490 lines
14 KiB
C
490 lines
14 KiB
C
/* $NetBSD: fpu_implode.c,v 1.5 2001/02/18 20:05:58 chs Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratory.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
|
|
*/
|
|
|
|
/*
|
|
* FPU subroutines: `implode' internal format numbers into the machine's
|
|
* `packed binary' format.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include "ieee.h"
|
|
#include <machine/reg.h>
|
|
|
|
#include "fpu_emulate.h"
|
|
#include "fpu_arith.h"
|
|
|
|
/* Conversion from internal format -- note asymmetry. */
|
|
static u_int fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
|
|
static u_int fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
|
|
static u_int fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
|
|
static u_int fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
|
|
|
|
/*
|
|
* Round a number (algorithm from Motorola MC68882 manual, modified for
|
|
* our internal format). Set inexact exception if rounding is required.
|
|
* Return true iff we rounded up.
|
|
*
|
|
* After rounding, we discard the guard and round bits by shifting right
|
|
* 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
|
|
* This saves effort later.
|
|
*
|
|
* Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
|
|
* responsibility to fix this if necessary.
|
|
*/
|
|
int
|
|
fpu_round(register struct fpemu *fe, register struct fpn *fp)
|
|
{
|
|
register u_int m0, m1, m2;
|
|
register int gr, s;
|
|
|
|
m0 = fp->fp_mant[0];
|
|
m1 = fp->fp_mant[1];
|
|
m2 = fp->fp_mant[2];
|
|
gr = m2 & 3;
|
|
s = fp->fp_sticky;
|
|
|
|
/* mant >>= FP_NG */
|
|
m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
|
|
m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
|
|
m0 >>= FP_NG;
|
|
|
|
if ((gr | s) == 0) /* result is exact: no rounding needed */
|
|
goto rounddown;
|
|
|
|
fe->fe_fpsr |= FPSR_INEX2; /* inexact */
|
|
|
|
/* Go to rounddown to round down; break to round up. */
|
|
switch (fe->fe_fpcr & FPCR_ROUND) {
|
|
|
|
case FPCR_NEAR:
|
|
default:
|
|
/*
|
|
* Round only if guard is set (gr & 2). If guard is set,
|
|
* but round & sticky both clear, then we want to round
|
|
* but have a tie, so round to even, i.e., add 1 iff odd.
|
|
*/
|
|
if ((gr & 2) == 0)
|
|
goto rounddown;
|
|
if ((gr & 1) || fp->fp_sticky || (m2 & 1))
|
|
break;
|
|
goto rounddown;
|
|
|
|
case FPCR_ZERO:
|
|
/* Round towards zero, i.e., down. */
|
|
goto rounddown;
|
|
|
|
case FPCR_MINF:
|
|
/* Round towards -Inf: up if negative, down if positive. */
|
|
if (fp->fp_sign)
|
|
break;
|
|
goto rounddown;
|
|
|
|
case FPCR_PINF:
|
|
/* Round towards +Inf: up if positive, down otherwise. */
|
|
if (!fp->fp_sign)
|
|
break;
|
|
goto rounddown;
|
|
}
|
|
|
|
/* Bump low bit of mantissa, with carry. */
|
|
if (++m2 == 0 && ++m1 == 0)
|
|
m0++;
|
|
fp->fp_sticky = 0;
|
|
fp->fp_mant[0] = m0;
|
|
fp->fp_mant[1] = m1;
|
|
fp->fp_mant[2] = m2;
|
|
return (1);
|
|
|
|
rounddown:
|
|
fp->fp_sticky = 0;
|
|
fp->fp_mant[0] = m0;
|
|
fp->fp_mant[1] = m1;
|
|
fp->fp_mant[2] = m2;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* For overflow: return true if overflow is to go to +/-Inf, according
|
|
* to the sign of the overflowing result. If false, overflow is to go
|
|
* to the largest magnitude value instead.
|
|
*/
|
|
static int
|
|
toinf(struct fpemu *fe, int sign)
|
|
{
|
|
int inf;
|
|
|
|
/* look at rounding direction */
|
|
switch (fe->fe_fpcr & FPCR_ROUND) {
|
|
|
|
default:
|
|
case FPCR_NEAR: /* the nearest value is always Inf */
|
|
inf = 1;
|
|
break;
|
|
|
|
case FPCR_ZERO: /* toward 0 => never towards Inf */
|
|
inf = 0;
|
|
break;
|
|
|
|
case FPCR_PINF: /* toward +Inf iff positive */
|
|
inf = (sign == 0);
|
|
break;
|
|
|
|
case FPCR_MINF: /* toward -Inf iff negative */
|
|
inf = sign;
|
|
break;
|
|
}
|
|
return (inf);
|
|
}
|
|
|
|
/*
|
|
* fpn -> int (int value returned as return value).
|
|
*
|
|
* N.B.: this conversion always rounds towards zero (this is a peculiarity
|
|
* of the SPARC instruction set).
|
|
*/
|
|
static u_int
|
|
fpu_ftoi(fe, fp)
|
|
struct fpemu *fe;
|
|
register struct fpn *fp;
|
|
{
|
|
register u_int i;
|
|
register int sign, exp;
|
|
|
|
sign = fp->fp_sign;
|
|
switch (fp->fp_class) {
|
|
|
|
case FPC_ZERO:
|
|
return (0);
|
|
|
|
case FPC_NUM:
|
|
/*
|
|
* If exp >= 2^32, overflow. Otherwise shift value right
|
|
* into last mantissa word (this will not exceed 0xffffffff),
|
|
* shifting any guard and round bits out into the sticky
|
|
* bit. Then ``round'' towards zero, i.e., just set an
|
|
* inexact exception if sticky is set (see fpu_round()).
|
|
* If the result is > 0x80000000, or is positive and equals
|
|
* 0x80000000, overflow; otherwise the last fraction word
|
|
* is the result.
|
|
*/
|
|
if ((exp = fp->fp_exp) >= 32)
|
|
break;
|
|
/* NB: the following includes exp < 0 cases */
|
|
if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
|
|
/* m68881/2 do not underflow when
|
|
converting to integer */;
|
|
fpu_round(fe, fp);
|
|
i = fp->fp_mant[2];
|
|
if (i >= ((u_int)0x80000000 + sign))
|
|
break;
|
|
return (sign ? -i : i);
|
|
|
|
default: /* Inf, qNaN, sNaN */
|
|
break;
|
|
}
|
|
/* overflow: replace any inexact exception with invalid */
|
|
fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
|
|
return (0x7fffffff + sign);
|
|
}
|
|
|
|
/*
|
|
* fpn -> single (32 bit single returned as return value).
|
|
* We assume <= 29 bits in a single-precision fraction (1.f part).
|
|
*/
|
|
static u_int
|
|
fpu_ftos(fe, fp)
|
|
struct fpemu *fe;
|
|
register struct fpn *fp;
|
|
{
|
|
register u_int sign = fp->fp_sign << 31;
|
|
register int exp;
|
|
|
|
#define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
|
|
#define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
|
|
|
|
/* Take care of non-numbers first. */
|
|
if (ISNAN(fp)) {
|
|
/*
|
|
* Preserve upper bits of NaN, per SPARC V8 appendix N.
|
|
* Note that fp->fp_mant[0] has the quiet bit set,
|
|
* even if it is classified as a signalling NaN.
|
|
*/
|
|
(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
|
|
exp = SNG_EXP_INFNAN;
|
|
goto done;
|
|
}
|
|
if (ISINF(fp))
|
|
return (sign | SNG_EXP(SNG_EXP_INFNAN));
|
|
if (ISZERO(fp))
|
|
return (sign);
|
|
|
|
/*
|
|
* Normals (including subnormals). Drop all the fraction bits
|
|
* (including the explicit ``implied'' 1 bit) down into the
|
|
* single-precision range. If the number is subnormal, move
|
|
* the ``implied'' 1 into the explicit range as well, and shift
|
|
* right to introduce leading zeroes. Rounding then acts
|
|
* differently for normals and subnormals: the largest subnormal
|
|
* may round to the smallest normal (1.0 x 2^minexp), or may
|
|
* remain subnormal. In the latter case, signal an underflow
|
|
* if the result was inexact or if underflow traps are enabled.
|
|
*
|
|
* Rounding a normal, on the other hand, always produces another
|
|
* normal (although either way the result might be too big for
|
|
* single precision, and cause an overflow). If rounding a
|
|
* normal produces 2.0 in the fraction, we need not adjust that
|
|
* fraction at all, since both 1.0 and 2.0 are zero under the
|
|
* fraction mask.
|
|
*
|
|
* Note that the guard and round bits vanish from the number after
|
|
* rounding.
|
|
*/
|
|
if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
|
|
fe->fe_fpsr |= FPSR_UNFL;
|
|
/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
|
|
(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
|
|
if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1))
|
|
return (sign | SNG_EXP(1) | 0);
|
|
if (fe->fe_fpsr & FPSR_INEX2)
|
|
fe->fe_fpsr |= FPSR_UNFL
|
|
/* mc68881/2 don't underflow when converting */;
|
|
return (sign | SNG_EXP(0) | fp->fp_mant[2]);
|
|
}
|
|
/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
|
|
(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
|
|
#ifdef DIAGNOSTIC
|
|
if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0)
|
|
panic("fpu_ftos");
|
|
#endif
|
|
if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2))
|
|
exp++;
|
|
if (exp >= SNG_EXP_INFNAN) {
|
|
/* overflow to inf or to max single */
|
|
fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
|
|
if (toinf(fe, sign))
|
|
return (sign | SNG_EXP(SNG_EXP_INFNAN));
|
|
return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
|
|
}
|
|
done:
|
|
/* phew, made it */
|
|
return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK));
|
|
}
|
|
|
|
/*
|
|
* fpn -> double (32 bit high-order result returned; 32-bit low order result
|
|
* left in res[1]). Assumes <= 61 bits in double precision fraction.
|
|
*
|
|
* This code mimics fpu_ftos; see it for comments.
|
|
*/
|
|
static u_int
|
|
fpu_ftod(fe, fp, res)
|
|
struct fpemu *fe;
|
|
register struct fpn *fp;
|
|
u_int *res;
|
|
{
|
|
register u_int sign = fp->fp_sign << 31;
|
|
register int exp;
|
|
|
|
#define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
|
|
#define DBL_MASK (DBL_EXP(1) - 1)
|
|
|
|
if (ISNAN(fp)) {
|
|
(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
|
|
exp = DBL_EXP_INFNAN;
|
|
goto done;
|
|
}
|
|
if (ISINF(fp)) {
|
|
sign |= DBL_EXP(DBL_EXP_INFNAN);
|
|
res[1] = 0;
|
|
return (sign);
|
|
}
|
|
if (ISZERO(fp)) {
|
|
res[1] = 0;
|
|
return (sign);
|
|
}
|
|
|
|
if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
|
|
fe->fe_fpsr |= FPSR_UNFL;
|
|
(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
|
|
if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) {
|
|
res[1] = 0;
|
|
return (sign | DBL_EXP(1) | 0);
|
|
}
|
|
if (fe->fe_fpsr & FPSR_INEX2)
|
|
fe->fe_fpsr |= FPSR_UNFL
|
|
/* mc68881/2 don't underflow when converting */;
|
|
exp = 0;
|
|
goto done;
|
|
}
|
|
(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
|
|
if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2))
|
|
exp++;
|
|
if (exp >= DBL_EXP_INFNAN) {
|
|
fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
|
|
if (toinf(fe, sign)) {
|
|
res[1] = 0;
|
|
return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
|
|
}
|
|
res[1] = ~0;
|
|
return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
|
|
}
|
|
done:
|
|
res[1] = fp->fp_mant[2];
|
|
return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK));
|
|
}
|
|
|
|
/*
|
|
* fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
|
|
* order result left in res[1] & res[2]). Assumes == 64 bits in extended
|
|
* precision fraction.
|
|
*
|
|
* This code mimics fpu_ftos; see it for comments.
|
|
*/
|
|
static u_int
|
|
fpu_ftox(fe, fp, res)
|
|
struct fpemu *fe;
|
|
register struct fpn *fp;
|
|
u_int *res;
|
|
{
|
|
register u_int sign = fp->fp_sign << 31;
|
|
register int exp;
|
|
|
|
#define EXT_EXP(e) ((e) << 16)
|
|
/*
|
|
* on m68k extended prec, significand does not share the same long
|
|
* word with exponent
|
|
*/
|
|
#define EXT_MASK 0
|
|
#define EXT_EXPLICIT1 (1UL << (63 & 31))
|
|
#define EXT_EXPLICIT2 (1UL << (64 & 31))
|
|
|
|
if (ISNAN(fp)) {
|
|
(void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS);
|
|
exp = EXT_EXP_INFNAN;
|
|
goto done;
|
|
}
|
|
if (ISINF(fp)) {
|
|
sign |= EXT_EXP(EXT_EXP_INFNAN);
|
|
res[1] = res[2] = 0;
|
|
return (sign);
|
|
}
|
|
if (ISZERO(fp)) {
|
|
res[1] = res[2] = 0;
|
|
return (sign);
|
|
}
|
|
|
|
if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) {
|
|
fe->fe_fpsr |= FPSR_UNFL;
|
|
/* I'm not sure about this <=... exp==0 doesn't mean
|
|
it's a denormal in extended format */
|
|
(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
|
|
if (fpu_round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) {
|
|
res[1] = res[2] = 0;
|
|
return (sign | EXT_EXP(1) | 0);
|
|
}
|
|
if (fe->fe_fpsr & FPSR_INEX2)
|
|
fe->fe_fpsr |= FPSR_UNFL
|
|
/* mc68881/2 don't underflow */;
|
|
exp = 0;
|
|
goto done;
|
|
}
|
|
#if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
|
|
(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
|
|
#endif
|
|
if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2)
|
|
exp++;
|
|
if (exp >= EXT_EXP_INFNAN) {
|
|
fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
|
|
if (toinf(fe, sign)) {
|
|
res[1] = res[2] = 0;
|
|
return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
|
|
}
|
|
res[1] = res[2] = ~0;
|
|
return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
|
|
}
|
|
done:
|
|
res[1] = fp->fp_mant[1];
|
|
res[2] = fp->fp_mant[2];
|
|
return (sign | EXT_EXP(exp));
|
|
}
|
|
|
|
/*
|
|
* Implode an fpn, writing the result into the given space.
|
|
*/
|
|
void
|
|
fpu_implode(fe, fp, type, space)
|
|
struct fpemu *fe;
|
|
register struct fpn *fp;
|
|
int type;
|
|
register u_int *space;
|
|
{
|
|
/* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
|
|
|
|
switch (type) {
|
|
case FTYPE_LNG:
|
|
space[0] = fpu_ftoi(fe, fp);
|
|
break;
|
|
|
|
case FTYPE_SNG:
|
|
space[0] = fpu_ftos(fe, fp);
|
|
break;
|
|
|
|
case FTYPE_DBL:
|
|
space[0] = fpu_ftod(fe, fp, space);
|
|
break;
|
|
|
|
case FTYPE_EXT:
|
|
/* funky rounding precision options ?? */
|
|
space[0] = fpu_ftox(fe, fp, space);
|
|
break;
|
|
|
|
default:
|
|
panic("fpu_implode");
|
|
}
|
|
}
|