4f6fb3bf35
the sysctl link sets are processed, and remove redundancy. Shaves >13kB off of an amd64 GENERIC, not to mention >1k duplicate lines of code.
1364 lines
35 KiB
C
1364 lines
35 KiB
C
/* $NetBSD: crypto.c,v 1.45 2014/02/25 18:30:12 pooka Exp $ */
|
|
/* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
|
|
/* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Coyote Point Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
|
|
*
|
|
* This code was written by Angelos D. Keromytis in Athens, Greece, in
|
|
* February 2000. Network Security Technologies Inc. (NSTI) kindly
|
|
* supported the development of this code.
|
|
*
|
|
* Copyright (c) 2000, 2001 Angelos D. Keromytis
|
|
*
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
* is hereby granted, provided that this entire notice is included in
|
|
* all source code copies of any software which is or includes a copy or
|
|
* modification of this software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
* PURPOSE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.45 2014/02/25 18:30:12 pooka Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/once.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/module.h>
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_ocf.h"
|
|
#endif
|
|
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/xform.h> /* XXX for M_XDATA */
|
|
|
|
kmutex_t crypto_q_mtx;
|
|
kmutex_t crypto_ret_q_mtx;
|
|
kcondvar_t cryptoret_cv;
|
|
kmutex_t crypto_mtx;
|
|
|
|
/* below are kludges for residual code wrtitten to FreeBSD interfaces */
|
|
#define SWI_CRYPTO 17
|
|
#define register_swi(lvl, fn) \
|
|
softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
|
|
#define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
|
|
#define setsoftcrypto(x) softint_schedule(x)
|
|
|
|
int crypto_ret_q_check(struct cryptop *);
|
|
|
|
/*
|
|
* Crypto drivers register themselves by allocating a slot in the
|
|
* crypto_drivers table with crypto_get_driverid() and then registering
|
|
* each algorithm they support with crypto_register() and crypto_kregister().
|
|
*/
|
|
static struct cryptocap *crypto_drivers;
|
|
static int crypto_drivers_num;
|
|
static void *softintr_cookie;
|
|
|
|
/*
|
|
* There are two queues for crypto requests; one for symmetric (e.g.
|
|
* cipher) operations and one for asymmetric (e.g. MOD) operations.
|
|
* See below for how synchronization is handled.
|
|
*/
|
|
static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
|
|
TAILQ_HEAD_INITIALIZER(crp_q);
|
|
static TAILQ_HEAD(,cryptkop) crp_kq =
|
|
TAILQ_HEAD_INITIALIZER(crp_kq);
|
|
|
|
/*
|
|
* There are two queues for processing completed crypto requests; one
|
|
* for the symmetric and one for the asymmetric ops. We only need one
|
|
* but have two to avoid type futzing (cryptop vs. cryptkop). See below
|
|
* for how synchronization is handled.
|
|
*/
|
|
static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
|
|
TAILQ_HEAD_INITIALIZER(crp_ret_q);
|
|
static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
|
|
TAILQ_HEAD_INITIALIZER(crp_ret_kq);
|
|
|
|
/*
|
|
* XXX these functions are ghastly hacks for when the submission
|
|
* XXX routines discover a request that was not CBIMM is already
|
|
* XXX done, and must be yanked from the retq (where _done) put it
|
|
* XXX as cryptoret won't get the chance. The queue is walked backwards
|
|
* XXX as the request is generally the last one queued.
|
|
*
|
|
* call with the lock held, or else.
|
|
*/
|
|
int
|
|
crypto_ret_q_remove(struct cryptop *crp)
|
|
{
|
|
struct cryptop * acrp, *next;
|
|
|
|
TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
|
|
if (acrp == crp) {
|
|
TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
|
|
crp->crp_flags &= (~CRYPTO_F_ONRETQ);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
crypto_ret_kq_remove(struct cryptkop *krp)
|
|
{
|
|
struct cryptkop * akrp, *next;
|
|
|
|
TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
|
|
if (akrp == krp) {
|
|
TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
|
|
krp->krp_flags &= (~CRYPTO_F_ONRETQ);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Crypto op and desciptor data structures are allocated
|
|
* from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
|
|
*/
|
|
struct pool cryptop_pool;
|
|
struct pool cryptodesc_pool;
|
|
struct pool cryptkop_pool;
|
|
|
|
int crypto_usercrypto = 1; /* userland may open /dev/crypto */
|
|
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
|
|
/*
|
|
* cryptodevallowsoft is (intended to be) sysctl'able, controlling
|
|
* access to hardware versus software transforms as below:
|
|
*
|
|
* crypto_devallowsoft < 0: Force userlevel requests to use software
|
|
* transforms, always
|
|
* crypto_devallowsoft = 0: Use hardware if present, grant userlevel
|
|
* requests for non-accelerated transforms
|
|
* (handling the latter in software)
|
|
* crypto_devallowsoft > 0: Allow user requests only for transforms which
|
|
* are hardware-accelerated.
|
|
*/
|
|
int crypto_devallowsoft = 1; /* only use hardware crypto */
|
|
|
|
SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
|
|
{
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "usercrypto",
|
|
SYSCTL_DESCR("Enable/disable user-mode access to "
|
|
"crypto support"),
|
|
NULL, 0, &crypto_usercrypto, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "userasymcrypto",
|
|
SYSCTL_DESCR("Enable/disable user-mode access to "
|
|
"asymmetric crypto support"),
|
|
NULL, 0, &crypto_userasymcrypto, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "cryptodevallowsoft",
|
|
SYSCTL_DESCR("Enable/disable use of software "
|
|
"asymmetric crypto support"),
|
|
NULL, 0, &crypto_devallowsoft, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
}
|
|
|
|
MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
|
|
|
|
/*
|
|
* Synchronization: read carefully, this is non-trivial.
|
|
*
|
|
* Crypto requests are submitted via crypto_dispatch. Typically
|
|
* these come in from network protocols at spl0 (output path) or
|
|
* spl[,soft]net (input path).
|
|
*
|
|
* Requests are typically passed on the driver directly, but they
|
|
* may also be queued for processing by a software interrupt thread,
|
|
* cryptointr, that runs at splsoftcrypto. This thread dispatches
|
|
* the requests to crypto drivers (h/w or s/w) who call crypto_done
|
|
* when a request is complete. Hardware crypto drivers are assumed
|
|
* to register their IRQ's as network devices so their interrupt handlers
|
|
* and subsequent "done callbacks" happen at spl[imp,net].
|
|
*
|
|
* Completed crypto ops are queued for a separate kernel thread that
|
|
* handles the callbacks at spl0. This decoupling insures the crypto
|
|
* driver interrupt service routine is not delayed while the callback
|
|
* takes place and that callbacks are delivered after a context switch
|
|
* (as opposed to a software interrupt that clients must block).
|
|
*
|
|
* This scheme is not intended for SMP machines.
|
|
*/
|
|
static void cryptointr(void); /* swi thread to dispatch ops */
|
|
static void cryptoret(void); /* kernel thread for callbacks*/
|
|
static struct lwp *cryptothread;
|
|
static void crypto_destroy(void);
|
|
static int crypto_invoke(struct cryptop *crp, int hint);
|
|
static int crypto_kinvoke(struct cryptkop *krp, int hint);
|
|
|
|
static struct cryptostats cryptostats;
|
|
#ifdef CRYPTO_TIMING
|
|
static int crypto_timing = 0;
|
|
#endif
|
|
|
|
#ifdef _MODULE
|
|
static struct sysctllog *sysctl_opencrypto_clog;
|
|
#endif
|
|
|
|
static int
|
|
crypto_init0(void)
|
|
{
|
|
int error;
|
|
|
|
mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
|
|
mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
|
|
cv_init(&cryptoret_cv, "crypto_w");
|
|
pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
|
|
0, "cryptop", NULL, IPL_NET);
|
|
pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
|
|
0, "cryptodesc", NULL, IPL_NET);
|
|
pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
|
|
0, "cryptkop", NULL, IPL_NET);
|
|
|
|
crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
|
|
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
|
|
if (crypto_drivers == NULL) {
|
|
printf("crypto_init: cannot malloc driver table\n");
|
|
return 0;
|
|
}
|
|
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
|
|
|
|
softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
|
|
error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
|
|
(void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
|
|
if (error) {
|
|
printf("crypto_init: cannot start cryptoret thread; error %d",
|
|
error);
|
|
crypto_destroy();
|
|
}
|
|
|
|
#ifdef _MODULE
|
|
sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
crypto_init(void)
|
|
{
|
|
static ONCE_DECL(crypto_init_once);
|
|
|
|
RUN_ONCE(&crypto_init_once, crypto_init0);
|
|
}
|
|
|
|
static void
|
|
crypto_destroy(void)
|
|
{
|
|
/* XXX no wait to reclaim zones */
|
|
if (crypto_drivers != NULL)
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
unregister_swi(SWI_CRYPTO, cryptointr);
|
|
}
|
|
|
|
/*
|
|
* Create a new session. Must be called with crypto_mtx held.
|
|
*/
|
|
int
|
|
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
|
|
{
|
|
struct cryptoini *cr;
|
|
u_int32_t hid, lid;
|
|
int err = EINVAL;
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
|
|
if (crypto_drivers == NULL)
|
|
goto done;
|
|
|
|
/*
|
|
* The algorithm we use here is pretty stupid; just use the
|
|
* first driver that supports all the algorithms we need.
|
|
*
|
|
* XXX We need more smarts here (in real life too, but that's
|
|
* XXX another story altogether).
|
|
*/
|
|
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
/*
|
|
* If it's not initialized or has remaining sessions
|
|
* referencing it, skip.
|
|
*/
|
|
if (crypto_drivers[hid].cc_newsession == NULL ||
|
|
(crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
|
|
continue;
|
|
|
|
/* Hardware required -- ignore software drivers. */
|
|
if (hard > 0 &&
|
|
(crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
|
|
continue;
|
|
/* Software required -- ignore hardware drivers. */
|
|
if (hard < 0 &&
|
|
(crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
|
|
continue;
|
|
|
|
/* See if all the algorithms are supported. */
|
|
for (cr = cri; cr; cr = cr->cri_next)
|
|
if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
|
|
DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
|
|
break;
|
|
}
|
|
|
|
if (cr == NULL) {
|
|
/* Ok, all algorithms are supported. */
|
|
|
|
/*
|
|
* Can't do everything in one session.
|
|
*
|
|
* XXX Fix this. We need to inject a "virtual" session layer right
|
|
* XXX about here.
|
|
*/
|
|
|
|
/* Call the driver initialization routine. */
|
|
lid = hid; /* Pass the driver ID. */
|
|
err = crypto_drivers[hid].cc_newsession(
|
|
crypto_drivers[hid].cc_arg, &lid, cri);
|
|
if (err == 0) {
|
|
(*sid) = hid;
|
|
(*sid) <<= 32;
|
|
(*sid) |= (lid & 0xffffffff);
|
|
crypto_drivers[hid].cc_sessions++;
|
|
}
|
|
goto done;
|
|
/*break;*/
|
|
}
|
|
}
|
|
done:
|
|
mutex_exit(&crypto_mtx);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Delete an existing session (or a reserved session on an unregistered
|
|
* driver). Must be called with crypto_mtx mutex held.
|
|
*/
|
|
int
|
|
crypto_freesession(u_int64_t sid)
|
|
{
|
|
u_int32_t hid;
|
|
int err = 0;
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
|
|
if (crypto_drivers == NULL) {
|
|
err = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
/* Determine two IDs. */
|
|
hid = CRYPTO_SESID2HID(sid);
|
|
|
|
if (hid >= crypto_drivers_num) {
|
|
err = ENOENT;
|
|
goto done;
|
|
}
|
|
|
|
if (crypto_drivers[hid].cc_sessions)
|
|
crypto_drivers[hid].cc_sessions--;
|
|
|
|
/* Call the driver cleanup routine, if available. */
|
|
if (crypto_drivers[hid].cc_freesession) {
|
|
err = crypto_drivers[hid].cc_freesession(
|
|
crypto_drivers[hid].cc_arg, sid);
|
|
}
|
|
else
|
|
err = 0;
|
|
|
|
/*
|
|
* If this was the last session of a driver marked as invalid,
|
|
* make the entry available for reuse.
|
|
*/
|
|
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
|
|
crypto_drivers[hid].cc_sessions == 0)
|
|
memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
|
|
|
|
done:
|
|
mutex_exit(&crypto_mtx);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Return an unused driver id. Used by drivers prior to registering
|
|
* support for the algorithms they handle.
|
|
*/
|
|
int32_t
|
|
crypto_get_driverid(u_int32_t flags)
|
|
{
|
|
struct cryptocap *newdrv;
|
|
int i;
|
|
|
|
crypto_init(); /* XXX oh, this is foul! */
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
for (i = 0; i < crypto_drivers_num; i++)
|
|
if (crypto_drivers[i].cc_process == NULL &&
|
|
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
|
|
crypto_drivers[i].cc_sessions == 0)
|
|
break;
|
|
|
|
/* Out of entries, allocate some more. */
|
|
if (i == crypto_drivers_num) {
|
|
/* Be careful about wrap-around. */
|
|
if (2 * crypto_drivers_num <= crypto_drivers_num) {
|
|
mutex_exit(&crypto_mtx);
|
|
printf("crypto: driver count wraparound!\n");
|
|
return -1;
|
|
}
|
|
|
|
newdrv = malloc(2 * crypto_drivers_num *
|
|
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (newdrv == NULL) {
|
|
mutex_exit(&crypto_mtx);
|
|
printf("crypto: no space to expand driver table!\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(newdrv, crypto_drivers,
|
|
crypto_drivers_num * sizeof(struct cryptocap));
|
|
|
|
crypto_drivers_num *= 2;
|
|
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
crypto_drivers = newdrv;
|
|
}
|
|
|
|
/* NB: state is zero'd on free */
|
|
crypto_drivers[i].cc_sessions = 1; /* Mark */
|
|
crypto_drivers[i].cc_flags = flags;
|
|
|
|
if (bootverbose)
|
|
printf("crypto: assign driver %u, flags %u\n", i, flags);
|
|
|
|
mutex_exit(&crypto_mtx);
|
|
|
|
return i;
|
|
}
|
|
|
|
static struct cryptocap *
|
|
crypto_checkdriver(u_int32_t hid)
|
|
{
|
|
if (crypto_drivers == NULL)
|
|
return NULL;
|
|
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
|
|
}
|
|
|
|
/*
|
|
* Register support for a key-related algorithm. This routine
|
|
* is called once for each algorithm supported a driver.
|
|
*/
|
|
int
|
|
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
|
|
int (*kprocess)(void *, struct cryptkop *, int),
|
|
void *karg)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL &&
|
|
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
if (bootverbose) {
|
|
printf("crypto: driver %u registers key alg %u "
|
|
" flags %u\n",
|
|
driverid,
|
|
kalg,
|
|
flags
|
|
);
|
|
}
|
|
|
|
if (cap->cc_kprocess == NULL) {
|
|
cap->cc_karg = karg;
|
|
cap->cc_kprocess = kprocess;
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
mutex_exit(&crypto_mtx);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Register support for a non-key-related algorithm. This routine
|
|
* is called once for each such algorithm supported by a driver.
|
|
*/
|
|
int
|
|
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
|
|
u_int32_t flags,
|
|
int (*newses)(void *, u_int32_t*, struct cryptoini*),
|
|
int (*freeses)(void *, u_int64_t),
|
|
int (*process)(void *, struct cryptop *, int),
|
|
void *arg)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
/* NB: algorithms are in the range [1..max] */
|
|
if (cap != NULL &&
|
|
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
cap->cc_max_op_len[alg] = maxoplen;
|
|
if (bootverbose) {
|
|
printf("crypto: driver %u registers alg %u "
|
|
"flags %u maxoplen %u\n",
|
|
driverid,
|
|
alg,
|
|
flags,
|
|
maxoplen
|
|
);
|
|
}
|
|
|
|
if (cap->cc_process == NULL) {
|
|
cap->cc_arg = arg;
|
|
cap->cc_newsession = newses;
|
|
cap->cc_process = process;
|
|
cap->cc_freesession = freeses;
|
|
cap->cc_sessions = 0; /* Unmark */
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
mutex_exit(&crypto_mtx);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unregister a crypto driver. If there are pending sessions using it,
|
|
* leave enough information around so that subsequent calls using those
|
|
* sessions will correctly detect the driver has been unregistered and
|
|
* reroute requests.
|
|
*/
|
|
int
|
|
crypto_unregister(u_int32_t driverid, int alg)
|
|
{
|
|
int i, err;
|
|
u_int32_t ses;
|
|
struct cryptocap *cap;
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL &&
|
|
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
|
|
cap->cc_alg[alg] != 0) {
|
|
cap->cc_alg[alg] = 0;
|
|
cap->cc_max_op_len[alg] = 0;
|
|
|
|
/* Was this the last algorithm ? */
|
|
for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
|
|
if (cap->cc_alg[i] != 0)
|
|
break;
|
|
|
|
if (i == CRYPTO_ALGORITHM_MAX + 1) {
|
|
ses = cap->cc_sessions;
|
|
memset(cap, 0, sizeof(struct cryptocap));
|
|
if (ses != 0) {
|
|
/*
|
|
* If there are pending sessions, just mark as invalid.
|
|
*/
|
|
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
|
|
cap->cc_sessions = ses;
|
|
}
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
mutex_exit(&crypto_mtx);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unregister all algorithms associated with a crypto driver.
|
|
* If there are pending sessions using it, leave enough information
|
|
* around so that subsequent calls using those sessions will
|
|
* correctly detect the driver has been unregistered and reroute
|
|
* requests.
|
|
*
|
|
* XXX careful. Don't change this to call crypto_unregister() for each
|
|
* XXX registered algorithm unless you drop the mutex across the calls;
|
|
* XXX you can't take it recursively.
|
|
*/
|
|
int
|
|
crypto_unregister_all(u_int32_t driverid)
|
|
{
|
|
int i, err;
|
|
u_int32_t ses;
|
|
struct cryptocap *cap;
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL) {
|
|
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
|
|
cap->cc_alg[i] = 0;
|
|
cap->cc_max_op_len[i] = 0;
|
|
}
|
|
ses = cap->cc_sessions;
|
|
memset(cap, 0, sizeof(struct cryptocap));
|
|
if (ses != 0) {
|
|
/*
|
|
* If there are pending sessions, just mark as invalid.
|
|
*/
|
|
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
|
|
cap->cc_sessions = ses;
|
|
}
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
mutex_exit(&crypto_mtx);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Clear blockage on a driver. The what parameter indicates whether
|
|
* the driver is now ready for cryptop's and/or cryptokop's.
|
|
*/
|
|
int
|
|
crypto_unblock(u_int32_t driverid, int what)
|
|
{
|
|
struct cryptocap *cap;
|
|
int needwakeup, err;
|
|
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL) {
|
|
needwakeup = 0;
|
|
if (what & CRYPTO_SYMQ) {
|
|
needwakeup |= cap->cc_qblocked;
|
|
cap->cc_qblocked = 0;
|
|
}
|
|
if (what & CRYPTO_ASYMQ) {
|
|
needwakeup |= cap->cc_kqblocked;
|
|
cap->cc_kqblocked = 0;
|
|
}
|
|
err = 0;
|
|
if (needwakeup)
|
|
setsoftcrypto(softintr_cookie);
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
} else {
|
|
err = EINVAL;
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Dispatch a crypto request to a driver or queue
|
|
* it, to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_dispatch(struct cryptop *crp)
|
|
{
|
|
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
int result;
|
|
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
|
|
crp, crp->crp_desc->crd_alg));
|
|
|
|
cryptostats.cs_ops++;
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
nanouptime(&crp->crp_tstamp);
|
|
#endif
|
|
if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
|
|
struct cryptocap *cap;
|
|
/*
|
|
* Caller marked the request to be processed
|
|
* immediately; dispatch it directly to the
|
|
* driver unless the driver is currently blocked.
|
|
*/
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap && !cap->cc_qblocked) {
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
result = crypto_invoke(crp, 0);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the op on the queue.
|
|
*/
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
crypto_drivers[hid].cc_qblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
}
|
|
goto out_released;
|
|
} else {
|
|
/*
|
|
* The driver is blocked, just queue the op until
|
|
* it unblocks and the swi thread gets kicked.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
|
|
result = 0;
|
|
}
|
|
} else {
|
|
int wasempty = TAILQ_EMPTY(&crp_q);
|
|
/*
|
|
* Caller marked the request as ``ok to delay'';
|
|
* queue it for the swi thread. This is desirable
|
|
* when the operation is low priority and/or suitable
|
|
* for batching.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
|
|
if (wasempty) {
|
|
setsoftcrypto(softintr_cookie);
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
result = 0;
|
|
goto out_released;
|
|
}
|
|
|
|
result = 0;
|
|
}
|
|
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
out_released:
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Add an asymetric crypto request to a queue,
|
|
* to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_kdispatch(struct cryptkop *krp)
|
|
{
|
|
struct cryptocap *cap;
|
|
int result;
|
|
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
cryptostats.cs_kops++;
|
|
|
|
cap = crypto_checkdriver(krp->krp_hid);
|
|
if (cap && !cap->cc_kqblocked) {
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
result = crypto_kinvoke(krp, 0);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the op on the queue.
|
|
*/
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
}
|
|
} else {
|
|
/*
|
|
* The driver is blocked, just queue the op until
|
|
* it unblocks and the swi thread gets kicked.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
|
|
result = 0;
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Dispatch an assymetric crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_kinvoke(struct cryptkop *krp, int hint)
|
|
{
|
|
u_int32_t hid;
|
|
int error;
|
|
|
|
/* Sanity checks. */
|
|
if (krp == NULL)
|
|
return EINVAL;
|
|
if (krp->krp_callback == NULL) {
|
|
cv_destroy(&krp->krp_cv);
|
|
pool_put(&cryptkop_pool, krp);
|
|
return EINVAL;
|
|
}
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
crypto_devallowsoft == 0)
|
|
continue;
|
|
if (crypto_drivers[hid].cc_kprocess == NULL)
|
|
continue;
|
|
if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
|
|
CRYPTO_ALG_FLAG_SUPPORTED) == 0)
|
|
continue;
|
|
break;
|
|
}
|
|
if (hid < crypto_drivers_num) {
|
|
int (*process)(void *, struct cryptkop *, int);
|
|
void *arg;
|
|
|
|
process = crypto_drivers[hid].cc_kprocess;
|
|
arg = crypto_drivers[hid].cc_karg;
|
|
mutex_exit(&crypto_mtx);
|
|
krp->krp_hid = hid;
|
|
error = (*process)(arg, krp, hint);
|
|
} else {
|
|
mutex_exit(&crypto_mtx);
|
|
error = ENODEV;
|
|
}
|
|
|
|
if (error) {
|
|
krp->krp_status = error;
|
|
crypto_kdone(krp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static void
|
|
crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
|
|
{
|
|
struct timespec now, t;
|
|
|
|
nanouptime(&now);
|
|
t.tv_sec = now.tv_sec - tv->tv_sec;
|
|
t.tv_nsec = now.tv_nsec - tv->tv_nsec;
|
|
if (t.tv_nsec < 0) {
|
|
t.tv_sec--;
|
|
t.tv_nsec += 1000000000;
|
|
}
|
|
timespecadd(&ts->acc, &t, &t);
|
|
if (timespeccmp(&t, &ts->min, <))
|
|
ts->min = t;
|
|
if (timespeccmp(&t, &ts->max, >))
|
|
ts->max = t;
|
|
ts->count++;
|
|
|
|
*tv = now;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Dispatch a crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_invoke(struct cryptop *crp, int hint)
|
|
{
|
|
u_int32_t hid;
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
|
|
#endif
|
|
/* Sanity checks. */
|
|
if (crp == NULL)
|
|
return EINVAL;
|
|
if (crp->crp_callback == NULL) {
|
|
return EINVAL;
|
|
}
|
|
if (crp->crp_desc == NULL) {
|
|
crp->crp_etype = EINVAL;
|
|
crypto_done(crp);
|
|
return 0;
|
|
}
|
|
|
|
hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
|
|
if (hid < crypto_drivers_num) {
|
|
int (*process)(void *, struct cryptop *, int);
|
|
void *arg;
|
|
|
|
if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
|
|
mutex_exit(&crypto_mtx);
|
|
crypto_freesession(crp->crp_sid);
|
|
mutex_enter(&crypto_mtx);
|
|
}
|
|
process = crypto_drivers[hid].cc_process;
|
|
arg = crypto_drivers[hid].cc_arg;
|
|
|
|
/*
|
|
* Invoke the driver to process the request.
|
|
*/
|
|
DPRINTF(("calling process for %p\n", crp));
|
|
return (*process)(arg, crp, hint);
|
|
} else {
|
|
struct cryptodesc *crd;
|
|
u_int64_t nid = 0;
|
|
|
|
/*
|
|
* Driver has unregistered; migrate the session and return
|
|
* an error to the caller so they'll resubmit the op.
|
|
*/
|
|
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
|
|
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
|
|
|
|
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
|
|
crp->crp_sid = nid;
|
|
|
|
crp->crp_etype = EAGAIN;
|
|
|
|
crypto_done(crp);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release a set of crypto descriptors.
|
|
*/
|
|
void
|
|
crypto_freereq(struct cryptop *crp)
|
|
{
|
|
struct cryptodesc *crd;
|
|
|
|
if (crp == NULL)
|
|
return;
|
|
DPRINTF(("crypto_freereq[%u]: crp %p\n",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp));
|
|
|
|
/* sanity check */
|
|
if (crp->crp_flags & CRYPTO_F_ONRETQ) {
|
|
panic("crypto_freereq() freeing crp on RETQ\n");
|
|
}
|
|
|
|
while ((crd = crp->crp_desc) != NULL) {
|
|
crp->crp_desc = crd->crd_next;
|
|
pool_put(&cryptodesc_pool, crd);
|
|
}
|
|
pool_put(&cryptop_pool, crp);
|
|
}
|
|
|
|
/*
|
|
* Acquire a set of crypto descriptors.
|
|
*/
|
|
struct cryptop *
|
|
crypto_getreq(int num)
|
|
{
|
|
struct cryptodesc *crd;
|
|
struct cryptop *crp;
|
|
|
|
crp = pool_get(&cryptop_pool, 0);
|
|
if (crp == NULL) {
|
|
return NULL;
|
|
}
|
|
memset(crp, 0, sizeof(struct cryptop));
|
|
|
|
while (num--) {
|
|
crd = pool_get(&cryptodesc_pool, 0);
|
|
if (crd == NULL) {
|
|
crypto_freereq(crp);
|
|
return NULL;
|
|
}
|
|
|
|
memset(crd, 0, sizeof(struct cryptodesc));
|
|
crd->crd_next = crp->crp_desc;
|
|
crp->crp_desc = crd;
|
|
}
|
|
|
|
return crp;
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_done(struct cryptop *crp)
|
|
{
|
|
int wasempty;
|
|
|
|
if (crp->crp_etype != 0)
|
|
cryptostats.cs_errs++;
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
|
|
#endif
|
|
DPRINTF(("crypto_done[%u]: crp %p\n",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp));
|
|
|
|
/*
|
|
* Normal case; queue the callback for the thread.
|
|
*
|
|
* The return queue is manipulated by the swi thread
|
|
* and, potentially, by crypto device drivers calling
|
|
* back to mark operations completed. Thus we need
|
|
* to mask both while manipulating the return queue.
|
|
*/
|
|
if (crp->crp_flags & CRYPTO_F_CBIMM) {
|
|
/*
|
|
* Do the callback directly. This is ok when the
|
|
* callback routine does very little (e.g. the
|
|
* /dev/crypto callback method just does a wakeup).
|
|
*/
|
|
mutex_spin_enter(&crypto_ret_q_mtx);
|
|
crp->crp_flags |= CRYPTO_F_DONE;
|
|
mutex_spin_exit(&crypto_ret_q_mtx);
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct timespec t = crp->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crp->crp_callback(crp);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crp->crp_callback(crp);
|
|
} else {
|
|
mutex_spin_enter(&crypto_ret_q_mtx);
|
|
crp->crp_flags |= CRYPTO_F_DONE;
|
|
|
|
if (crp->crp_flags & CRYPTO_F_USER) {
|
|
/* the request has completed while
|
|
* running in the user context
|
|
* so don't queue it - the user
|
|
* thread won't sleep when it sees
|
|
* the CRYPTO_F_DONE flag.
|
|
* This is an optimization to avoid
|
|
* unecessary context switches.
|
|
*/
|
|
DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp));
|
|
} else {
|
|
wasempty = TAILQ_EMPTY(&crp_ret_q);
|
|
DPRINTF(("crypto_done[%u]: queueing %p\n",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp));
|
|
crp->crp_flags |= CRYPTO_F_ONRETQ;
|
|
TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
|
|
if (wasempty) {
|
|
DPRINTF(("crypto_done[%u]: waking cryptoret, "
|
|
"crp %p hit empty queue\n.",
|
|
CRYPTO_SESID2LID(crp->crp_sid), crp));
|
|
cv_signal(&cryptoret_cv);
|
|
}
|
|
}
|
|
mutex_spin_exit(&crypto_ret_q_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_kdone(struct cryptkop *krp)
|
|
{
|
|
int wasempty;
|
|
|
|
if (krp->krp_status != 0)
|
|
cryptostats.cs_kerrs++;
|
|
|
|
krp->krp_flags |= CRYPTO_F_DONE;
|
|
|
|
/*
|
|
* The return queue is manipulated by the swi thread
|
|
* and, potentially, by crypto device drivers calling
|
|
* back to mark operations completed. Thus we need
|
|
* to mask both while manipulating the return queue.
|
|
*/
|
|
if (krp->krp_flags & CRYPTO_F_CBIMM) {
|
|
krp->krp_callback(krp);
|
|
} else {
|
|
mutex_spin_enter(&crypto_ret_q_mtx);
|
|
wasempty = TAILQ_EMPTY(&crp_ret_kq);
|
|
krp->krp_flags |= CRYPTO_F_ONRETQ;
|
|
TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
|
|
if (wasempty)
|
|
cv_signal(&cryptoret_cv);
|
|
mutex_spin_exit(&crypto_ret_q_mtx);
|
|
}
|
|
}
|
|
|
|
int
|
|
crypto_getfeat(int *featp)
|
|
{
|
|
int hid, kalg, feat = 0;
|
|
|
|
mutex_enter(&crypto_mtx);
|
|
|
|
if (crypto_userasymcrypto == 0)
|
|
goto out;
|
|
|
|
for (hid = 0; hid < crypto_drivers_num; hid++) {
|
|
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
crypto_devallowsoft == 0) {
|
|
continue;
|
|
}
|
|
if (crypto_drivers[hid].cc_kprocess == NULL)
|
|
continue;
|
|
for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
|
|
if ((crypto_drivers[hid].cc_kalg[kalg] &
|
|
CRYPTO_ALG_FLAG_SUPPORTED) != 0)
|
|
feat |= 1 << kalg;
|
|
}
|
|
out:
|
|
mutex_exit(&crypto_mtx);
|
|
*featp = feat;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Software interrupt thread to dispatch crypto requests.
|
|
*/
|
|
static void
|
|
cryptointr(void)
|
|
{
|
|
struct cryptop *crp, *submit, *cnext;
|
|
struct cryptkop *krp, *knext;
|
|
struct cryptocap *cap;
|
|
int result, hint;
|
|
|
|
cryptostats.cs_intrs++;
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
do {
|
|
/*
|
|
* Find the first element in the queue that can be
|
|
* processed and look-ahead to see if multiple ops
|
|
* are ready for the same driver.
|
|
*/
|
|
submit = NULL;
|
|
hint = 0;
|
|
TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
|
|
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap == NULL || cap->cc_process == NULL) {
|
|
/* Op needs to be migrated, process it. */
|
|
if (submit == NULL)
|
|
submit = crp;
|
|
break;
|
|
}
|
|
if (!cap->cc_qblocked) {
|
|
if (submit != NULL) {
|
|
/*
|
|
* We stop on finding another op,
|
|
* regardless whether its for the same
|
|
* driver or not. We could keep
|
|
* searching the queue but it might be
|
|
* better to just use a per-driver
|
|
* queue instead.
|
|
*/
|
|
if (CRYPTO_SESID2HID(submit->crp_sid)
|
|
== hid)
|
|
hint = CRYPTO_HINT_MORE;
|
|
break;
|
|
} else {
|
|
submit = crp;
|
|
if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
|
|
break;
|
|
/* keep scanning for more are q'd */
|
|
}
|
|
}
|
|
}
|
|
if (submit != NULL) {
|
|
TAILQ_REMOVE(&crp_q, submit, crp_next);
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
result = crypto_invoke(submit, hint);
|
|
/* we must take here as the TAILQ op or kinvoke
|
|
may need this mutex below. sigh. */
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* XXX validate sid again? */
|
|
crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
}
|
|
}
|
|
|
|
/* As above, but for key ops */
|
|
TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
|
|
cap = crypto_checkdriver(krp->krp_hid);
|
|
if (cap == NULL || cap->cc_kprocess == NULL) {
|
|
/* Op needs to be migrated, process it. */
|
|
break;
|
|
}
|
|
if (!cap->cc_kqblocked)
|
|
break;
|
|
}
|
|
if (krp != NULL) {
|
|
TAILQ_REMOVE(&crp_kq, krp, krp_next);
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
result = crypto_kinvoke(krp, 0);
|
|
/* the next iteration will want the mutex. :-/ */
|
|
mutex_spin_enter(&crypto_q_mtx);
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptkop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
/* XXX validate sid again? */
|
|
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
}
|
|
}
|
|
} while (submit != NULL || krp != NULL);
|
|
mutex_spin_exit(&crypto_q_mtx);
|
|
}
|
|
|
|
/*
|
|
* Kernel thread to do callbacks.
|
|
*/
|
|
static void
|
|
cryptoret(void)
|
|
{
|
|
struct cryptop *crp;
|
|
struct cryptkop *krp;
|
|
|
|
mutex_spin_enter(&crypto_ret_q_mtx);
|
|
for (;;) {
|
|
crp = TAILQ_FIRST(&crp_ret_q);
|
|
if (crp != NULL) {
|
|
TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
|
|
crp->crp_flags &= ~CRYPTO_F_ONRETQ;
|
|
}
|
|
krp = TAILQ_FIRST(&crp_ret_kq);
|
|
if (krp != NULL) {
|
|
TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
|
|
krp->krp_flags &= ~CRYPTO_F_ONRETQ;
|
|
}
|
|
|
|
/* drop before calling any callbacks. */
|
|
if (crp == NULL && krp == NULL) {
|
|
cryptostats.cs_rets++;
|
|
cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
|
|
continue;
|
|
}
|
|
|
|
mutex_spin_exit(&crypto_ret_q_mtx);
|
|
|
|
if (crp != NULL) {
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct timespec t = crp->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crp->crp_callback(crp);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
{
|
|
crp->crp_callback(crp);
|
|
}
|
|
}
|
|
if (krp != NULL)
|
|
krp->krp_callback(krp);
|
|
|
|
mutex_spin_enter(&crypto_ret_q_mtx);
|
|
}
|
|
}
|
|
|
|
/* NetBSD module interface */
|
|
|
|
MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
|
|
|
|
static int
|
|
opencrypto_modcmd(modcmd_t cmd, void *opaque)
|
|
{
|
|
|
|
switch (cmd) {
|
|
case MODULE_CMD_INIT:
|
|
#ifdef _MODULE
|
|
crypto_init();
|
|
#endif
|
|
return 0;
|
|
case MODULE_CMD_FINI:
|
|
#ifdef _MODULE
|
|
sysctl_teardown(&sysctl_opencrypto_clog);
|
|
#endif
|
|
return 0;
|
|
default:
|
|
return ENOTTY;
|
|
}
|
|
}
|