
*/
int
fwohci_itd_unlink(volatile struct fwohci_it_dmabuf *itd)
{
struct fwohci_desc *fd;
/* XXX: should sync cache */
fd = itd->itd_lastdesc;
fd->fd_branch = itd->itd_savedbranch;
DPRINTF(("%s: unlink buf %d branch restored 0x%x\n",
itd->itd_ctx->itc_sc->sc_sc1394.sc1394_dev.dv_xname,
itd->itd_num, (int)fd->fd_branch));
fd->fd_flags &= ~OHCI_DESC_INTR_ALWAYS;
itd->itd_lastdesc = itd->itd_desc;
fd = itd->itd_desc + 3; /* 1st OUTPUT_LAST */
fd->fd_flags &= ~OHCI_DESC_INTR_ALWAYS;
/* XXX: should sync cache */
itd->itd_npacket = 0;
itd->itd_lastdesc = itd->itd_desc;
itd->itd_flags &= ~ITD_FLAGS_LOCK;
return 0;
}
/*
* static int fwohci_itd_writedata(struct fwohci_it_dmabuf *, int ndata,
* struct ieee1394_it_datalist *);
*
* This function will return the number of written data, or
* negative value if an error happens
*/
int
fwohci_itd_writedata(volatile struct fwohci_it_dmabuf *itd, int ndata,
struct ieee1394_it_datalist *itdata)
{
int writepkt;
int i;
u_int8_t *p;
struct fwohci_desc *fd;
u_int32_t *fd_idata;
const int dspace =
itd->itd_maxpacket - itd->itd_npacket < ndata ?
itd->itd_maxpacket - itd->itd_npacket : ndata;
if (itd->itd_flags & ITD_FLAGS_LOCK || dspace == 0) {
/* it is locked: cannot write anything */
if (itd->itd_flags & ITD_FLAGS_LOCK) {
DPRINTF(("fwohci_itd_writedata: buf %d lock flag %s,"
" dspace %d\n",
itd->itd_num,
itd->itd_flags & ITD_FLAGS_LOCK ? "ON" : "OFF",
dspace));
return 0; /* not an error */
}
}
/* sanity check */
if (itd->itd_maxpacket < itd->itd_npacket) {
printf("fwohci_itd_writedata: funny! # pkt > maxpkt"
"%d %d\n", itd->itd_npacket, itd->itd_maxpacket);
}
p = itd->itd_buf + itd->itd_maxsize * itd->itd_npacket;
fd = itd->itd_lastdesc;
DPRINTF(("fwohci_itd_writedata(%d[%p], %d, %p) invoked:\n",
itd->itd_num, itd, ndata, itdata));
for (writepkt = 0; writepkt < dspace; ++writepkt) {
u_int8_t *p1 = p;
int cpysize;
int totalsize = 0;
DPRINTF(("writing %d ", writepkt));
for (i = 0; i < 4; ++i) {
switch (itdata->it_cmd[i]&IEEE1394_IT_CMD_MASK) {
case IEEE1394_IT_CMD_IMMED:
memcpy(p1, &itdata->it_u[i].id_data, 8);
p1 += 8;
totalsize += 8;
break;
case IEEE1394_IT_CMD_PTR:
cpysize = itdata->it_cmd[i]&IEEE1394_IT_CMD_SIZE;
DPRINTF(("fwohci_itd_writedata: cpy %d %p\n",
cpysize, itdata->it_u[i].id_addr));
if (totalsize + cpysize > itd->itd_maxsize) {
/* error: too big size */
break;
}
memcpy(p1, itdata->it_u[i].id_addr, cpysize);
totalsize += cpysize;
break;
case IEEE1394_IT_CMD_NOP:
break;
default:
/* unknown command */
break;
}
}
/* only for DV test */
if (totalsize != 488) {
printf("error: totalsize %d at %d\n",
totalsize, writepkt);
}
DPRINTF(("totalsize %d ", totalsize));
/* fill iso command in OUTPUT_IMMED descriptor */
/* XXX: sync cache */
fd += 2; /* next to first descriptor */
fd_idata = (u_int32_t *)fd;
/*
* Umm, should tag, channel and tcode be written
* previously in itd_construct?
*/
#if 0
*fd_idata = OHCI_ITHEADER_VAL(TAG, tag) |
OHCI_ITHEADER_VAL(CHAN, ch) |
OHCI_ITHEADER_VAL(TCODE, IEEE1394_TCODE_STREAM_DATA);
#endif
*++fd_idata = totalsize << 16;
/* fill data in OUTPUT_LAST descriptor */
++fd;
/* intr check... */
if (fd->fd_flags & OHCI_DESC_INTR_ALWAYS) {
printf("uncleared INTR flag in desc %ld\n",
(long)(fd - itd->itd_desc - 1)/3);
}
fd->fd_flags &= ~OHCI_DESC_INTR_ALWAYS;
if ((fd - itd->itd_desc - 1)/3 != itd->itd_maxpacket - 1) {
u_int32_t bcal;
bcal = (fd - itd->itd_desc + 1)*sizeof(struct fwohci_desc) + (u_int32_t)itd->itd_desc_phys;
if (bcal != (fd->fd_branch & 0xfffffff0)) {
printf("uum, branch differ at %d, %x %x %ld/%d\n",
itd->itd_num,
bcal,
fd->fd_branch,
(long)((fd - itd->itd_desc - 1)/3),
itd->itd_maxpacket);
}
} else {
/* the last pcaket */
if (fd->fd_branch != 0) {
printf("uum, branch differ at %d, %x %x %ld/%d\n",
itd->itd_num,
0,
fd->fd_branch,
(long)((fd - itd->itd_desc - 1)/3),
itd->itd_maxpacket);
}
}
/* sanity check */
if (fd->fd_flags != OUTPUT_LAST_DESC) {
printf("fwohci_itd_writedata: dmabuf %d desc inconsistent %d\n",
itd->itd_num, writepkt + itd->itd_npacket);
break;
}
fd->fd_reqcount = totalsize;
/* XXX: sync cache */
++itdata;
p += itd->itd_maxsize;
}
DPRINTF(("loop start %d, %d times %d\n",
itd->itd_npacket, dspace, writepkt));
itd->itd_npacket += writepkt;
itd->itd_lastdesc = fd;
return writepkt;
}
int
fwohci_itd_isfilled(volatile struct fwohci_it_dmabuf *itd)
{
return itd->itd_npacket*2 > itd->itd_maxpacket ? 1 : 0;
}