NetBSD/sys/dev/pcmcia/esl.c

989 lines
22 KiB
C

/* $NetBSD: esl.c,v 1.9 2001/12/25 04:05:34 jmcneill Exp $ */
/*
* Copyright (c) 2001 Jared D. McNeill <jmcneill@invisible.yi.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Jared D. McNeill.
* 4. Neither the name of the author nor the names of any contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: esl.c,v 1.9 2001/12/25 04:05:34 jmcneill Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/audioio.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/bus.h>
#include <machine/pio.h>
#include <dev/audio_if.h>
#include <dev/auconv.h>
#include <dev/mulaw.h>
#include <dev/pcmcia/pcmciavar.h>
#include <dev/isa/essreg.h>
#include <dev/pcmcia/eslvar.h>
int esl_open(void *, int);
void esl_close(void *);
int esl_query_encoding(void *, struct audio_encoding *);
int esl_set_params(void *, int, int, struct audio_params *,
struct audio_params *);
int esl_round_blocksize(void *, int);
int esl_halt_output(void *);
int esl_halt_input(void *);
int esl_speaker_ctl(void *, int);
int esl_getdev(void *, struct audio_device *);
int esl_set_port(void *, mixer_ctrl_t *);
int esl_get_port(void *, mixer_ctrl_t *);
int esl_query_devinfo(void *, mixer_devinfo_t *);
int esl_get_props(void *);
int esl_trigger_output(void *, void *, void *, int, void (*)(void *),
void *, struct audio_params *);
/* Supporting subroutines */
int esl_reset(struct esl_pcmcia_softc *);
void esl_setup(struct esl_pcmcia_softc *);
void esl_set_gain(struct esl_pcmcia_softc *, int, int);
void esl_speaker_on(struct esl_pcmcia_softc *);
void esl_speaker_off(struct esl_pcmcia_softc *);
int esl_identify(struct esl_pcmcia_softc *);
int esl_rdsp(struct esl_pcmcia_softc *);
int esl_wdsp(struct esl_pcmcia_softc *, u_char);
u_char esl_dsp_read_ready(struct esl_pcmcia_softc *);
u_char esl_dsp_write_ready(struct esl_pcmcia_softc *);
u_char esl_get_dsp_status(struct esl_pcmcia_softc *);
u_char esl_read_x_reg(struct esl_pcmcia_softc *, u_char);
int esl_write_x_reg(struct esl_pcmcia_softc *, u_char, u_char);
void esl_clear_xreg_bits(struct esl_pcmcia_softc *, u_char, u_char);
void esl_set_xreg_bits(struct esl_pcmcia_softc *, u_char, u_char);
u_char esl_read_mix_reg(struct esl_pcmcia_softc *, u_char);
void esl_write_mix_reg(struct esl_pcmcia_softc *, u_char, u_char);
void esl_clear_mreg_bits(struct esl_pcmcia_softc *, u_char, u_char);
void esl_set_mreg_bits(struct esl_pcmcia_softc *, u_char, u_char);
void esl_read_multi_mix_reg(struct esl_pcmcia_softc *, u_char,
u_int8_t *, bus_size_t);
u_int esl_srtotc(u_int);
u_int esl_srtofc(u_int);
struct audio_device esl_device = {
"AudioDrive",
"",
"esl"
};
struct audio_hw_if esl_hw_if = {
esl_open,
esl_close,
NULL,
esl_query_encoding,
esl_set_params,
esl_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
esl_halt_output,
esl_halt_input,
esl_speaker_ctl,
esl_getdev,
NULL,
esl_set_port,
esl_get_port,
esl_query_devinfo,
NULL,
NULL,
NULL,
NULL,
esl_get_props,
esl_trigger_output,
NULL,
NULL,
};
static char *eslmodel[] = {
"1688",
"688",
};
int
esl_open(void *hdl, int flags)
{
struct esl_pcmcia_softc *sc = hdl;
int i;
if (sc->sc_esl.sc_open != 0)
return (EBUSY);
if ((*sc->sc_enable)(sc))
return (ENXIO);
if (esl_reset(sc) != 0) {
printf("%s: esl_open: esl_reset failed\n",
sc->sc_esl.sc_dev.dv_xname);
return (ENXIO);
}
/* because we did a reset */
esl_setup(sc);
/* Set all mixer controls to sane values (since we just did a reset) */
for (i = 0; i < ESS_MAX_NDEVS; i++)
esl_set_gain(sc, i, 1);
sc->sc_esl.sc_open = 1;
/* XXX: Delay a bit */
delay(10000);
return (0);
}
void
esl_close(void *hdl)
{
struct esl_pcmcia_softc *sc = hdl;
esl_speaker_off(sc);
(*sc->sc_disable)(sc);
sc->sc_esl.sc_open = 0;
return;
}
int
esl_query_encoding(void *hdl, struct audio_encoding *ae)
{
switch (ae->index) {
case 0:
strcpy(ae->name, AudioEulinear);
ae->encoding = AUDIO_ENCODING_ULINEAR;
ae->precision = 8;
ae->flags = 0;
return (0);
case 1:
strcpy(ae->name, AudioEmulaw);
ae->encoding = AUDIO_ENCODING_ULAW;
ae->precision = 8;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 2:
strcpy(ae->name, AudioEalaw);
ae->encoding = AUDIO_ENCODING_ALAW;
ae->precision = 8;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 3:
strcpy(ae->name, AudioEslinear);
ae->encoding = AUDIO_ENCODING_SLINEAR;
ae->precision = 8;
ae->flags = 0;
return (0);
case 4:
strcpy(ae->name, AudioEslinear_le);
ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
ae->precision = 16;
ae->flags = 0;
return (0);
case 5:
strcpy(ae->name, AudioEulinear_le);
ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
ae->precision = 16;
ae->flags = 0;
return (0);
case 6:
strcpy(ae->name, AudioEslinear_be);
ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
ae->precision = 16;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 7:
strcpy(ae->name, AudioEulinear_be);
ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
ae->precision = 16;
ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
default:
return EINVAL;
}
return (0);
}
int
esl_set_params(void *hdl, int setmode, int usemode,
struct audio_params *play, struct audio_params *rec)
{
struct esl_pcmcia_softc *sc = hdl;
int rate;
if (play->sample_rate < ESS_MINRATE ||
play->sample_rate > ESS_MAXRATE ||
(play->precision != 8 && play->precision != 16) ||
(play->channels != 1 && play->channels != 2))
return (EINVAL);
play->factor = 1;
play->sw_code = NULL;
switch (play->encoding) {
case AUDIO_ENCODING_SLINEAR_BE:
case AUDIO_ENCODING_ULINEAR_BE:
if (play->precision == 16)
play->sw_code = swap_bytes;
break;
case AUDIO_ENCODING_SLINEAR_LE:
case AUDIO_ENCODING_ULINEAR_LE:
break;
case AUDIO_ENCODING_ULAW:
play->factor = 2;
play->sw_code = mulaw_to_ulinear16_le;
break;
case AUDIO_ENCODING_ALAW:
play->factor = 2;
play->sw_code = alaw_to_ulinear16_le;
break;
default:
return (EINVAL);
}
rate = play->sample_rate;
esl_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, esl_srtotc(rate));
esl_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, esl_srtofc(rate));
return (0);
}
int
esl_round_blocksize(void *hdl, int bs)
{
return ((bs / 128) * 128);
}
int
esl_halt_output(void *hdl)
{
struct esl_pcmcia_softc *sc = hdl;
if (sc->sc_esl.active) {
esl_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
ESS_AUDIO1_CTRL2_FIFO_ENABLE);
sc->sc_esl.active = 0;
}
return (0);
}
int
esl_halt_input(void *hdl)
{
return (0);
}
int
esl_speaker_ctl(void *hdl, int on)
{
return (0);
}
int
esl_getdev(void *hdl, struct audio_device *ret)
{
*ret = esl_device;
return (0);
}
int
esl_set_port(void *hdl, mixer_ctrl_t *mc)
{
struct esl_pcmcia_softc *sc = hdl;
int lgain, rgain;
switch(mc->dev) {
case ESS_MASTER_VOL:
case ESS_DAC_PLAY_VOL:
case ESS_SYNTH_PLAY_VOL:
if (mc->type != AUDIO_MIXER_VALUE)
return (EINVAL);
switch(mc->un.value.num_channels) {
case 1:
lgain = rgain = ESS_4BIT_GAIN(
mc->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case 2:
lgain = ESS_4BIT_GAIN(
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
rgain = ESS_4BIT_GAIN(
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
break;
default:
return (EINVAL);
}
sc->sc_esl.gain[mc->dev][ESS_LEFT] = lgain;
sc->sc_esl.gain[mc->dev][ESS_RIGHT] = rgain;
esl_set_gain(sc, mc->dev, 1);
return (0);
break;
default:
/* FALLTHROUGH */
}
return (EINVAL);
}
int
esl_get_port(void *hdl, mixer_ctrl_t *mc)
{
struct esl_pcmcia_softc *sc = hdl;
switch(mc->dev) {
case ESS_MASTER_VOL:
case ESS_DAC_PLAY_VOL:
case ESS_SYNTH_PLAY_VOL:
switch(mc->un.value.num_channels) {
case 1:
mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->sc_esl.gain[mc->dev][ESS_LEFT];
break;
case 2:
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
sc->sc_esl.gain[mc->dev][ESS_LEFT];
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
sc->sc_esl.gain[mc->dev][ESS_RIGHT];
break;
default:
return (EINVAL);
}
return (0);
default:
/* FALLTHROUGH */
}
return (EINVAL);
}
int
esl_query_devinfo(void *hdl, mixer_devinfo_t *di)
{
switch(di->index) {
case ESS_DAC_PLAY_VOL:
di->mixer_class = ESS_INPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNdac);
di->type = AUDIO_MIXER_VALUE;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return (0);
case ESS_SYNTH_PLAY_VOL:
di->mixer_class = ESS_INPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNfmsynth);
di->type = AUDIO_MIXER_VALUE;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return (0);
case ESS_INPUT_CLASS:
di->mixer_class = ESS_INPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioCinputs);
di->type = AUDIO_MIXER_CLASS;
return (0);
case ESS_MASTER_VOL:
di->mixer_class = ESS_OUTPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioNmaster);
di->type = AUDIO_MIXER_VALUE;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return (0);
case ESS_OUTPUT_CLASS:
di->mixer_class = ESS_OUTPUT_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
strcpy(di->label.name, AudioCoutputs);
di->type = AUDIO_MIXER_CLASS;
return (0);
default:
/* FALLTHROUGH */
}
return (ENXIO);
}
int
esl_get_props(void *hdl)
{
return (AUDIO_PROP_MMAP);
}
int
esl_trigger_output(void *hdl, void *start, void *end, int blksize,
void (*intr)(void *), void *intrarg,
struct audio_params *param)
{
struct esl_pcmcia_softc *sc = hdl;
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
int bs;
int cnt;
u_int8_t reg;
if (sc->sc_esl.active) {
printf("%s: esl_trigger_output: already running\n",
sc->sc_esl.sc_dev.dv_xname);
return (1);
}
sc->sc_esl.active = 1;
sc->sc_esl.intr = intr;
sc->sc_esl.arg = intrarg;
/* Stereo or Mono selection */
reg = esl_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
if (param->channels == 2) {
reg &= ~ESS_AUDIO_CTRL_MONO;
reg |= ESS_AUDIO_CTRL_STEREO;
} else {
reg |= ESS_AUDIO_CTRL_MONO;
reg &= ~ESS_AUDIO_CTRL_STEREO;
}
esl_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
/* Program the FIFO (16-bit/8-bit, signed/unsigned, stereo/mono) */
reg = esl_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
if (param->precision * param->factor == 16)
reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
if (param->channels == 2)
reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
esl_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
/* Program transfer count registers with 2s complement of count */
bs = -blksize;
esl_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, bs);
esl_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, bs >> 8);
esl_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
reg = esl_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
esl_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
cnt = (char *)end - (char *)start;
if (cnt == 0)
printf("%s: no count left\n", sc->sc_esl.sc_dev.dv_xname);
sc->sc_esl.sc_dmaaddr = sc->sc_esl.sc_dmastart = start;
sc->sc_esl.sc_dmaend = end;
sc->sc_esl.sc_blksize = blksize;
sc->sc_esl.sc_blkpos = 0;
/* XXX: Delay a bit */
delay(10000);
/* Prime the FIFO */
bus_space_write_multi_1(iot, ioh, ESS_FIFO_WRITE, start, ESS_FIFO_SIZE);
sc->sc_esl.sc_dmaaddr += ESS_FIFO_SIZE;
sc->sc_esl.sc_blkpos += ESS_FIFO_SIZE;
return (0);
}
/* Additional subroutines used by the above (NOT required by audio(9)) */
int
esl_init(struct esl_pcmcia_softc *sc)
{
const int ENABLE[] = { 0x0, 0x9, 0xb };
const int ENABLE_ORDER[] = { 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 0, -1 };
struct audio_attach_args aa;
int i;
int model;
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
sc->sc_esl.sc_open = 0;
/* Initialization sequence */
for (i = 0; ENABLE_ORDER[i] != -1; i++)
bus_space_read_1(iot, ioh, ENABLE[i]);
if (esl_reset(sc)) {
printf("%s: esl_init: esl_reset failed\n",
sc->sc_esl.sc_dev.dv_xname);
return (1);
}
if (esl_identify(sc)) {
printf("%s: esl_init: esl_identify failed\n",
sc->sc_esl.sc_dev.dv_xname);
return (1);
}
if (!sc->sc_esl.sc_version)
return (1); /* Probably a Sound Blaster */
model = ESS_UNSUPPORTED;
switch (sc->sc_esl.sc_version & 0xfff0) {
case 0x6880:
if ((sc->sc_esl.sc_version & 0x0f) >= 8) {
model = ESS_1688;
} else {
model = ESS_688;
}
break;
}
if (model == ESS_UNSUPPORTED) {
printf("%s: unknown model 0x%04x\n",
sc->sc_esl.sc_dev.dv_xname, sc->sc_esl.sc_version);
return (1);
}
printf("%s: ESS AudioDrive %s [version 0x%04x]\n",
sc->sc_esl.sc_dev.dv_xname, eslmodel[model],
sc->sc_esl.sc_version);
/* Set volumes to 50% */
for (i = 0; i < ESS_MAX_NDEVS; i++) {
sc->sc_esl.gain[i][ESS_LEFT] =
sc->sc_esl.gain[i][ESS_RIGHT] =
ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
esl_set_gain(sc, i, 1);
}
sc->sc_audiodev = audio_attach_mi(&esl_hw_if, sc, &sc->sc_esl.sc_dev);
/* Attach the OPL device */
aa.type = AUDIODEV_TYPE_OPL;
aa.hwif = 0;
aa.hdl = 0;
sc->sc_opldev = config_found(&sc->sc_esl.sc_dev, &aa, audioprint);
/* Disable speaker until device is opened */
esl_speaker_off(sc);
sc->sc_esl.sc_open = 0;
return (0);
}
int
esl_intr(void *hdl)
{
struct esl_pcmcia_softc *sc = hdl;
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
u_int8_t reg;
u_char *pos;
/* Clear interrupt */
reg = bus_space_read_1(iot, ioh, ESS_CLEAR_INTR);
if (sc->sc_esl.active) {
reg = bus_space_read_1(iot, ioh, ESS_DSP_RW_STATUS);
while (reg & ESS_DSP_READ_HALF) {
pos = sc->sc_esl.sc_dmaaddr;
bus_space_write_multi_1(iot, ioh, ESS_FIFO_WRITE, pos,
ESS_FIFO_SIZE / 2);
sc->sc_esl.sc_blkpos += (ESS_FIFO_SIZE / 2);
if (sc->sc_esl.sc_blkpos >= sc->sc_esl.sc_blksize) {
(*sc->sc_esl.intr)(sc->sc_esl.arg);
sc->sc_esl.sc_blkpos -= sc->sc_esl.sc_blksize;
}
pos += (ESS_FIFO_SIZE / 2);
if (pos >= sc->sc_esl.sc_dmaend)
pos = sc->sc_esl.sc_dmastart;
sc->sc_esl.sc_dmaaddr = pos;
reg = bus_space_read_1(iot, ioh, ESS_DSP_RW_STATUS);
}
}
return (1);
}
int
esl_reset(struct esl_pcmcia_softc *sc)
{
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
bus_space_write_1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
delay(10000); /* XXX: Ugly, but ess.c does this too */
bus_space_write_1(iot, ioh, ESS_DSP_RESET, 0);
if (esl_rdsp(sc) != ESS_MAGIC)
return (1);
/* Enable access to the extended command set */
esl_wdsp(sc, ESS_ACMD_ENABLE_EXT);
return (0);
}
void
esl_setup(struct esl_pcmcia_softc *sc)
{
u_char reg;
/*
* Configure IRQ. Set bit 5 of B1h high to enable interrupt on
* FIFOHE, and keep bit 6 low.
*/
reg = ESS_IRQ_CTRL_MASK | 0x20 | ESS_IRQ_CTRL_INTRA;
esl_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, reg);
/*
* "Config DRQ", well not really. Instead of configuring a DRQ,
* we leave bits 7 and 5 of B2h low.
*/
reg = 0x10 | 0x40;
esl_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, reg);
return;
}
void
esl_set_gain(struct esl_pcmcia_softc *sc, int port, int on)
{
int gain, left, right;
int src;
switch(port) {
case ESS_MASTER_VOL:
src = ESS_MREG_VOLUME_MASTER;
break;
case ESS_DAC_PLAY_VOL:
src = ESS_MREG_VOLUME_VOICE;
break;
case ESS_SYNTH_PLAY_VOL:
src = ESS_MREG_VOLUME_SYNTH;
break;
default:
return;
}
if (on) {
left = sc->sc_esl.gain[port][ESS_LEFT];
right = sc->sc_esl.gain[port][ESS_RIGHT];
} else
left = right = 0;
gain = ESS_STEREO_GAIN(left, right);
esl_write_mix_reg(sc, src, gain);
return;
}
void
esl_speaker_on(struct esl_pcmcia_softc *sc)
{
/* Unmute the DAC */
esl_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
return;
}
void
esl_speaker_off(struct esl_pcmcia_softc *sc)
{
/* Mute the DAC */
esl_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
return;
}
int
esl_identify(struct esl_pcmcia_softc *sc)
{
u_char reg1, reg2;
int i;
esl_wdsp(sc, ESS_ACMD_LEGACY_ID);
for (i = 1000, reg1 = reg2 = 0; i; i--)
if (esl_dsp_read_ready(sc)) {
if (reg1 == 0)
reg1 = esl_rdsp(sc);
else
reg2 = esl_rdsp(sc);
}
sc->sc_esl.sc_version = (reg1 << 8) + reg2;
return (0);
}
/* Read a byte from the DSP */
int
esl_rdsp(struct esl_pcmcia_softc *sc)
{
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
int i;
for (i = ESS_READ_TIMEOUT; i > 0; --i) {
if (esl_dsp_read_ready(sc)) {
i = bus_space_read_1(iot, ioh, ESS_DSP_READ);
return (i);
} else
delay(10);
}
printf("esl_rdsp: timed out\n");
return (-1);
}
/* Write a byte to the DSP */
int
esl_wdsp(struct esl_pcmcia_softc *sc, u_char v)
{
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
int i;
for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
if (esl_dsp_write_ready(sc)) {
bus_space_write_1(iot, ioh, ESS_DSP_WRITE, v);
return (0);
} else
delay(10);
}
printf("esl_wdsp(0x%02x): timed out\n", v);
return (-1);
}
/* Get the read status of the DSP: 1 == Ready, 0 == Not Ready */
u_char
esl_dsp_read_ready(struct esl_pcmcia_softc *sc)
{
return ((esl_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
}
/* Get the write status of the DSP: 1 == Ready, 0 == Not Ready */
u_char
esl_dsp_write_ready(struct esl_pcmcia_softc *sc)
{
return ((esl_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
}
/* Return the status of the DSP */
u_char
esl_get_dsp_status(struct esl_pcmcia_softc *sc)
{
return (bus_space_read_1(sc->sc_pcioh.iot, sc->sc_pcioh.ioh,
ESS_DSP_RW_STATUS));
}
/* Read a value from one of the extended registers */
u_char
esl_read_x_reg(struct esl_pcmcia_softc *sc, u_char reg)
{
int error;
if ((error = esl_wdsp(sc, 0xC0)) == 0)
error = esl_wdsp(sc, reg);
if (error)
printf("esl_read_x_reg: error reading 0x%02x\n", reg);
return (esl_rdsp(sc));
}
/* Write a value to one of the extended registers */
int
esl_write_x_reg(struct esl_pcmcia_softc *sc, u_char reg, u_char val)
{
int error;
if ((error = esl_wdsp(sc, reg)) == 0)
error = esl_wdsp(sc, val);
return (error);
}
void
esl_clear_xreg_bits(struct esl_pcmcia_softc *sc, u_char reg, u_char mask)
{
esl_write_x_reg(sc, reg, esl_read_x_reg(sc, reg) & ~mask);
return;
}
void
esl_set_xreg_bits(struct esl_pcmcia_softc *sc, u_char reg, u_char mask)
{
esl_write_x_reg(sc, reg, esl_read_x_reg(sc, reg) | mask);
}
u_char
esl_read_mix_reg(struct esl_pcmcia_softc *sc, u_char reg)
{
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
#if 0
int s;
#endif
u_char val;
#if 0
s = splaudio();
#endif
bus_space_write_1(iot, ioh, ESS_MIX_REG_SELECT, reg);
val = bus_space_read_1(iot, ioh, ESS_MIX_REG_DATA);
#if 0
splx(s);
#endif
return (val);
}
void
esl_write_mix_reg(struct esl_pcmcia_softc *sc, u_char reg, u_char val)
{
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
#if 0
int s;
#endif
#if 0
s = splaudio();
#endif
bus_space_write_1(iot, ioh, ESS_MIX_REG_SELECT, reg);
bus_space_write_1(iot, ioh, ESS_MIX_REG_DATA, val);
#if 0
splx(s);
#endif
return;
}
void
esl_clear_mreg_bits(struct esl_pcmcia_softc *sc, u_char reg, u_char mask)
{
esl_write_mix_reg(sc, reg, esl_read_mix_reg(sc, reg) & ~mask);
return;
}
void
esl_set_mreg_bits(struct esl_pcmcia_softc *sc, u_char reg, u_char mask)
{
esl_write_mix_reg(sc, reg, esl_read_mix_reg(sc, reg) | mask);
return;
}
void
esl_read_multi_mix_reg(struct esl_pcmcia_softc *sc, u_char reg,
u_int8_t *datap, bus_size_t count)
{
bus_space_tag_t iot = sc->sc_pcioh.iot;
bus_space_handle_t ioh = sc->sc_pcioh.ioh;
#if 0
int s;
#endif
#if 0
s = splaudio();
#endif
bus_space_write_1(iot, ioh, ESS_MIX_REG_SELECT, reg);
bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
#if 0
splx(s);
#endif
return;
}
/* Calculate the time constant for the requested sampling rate */
u_int
esl_srtotc(u_int rate)
{
u_int tc;
/* The following formulas are from the ESS data sheet. */
if (rate <= 22050)
tc = 128 - 397700L / rate;
else
tc = 256 - 795500L / rate;
return (tc);
}
/* Calculate the filter constant for the requested sampling rate */
u_int
esl_srtofc(u_int rate)
{
/* From dev/isa/ess.c:ess_srtofc() rev 1.53 */
return (256 - 200279L / rate);
}