5087 lines
152 KiB
C
5087 lines
152 KiB
C
/* Functions related to building classes and their related objects.
|
||
Copyright (C) 1987, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* High-level class interface. */
|
||
|
||
#include "config.h"
|
||
#include "tree.h"
|
||
#include <stdio.h>
|
||
#include "cp-tree.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "output.h"
|
||
|
||
#include "obstack.h"
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
extern struct obstack permanent_obstack;
|
||
|
||
/* This is how we tell when two virtual member functions are really the
|
||
same. */
|
||
#define SAME_FN(FN1DECL, FN2DECL) (DECL_ASSEMBLER_NAME (FN1DECL) == DECL_ASSEMBLER_NAME (FN2DECL))
|
||
|
||
extern void set_class_shadows PROTO ((tree));
|
||
|
||
/* Way of stacking class types. */
|
||
static tree *current_class_base, *current_class_stack;
|
||
static int current_class_stacksize;
|
||
int current_class_depth;
|
||
|
||
struct class_level
|
||
{
|
||
/* The previous class level. */
|
||
struct class_level *level_chain;
|
||
|
||
/* The class instance variable, as a PARM_DECL. */
|
||
tree decl;
|
||
/* The class instance variable, as an object. */
|
||
tree object;
|
||
/* The virtual function table pointer
|
||
for the class instance variable. */
|
||
tree vtable_decl;
|
||
|
||
/* Name of the current class. */
|
||
tree name;
|
||
/* Type of the current class. */
|
||
tree type;
|
||
|
||
/* Flags for this class level. */
|
||
int this_is_variable;
|
||
int memoized_lookups;
|
||
int save_memoized;
|
||
int unused;
|
||
};
|
||
|
||
tree current_class_decl, C_C_D; /* PARM_DECL: the class instance variable */
|
||
|
||
/* The following two can be derived from the previous one */
|
||
tree current_class_name; /* IDENTIFIER_NODE: name of current class */
|
||
tree current_class_type; /* _TYPE: the type of the current class */
|
||
tree previous_class_type; /* _TYPE: the previous type that was a class */
|
||
tree previous_class_values; /* TREE_LIST: copy of the class_shadowed list
|
||
when leaving an outermost class scope. */
|
||
static tree get_vfield_name PROTO((tree));
|
||
tree the_null_vtable_entry;
|
||
|
||
/* Way of stacking language names. */
|
||
tree *current_lang_base, *current_lang_stack;
|
||
int current_lang_stacksize;
|
||
|
||
/* Names of languages we recognize. */
|
||
tree lang_name_c, lang_name_cplusplus;
|
||
tree current_lang_name;
|
||
|
||
char *dont_allow_type_definitions;
|
||
|
||
/* When layout out an aggregate type, the size of the
|
||
basetypes (virtual and non-virtual) is passed to layout_record
|
||
via this node. */
|
||
static tree base_layout_decl;
|
||
|
||
/* Variables shared between class.c and call.c. */
|
||
|
||
int n_vtables = 0;
|
||
int n_vtable_entries = 0;
|
||
int n_vtable_searches = 0;
|
||
int n_vtable_elems = 0;
|
||
int n_convert_harshness = 0;
|
||
int n_compute_conversion_costs = 0;
|
||
int n_build_method_call = 0;
|
||
int n_inner_fields_searched = 0;
|
||
|
||
/* Virtual baseclass things. */
|
||
tree
|
||
build_vbase_pointer (exp, type)
|
||
tree exp, type;
|
||
{
|
||
char *name;
|
||
|
||
name = (char *) alloca (TYPE_NAME_LENGTH (type) + sizeof (VBASE_NAME) + 1);
|
||
sprintf (name, VBASE_NAME_FORMAT, TYPE_NAME_STRING (type));
|
||
return build_component_ref (exp, get_identifier (name), 0, 0);
|
||
}
|
||
|
||
/* Is the type of the EXPR, the complete type of the object?
|
||
If we are going to be wrong, we must be conservative, and return 0. */
|
||
int
|
||
complete_type_p (expr)
|
||
tree expr;
|
||
{
|
||
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
|
||
while (1)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case SAVE_EXPR:
|
||
case INDIRECT_REF:
|
||
case ADDR_EXPR:
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
expr = TREE_OPERAND (expr, 0);
|
||
continue;
|
||
|
||
case CALL_EXPR:
|
||
if (! TREE_HAS_CONSTRUCTOR (expr))
|
||
break;
|
||
/* fall through... */
|
||
case VAR_DECL:
|
||
case FIELD_DECL:
|
||
if (TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE
|
||
&& IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (expr)))
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type)
|
||
return 1;
|
||
/* fall through... */
|
||
case TARGET_EXPR:
|
||
case PARM_DECL:
|
||
if (IS_AGGR_TYPE (TREE_TYPE (expr))
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type)
|
||
return 1;
|
||
/* fall through... */
|
||
case PLUS_EXPR:
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Build multi-level access to EXPR using hierarchy path PATH.
|
||
CODE is PLUS_EXPR if we are going with the grain,
|
||
and MINUS_EXPR if we are not (in which case, we cannot traverse
|
||
virtual baseclass links).
|
||
|
||
TYPE is the type we want this path to have on exit.
|
||
|
||
ALIAS_THIS is non-zero if EXPR in an expression involving `this'. */
|
||
tree
|
||
build_vbase_path (code, type, expr, path, alias_this)
|
||
enum tree_code code;
|
||
tree type, expr, path;
|
||
int alias_this;
|
||
{
|
||
register int changed = 0;
|
||
tree last = NULL_TREE, last_virtual = NULL_TREE;
|
||
int nonnull = 0;
|
||
int fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
|
||
tree null_expr = 0, nonnull_expr;
|
||
tree basetype;
|
||
tree offset = integer_zero_node;
|
||
|
||
if (nonnull == 0 && (alias_this && flag_this_is_variable <= 0))
|
||
nonnull = 1;
|
||
|
||
/* We need additional logic to convert back to the unconverted type
|
||
(the static type of the complete object), and then convert back
|
||
to the type we want. Until that is done, or until we can
|
||
recognize when that is, we cannot do the short cut logic. (mrs) */
|
||
/* Do this, until we can undo any previous conversions. See net35.C
|
||
for a testcase. */
|
||
fixed_type_p = complete_type_p (expr);
|
||
|
||
if (!fixed_type_p && TREE_SIDE_EFFECTS (expr))
|
||
expr = save_expr (expr);
|
||
nonnull_expr = expr;
|
||
|
||
if (BINFO_INHERITANCE_CHAIN (path))
|
||
{
|
||
tree reverse_path = NULL_TREE;
|
||
|
||
while (path)
|
||
{
|
||
tree r = copy_node (path);
|
||
BINFO_INHERITANCE_CHAIN (r) = reverse_path;
|
||
reverse_path = r;
|
||
path = BINFO_INHERITANCE_CHAIN (path);
|
||
}
|
||
path = reverse_path;
|
||
}
|
||
|
||
basetype = BINFO_TYPE (path);
|
||
|
||
while (path)
|
||
{
|
||
if (TREE_VIA_VIRTUAL (path))
|
||
{
|
||
last_virtual = BINFO_TYPE (path);
|
||
if (code == PLUS_EXPR)
|
||
{
|
||
changed = ! fixed_type_p;
|
||
|
||
if (changed)
|
||
{
|
||
extern int flag_assume_nonnull_objects;
|
||
tree ind;
|
||
|
||
/* We already check for ambiguous things in the caller, just
|
||
find a path. */
|
||
if (last)
|
||
{
|
||
tree binfo = get_binfo (last, TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (nonnull_expr))), 0);
|
||
nonnull_expr = convert_pointer_to_real (binfo, nonnull_expr);
|
||
}
|
||
ind = build_indirect_ref (nonnull_expr, NULL_PTR);
|
||
nonnull_expr = build_vbase_pointer (ind, last_virtual);
|
||
if (nonnull == 0
|
||
&& (TREE_CODE (type) == POINTER_TYPE
|
||
|| !flag_assume_nonnull_objects)
|
||
&& null_expr == NULL_TREE)
|
||
{
|
||
null_expr = build1 (NOP_EXPR, build_pointer_type (last_virtual), integer_zero_node);
|
||
expr = build (COND_EXPR, build_pointer_type (last_virtual),
|
||
build (EQ_EXPR, boolean_type_node, expr,
|
||
integer_zero_node),
|
||
null_expr, nonnull_expr);
|
||
}
|
||
}
|
||
/* else we'll figure out the offset below. */
|
||
|
||
/* Happens in the case of parse errors. */
|
||
if (nonnull_expr == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
cp_error ("cannot cast up from virtual baseclass `%T'",
|
||
last_virtual);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
last = path;
|
||
path = BINFO_INHERITANCE_CHAIN (path);
|
||
}
|
||
/* LAST is now the last basetype assoc on the path. */
|
||
|
||
/* A pointer to a virtual base member of a non-null object
|
||
is non-null. Therefore, we only need to test for zeroness once.
|
||
Make EXPR the canonical expression to deal with here. */
|
||
if (null_expr)
|
||
{
|
||
TREE_OPERAND (expr, 2) = nonnull_expr;
|
||
TREE_TYPE (TREE_OPERAND (expr, 1)) = TREE_TYPE (nonnull_expr);
|
||
}
|
||
else
|
||
expr = nonnull_expr;
|
||
|
||
/* If we go through any virtual base pointers, make sure that
|
||
casts to BASETYPE from the last virtual base class use
|
||
the right value for BASETYPE. */
|
||
if (changed)
|
||
{
|
||
tree intype = TREE_TYPE (TREE_TYPE (expr));
|
||
if (TYPE_MAIN_VARIANT (intype) != BINFO_TYPE (last))
|
||
{
|
||
tree binfo = get_binfo (last, TYPE_MAIN_VARIANT (intype), 0);
|
||
offset = BINFO_OFFSET (binfo);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (last_virtual)
|
||
{
|
||
offset = BINFO_OFFSET (binfo_member (last_virtual,
|
||
CLASSTYPE_VBASECLASSES (basetype)));
|
||
offset = size_binop (PLUS_EXPR, offset, BINFO_OFFSET (last));
|
||
}
|
||
else
|
||
offset = BINFO_OFFSET (last);
|
||
}
|
||
|
||
if (TREE_INT_CST_LOW (offset))
|
||
{
|
||
/* Bash types to make the backend happy. */
|
||
offset = convert (type, offset);
|
||
expr = build1 (NOP_EXPR, type, expr);
|
||
|
||
/* For multiple inheritance: if `this' can be set by any
|
||
function, then it could be 0 on entry to any function.
|
||
Preserve such zeroness here. Otherwise, only in the
|
||
case of constructors need we worry, and in those cases,
|
||
it will be zero, or initialized to some valid value to
|
||
which we may add. */
|
||
if (nonnull == 0)
|
||
{
|
||
if (null_expr)
|
||
TREE_TYPE (null_expr) = type;
|
||
else
|
||
null_expr = build1 (NOP_EXPR, type, integer_zero_node);
|
||
if (TREE_SIDE_EFFECTS (expr))
|
||
expr = save_expr (expr);
|
||
|
||
return build (COND_EXPR, type,
|
||
build (EQ_EXPR, boolean_type_node, expr, integer_zero_node),
|
||
null_expr,
|
||
build (code, type, expr, offset));
|
||
}
|
||
else return build (code, type, expr, offset);
|
||
}
|
||
|
||
/* Cannot change the TREE_TYPE of a NOP_EXPR here, since it may
|
||
be used multiple times in initialization of multiple inheritance. */
|
||
if (null_expr)
|
||
{
|
||
TREE_TYPE (expr) = type;
|
||
return expr;
|
||
}
|
||
else
|
||
return build1 (NOP_EXPR, type, expr);
|
||
}
|
||
|
||
/* Virtual function things. */
|
||
|
||
/* Virtual functions to be dealt with after laying out our base
|
||
classes. We do all overrides after we layout virtual base classes.
|
||
*/
|
||
static tree pending_hard_virtuals;
|
||
static int doing_hard_virtuals;
|
||
|
||
/* Build an entry in the virtual function table.
|
||
DELTA is the offset for the `this' pointer.
|
||
PFN is an ADDR_EXPR containing a pointer to the virtual function.
|
||
Note that the index (DELTA2) in the virtual function table
|
||
is always 0. */
|
||
tree
|
||
build_vtable_entry (delta, pfn)
|
||
tree delta, pfn;
|
||
{
|
||
|
||
if (flag_vtable_thunks)
|
||
{
|
||
HOST_WIDE_INT idelta = TREE_INT_CST_LOW (delta);
|
||
extern tree make_thunk ();
|
||
if (idelta)
|
||
{
|
||
pfn = build1 (ADDR_EXPR, vtable_entry_type,
|
||
make_thunk (pfn, idelta));
|
||
TREE_READONLY (pfn) = 1;
|
||
TREE_CONSTANT (pfn) = 1;
|
||
}
|
||
#ifdef GATHER_STATISTICS
|
||
n_vtable_entries += 1;
|
||
#endif
|
||
return pfn;
|
||
}
|
||
else
|
||
{
|
||
extern int flag_huge_objects;
|
||
tree elems = tree_cons (NULL_TREE, delta,
|
||
tree_cons (NULL_TREE, integer_zero_node,
|
||
build_tree_list (NULL_TREE, pfn)));
|
||
tree entry = build (CONSTRUCTOR, vtable_entry_type, NULL_TREE, elems);
|
||
|
||
/* DELTA is constructed by `size_int', which means it may be an
|
||
unsigned quantity on some platforms. Therefore, we cannot use
|
||
`int_fits_type_p', because when DELTA is really negative,
|
||
`force_fit_type' will make it look like a very large number. */
|
||
|
||
if ((TREE_INT_CST_LOW (TYPE_MAX_VALUE (delta_type_node))
|
||
< TREE_INT_CST_LOW (delta))
|
||
|| (TREE_INT_CST_LOW (delta)
|
||
< TREE_INT_CST_LOW (TYPE_MIN_VALUE (delta_type_node))))
|
||
if (flag_huge_objects)
|
||
sorry ("object size exceeds built-in limit for virtual function table implementation");
|
||
else
|
||
sorry ("object size exceeds normal limit for virtual function table implementation, recompile all source and use -fhuge-objects");
|
||
|
||
TREE_CONSTANT (entry) = 1;
|
||
TREE_STATIC (entry) = 1;
|
||
TREE_READONLY (entry) = 1;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_vtable_entries += 1;
|
||
#endif
|
||
|
||
return entry;
|
||
}
|
||
}
|
||
|
||
/* Given an object INSTANCE, return an expression which yields the
|
||
virtual function corresponding to INDEX. There are many special
|
||
cases for INSTANCE which we take care of here, mainly to avoid
|
||
creating extra tree nodes when we don't have to. */
|
||
tree
|
||
build_vfn_ref (ptr_to_instptr, instance, idx)
|
||
tree *ptr_to_instptr, instance;
|
||
tree idx;
|
||
{
|
||
extern int building_cleanup;
|
||
tree vtbl, aref;
|
||
tree basetype = TREE_TYPE (instance);
|
||
|
||
if (TREE_CODE (basetype) == REFERENCE_TYPE)
|
||
basetype = TREE_TYPE (basetype);
|
||
|
||
if (instance == C_C_D)
|
||
vtbl = build_indirect_ref (build_vfield_ref (instance, basetype),
|
||
NULL_PTR);
|
||
else
|
||
{
|
||
if (optimize)
|
||
{
|
||
/* Try to figure out what a reference refers to, and
|
||
access its virtual function table directly. */
|
||
tree ref = NULL_TREE;
|
||
|
||
if (TREE_CODE (instance) == INDIRECT_REF
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (instance, 0))) == REFERENCE_TYPE)
|
||
ref = TREE_OPERAND (instance, 0);
|
||
else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
|
||
ref = instance;
|
||
|
||
if (ref && TREE_CODE (ref) == VAR_DECL
|
||
&& DECL_INITIAL (ref))
|
||
{
|
||
tree init = DECL_INITIAL (ref);
|
||
|
||
while (TREE_CODE (init) == NOP_EXPR
|
||
|| TREE_CODE (init) == NON_LVALUE_EXPR)
|
||
init = TREE_OPERAND (init, 0);
|
||
if (TREE_CODE (init) == ADDR_EXPR)
|
||
{
|
||
init = TREE_OPERAND (init, 0);
|
||
if (IS_AGGR_TYPE (TREE_TYPE (init))
|
||
&& (TREE_CODE (init) == PARM_DECL
|
||
|| TREE_CODE (init) == VAR_DECL))
|
||
instance = init;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (IS_AGGR_TYPE (TREE_TYPE (instance))
|
||
&& (TREE_CODE (instance) == RESULT_DECL
|
||
|| TREE_CODE (instance) == PARM_DECL
|
||
|| TREE_CODE (instance) == VAR_DECL))
|
||
vtbl = TYPE_BINFO_VTABLE (basetype);
|
||
else
|
||
vtbl = build_indirect_ref (build_vfield_ref (instance, basetype),
|
||
NULL_PTR);
|
||
}
|
||
assemble_external (vtbl);
|
||
aref = build_array_ref (vtbl, idx);
|
||
|
||
/* Save the intermediate result in a SAVE_EXPR so we don't have to
|
||
compute each component of the virtual function pointer twice. */
|
||
if (!building_cleanup && TREE_CODE (aref) == INDIRECT_REF)
|
||
TREE_OPERAND (aref, 0) = save_expr (TREE_OPERAND (aref, 0));
|
||
|
||
if (flag_vtable_thunks)
|
||
return aref;
|
||
else
|
||
{
|
||
if (ptr_to_instptr)
|
||
*ptr_to_instptr
|
||
= build (PLUS_EXPR, TREE_TYPE (*ptr_to_instptr),
|
||
*ptr_to_instptr,
|
||
convert (ptrdiff_type_node,
|
||
build_component_ref (aref, delta_identifier, 0, 0)));
|
||
return build_component_ref (aref, pfn_identifier, 0, 0);
|
||
}
|
||
}
|
||
|
||
/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
|
||
for the given TYPE. */
|
||
static tree
|
||
get_vtable_name (type)
|
||
tree type;
|
||
{
|
||
tree type_id = build_typename_overload (type);
|
||
char *buf = (char *)alloca (strlen (VTABLE_NAME_FORMAT)
|
||
+ IDENTIFIER_LENGTH (type_id) + 2);
|
||
char *ptr = IDENTIFIER_POINTER (type_id);
|
||
int i;
|
||
for (i = 0; ptr[i] == OPERATOR_TYPENAME_FORMAT[i]; i++) ;
|
||
#if 0
|
||
/* We don't take off the numbers; prepare_fresh_vtable uses the
|
||
DECL_ASSEMBLER_NAME for the type, which includes the number
|
||
in `3foo'. If we were to pull them off here, we'd end up with
|
||
something like `_vt.foo.3bar', instead of a uniform definition. */
|
||
while (ptr[i] >= '0' && ptr[i] <= '9')
|
||
i += 1;
|
||
#endif
|
||
sprintf (buf, VTABLE_NAME_FORMAT, ptr+i);
|
||
return get_identifier (buf);
|
||
}
|
||
|
||
/* Build a virtual function for type TYPE.
|
||
If BINFO is non-NULL, build the vtable starting with the initial
|
||
approximation that it is the same as the one which is the head of
|
||
the association list. */
|
||
static tree
|
||
build_vtable (binfo, type)
|
||
tree binfo, type;
|
||
{
|
||
tree name = get_vtable_name (type);
|
||
tree virtuals, decl;
|
||
|
||
if (binfo)
|
||
{
|
||
virtuals = copy_list (BINFO_VIRTUALS (binfo));
|
||
decl = build_decl (VAR_DECL, name, TREE_TYPE (BINFO_VTABLE (binfo)));
|
||
}
|
||
else
|
||
{
|
||
virtuals = NULL_TREE;
|
||
decl = build_decl (VAR_DECL, name, void_type_node);
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_vtables += 1;
|
||
n_vtable_elems += list_length (virtuals);
|
||
#endif
|
||
|
||
/* Set TREE_PUBLIC and TREE_EXTERN as appropriate. */
|
||
import_export_vtable (decl, type, 0);
|
||
|
||
IDENTIFIER_GLOBAL_VALUE (name) = decl = pushdecl_top_level (decl);
|
||
/* Initialize the association list for this type, based
|
||
on our first approximation. */
|
||
TYPE_BINFO_VTABLE (type) = decl;
|
||
TYPE_BINFO_VIRTUALS (type) = virtuals;
|
||
|
||
TREE_STATIC (decl) = 1;
|
||
#ifndef WRITABLE_VTABLES
|
||
/* Make them READONLY by default. (mrs) */
|
||
TREE_READONLY (decl) = 1;
|
||
#endif
|
||
/* At one time the vtable info was grabbed 2 words at a time. This
|
||
fails on sparc unless you have 8-byte alignment. (tiemann) */
|
||
DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
|
||
DECL_ALIGN (decl));
|
||
|
||
/* Why is this conditional? (mrs) */
|
||
if (binfo && write_virtuals >= 0)
|
||
DECL_VIRTUAL_P (decl) = 1;
|
||
DECL_CONTEXT (decl) = type;
|
||
|
||
binfo = TYPE_BINFO (type);
|
||
SET_BINFO_NEW_VTABLE_MARKED (binfo);
|
||
return decl;
|
||
}
|
||
|
||
/* Given a base type PARENT, and a derived type TYPE, build
|
||
a name which distinguishes exactly the PARENT member of TYPE's type.
|
||
|
||
FORMAT is a string which controls how sprintf formats the name
|
||
we have generated.
|
||
|
||
For example, given
|
||
|
||
class A; class B; class C : A, B;
|
||
|
||
it is possible to distinguish "A" from "C's A". And given
|
||
|
||
class L;
|
||
class A : L; class B : L; class C : A, B;
|
||
|
||
it is possible to distinguish "L" from "A's L", and also from
|
||
"C's L from A".
|
||
|
||
Make sure to use the DECL_ASSEMBLER_NAME of the TYPE_NAME of the
|
||
type, as template have DECL_NAMEs like: X<int>, whereas the
|
||
DECL_ASSEMBLER_NAME is set to be something the assembler can handle.
|
||
*/
|
||
static tree
|
||
build_type_pathname (format, parent, type)
|
||
char *format;
|
||
tree parent, type;
|
||
{
|
||
extern struct obstack temporary_obstack;
|
||
char *first, *base, *name;
|
||
int i;
|
||
tree id;
|
||
|
||
parent = TYPE_MAIN_VARIANT (parent);
|
||
|
||
/* Remember where to cut the obstack to. */
|
||
first = obstack_base (&temporary_obstack);
|
||
|
||
/* Put on TYPE+PARENT. */
|
||
obstack_grow (&temporary_obstack,
|
||
TYPE_ASSEMBLER_NAME_STRING (type),
|
||
TYPE_ASSEMBLER_NAME_LENGTH (type));
|
||
#ifdef JOINER
|
||
obstack_1grow (&temporary_obstack, JOINER);
|
||
#else
|
||
obstack_1grow (&temporary_obstack, '_');
|
||
#endif
|
||
obstack_grow0 (&temporary_obstack,
|
||
TYPE_ASSEMBLER_NAME_STRING (parent),
|
||
TYPE_ASSEMBLER_NAME_LENGTH (parent));
|
||
i = obstack_object_size (&temporary_obstack);
|
||
base = obstack_base (&temporary_obstack);
|
||
obstack_finish (&temporary_obstack);
|
||
|
||
/* Put on FORMAT+TYPE+PARENT. */
|
||
obstack_blank (&temporary_obstack, strlen (format) + i + 1);
|
||
name = obstack_base (&temporary_obstack);
|
||
sprintf (name, format, base);
|
||
id = get_identifier (name);
|
||
obstack_free (&temporary_obstack, first);
|
||
|
||
return id;
|
||
}
|
||
|
||
/* Update the rtti info for this class. */
|
||
static void
|
||
set_rtti_entry (virtuals, offset, type)
|
||
tree virtuals, offset, type;
|
||
{
|
||
if (! flag_vtable_thunks)
|
||
TREE_VALUE (virtuals)
|
||
= build_vtable_entry (offset,
|
||
(flag_rtti
|
||
? build_t_desc (type, 0)
|
||
: integer_zero_node));
|
||
else
|
||
{
|
||
tree vfn = build1 (NOP_EXPR, vfunc_ptr_type_node, offset);
|
||
TREE_CONSTANT (vfn) = 1;
|
||
|
||
TREE_VALUE (virtuals)
|
||
= build_vtable_entry (integer_zero_node, vfn);
|
||
/* The second slot is for the tdesc pointer when thunks are used. */
|
||
vfn = flag_rtti
|
||
? build_t_desc (type, 0)
|
||
: integer_zero_node;
|
||
vfn = build1 (NOP_EXPR, vfunc_ptr_type_node, vfn);
|
||
TREE_CONSTANT (vfn) = 1;
|
||
|
||
TREE_VALUE (TREE_CHAIN (virtuals))
|
||
= build_vtable_entry (integer_zero_node, vfn);
|
||
}
|
||
}
|
||
|
||
/* Give TYPE a new virtual function table which is initialized
|
||
with a skeleton-copy of its original initialization. The only
|
||
entry that changes is the `delta' entry, so we can really
|
||
share a lot of structure.
|
||
|
||
FOR_TYPE is the derived type which caused this table to
|
||
be needed.
|
||
|
||
BINFO is the type association which provided TYPE for FOR_TYPE. */
|
||
static void
|
||
prepare_fresh_vtable (binfo, for_type)
|
||
tree binfo, for_type;
|
||
{
|
||
tree basetype = BINFO_TYPE (binfo);
|
||
tree orig_decl = BINFO_VTABLE (binfo);
|
||
/* This name is too simplistic. We can have multiple basetypes for
|
||
for_type, and we really want different names. (mrs) */
|
||
tree name = build_type_pathname (VTABLE_NAME_FORMAT, basetype, for_type);
|
||
tree new_decl = build_decl (VAR_DECL, name, TREE_TYPE (orig_decl));
|
||
tree path, offset;
|
||
int result;
|
||
|
||
/* Remember which class this vtable is really for. */
|
||
DECL_CONTEXT (new_decl) = for_type;
|
||
|
||
TREE_STATIC (new_decl) = 1;
|
||
BINFO_VTABLE (binfo) = pushdecl_top_level (new_decl);
|
||
DECL_VIRTUAL_P (new_decl) = 1;
|
||
#ifndef WRITABLE_VTABLES
|
||
/* Make them READONLY by default. (mrs) */
|
||
TREE_READONLY (new_decl) = 1;
|
||
#endif
|
||
DECL_ALIGN (new_decl) = DECL_ALIGN (orig_decl);
|
||
|
||
/* Make fresh virtual list, so we can smash it later. */
|
||
BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
|
||
|
||
if (TREE_VIA_VIRTUAL (binfo))
|
||
offset = BINFO_OFFSET (binfo_member (BINFO_TYPE (binfo),
|
||
CLASSTYPE_VBASECLASSES (for_type)));
|
||
else
|
||
offset = BINFO_OFFSET (binfo);
|
||
|
||
set_rtti_entry (BINFO_VIRTUALS (binfo),
|
||
size_binop (MINUS_EXPR, integer_zero_node, offset),
|
||
for_type);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_vtables += 1;
|
||
n_vtable_elems += list_length (BINFO_VIRTUALS (binfo));
|
||
#endif
|
||
|
||
/* Set TREE_PUBLIC and TREE_EXTERN as appropriate. */
|
||
import_export_vtable (new_decl, for_type, 0);
|
||
|
||
if (TREE_VIA_VIRTUAL (binfo))
|
||
my_friendly_assert (binfo == binfo_member (BINFO_TYPE (binfo),
|
||
CLASSTYPE_VBASECLASSES (current_class_type)),
|
||
170);
|
||
SET_BINFO_NEW_VTABLE_MARKED (binfo);
|
||
}
|
||
|
||
/* Access the virtual function table entry that logically
|
||
contains BASE_FNDECL. VIRTUALS is the virtual function table's
|
||
initializer. We can run off the end, when dealing with virtual
|
||
destructors in MI situations, return NULL_TREE in that case. */
|
||
static tree
|
||
get_vtable_entry (virtuals, base_fndecl)
|
||
tree virtuals, base_fndecl;
|
||
{
|
||
unsigned HOST_WIDE_INT n = (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
|
||
? (TREE_INT_CST_LOW (DECL_VINDEX (base_fndecl))
|
||
& (((unsigned HOST_WIDE_INT)1<<(BITS_PER_WORD-1))-1))
|
||
: TREE_INT_CST_LOW (DECL_VINDEX (base_fndecl)));
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
n_vtable_searches += n;
|
||
#endif
|
||
|
||
while (n > 0 && virtuals)
|
||
{
|
||
--n;
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
return virtuals;
|
||
}
|
||
|
||
/* Put new entry ENTRY into virtual function table initializer
|
||
VIRTUALS.
|
||
|
||
Also update DECL_VINDEX (FNDECL). */
|
||
|
||
static void
|
||
modify_vtable_entry (old_entry_in_list, new_entry, fndecl)
|
||
tree old_entry_in_list, new_entry, fndecl;
|
||
{
|
||
tree base_fndecl = TREE_OPERAND (FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (old_entry_in_list)), 0);
|
||
|
||
#ifdef NOTQUITE
|
||
cp_warning ("replaced %D with %D", DECL_ASSEMBLER_NAME (base_fndecl),
|
||
DECL_ASSEMBLER_NAME (fndecl));
|
||
#endif
|
||
TREE_VALUE (old_entry_in_list) = new_entry;
|
||
|
||
/* Now assign virtual dispatch information, if unset. */
|
||
/* We can dispatch this, through any overridden base function. */
|
||
if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
|
||
{
|
||
DECL_VINDEX (fndecl) = DECL_VINDEX (base_fndecl);
|
||
DECL_CONTEXT (fndecl) = DECL_CONTEXT (base_fndecl);
|
||
}
|
||
}
|
||
|
||
/* Access the virtual function table entry i. VIRTUALS is the virtual
|
||
function table's initializer. */
|
||
static tree
|
||
get_vtable_entry_n (virtuals, n)
|
||
tree virtuals;
|
||
unsigned HOST_WIDE_INT n;
|
||
{
|
||
while (n > 0)
|
||
{
|
||
--n;
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
return virtuals;
|
||
}
|
||
|
||
/* Add a virtual function to all the appropriate vtables for the class
|
||
T. DECL_VINDEX(X) should be error_mark_node, if we want to
|
||
allocate a new slot in our table. If it is error_mark_node, we
|
||
know that no other function from another vtable is overridden by X.
|
||
HAS_VIRTUAL keeps track of how many virtuals there are in our main
|
||
vtable for the type, and we build upon the PENDING_VIRTUALS list
|
||
and return it. */
|
||
static tree
|
||
add_virtual_function (pending_virtuals, has_virtual, fndecl, t)
|
||
tree pending_virtuals;
|
||
int *has_virtual;
|
||
tree fndecl;
|
||
tree t; /* Structure type. */
|
||
{
|
||
/* FUNCTION_TYPEs and OFFSET_TYPEs no longer freely
|
||
convert to void *. Make such a conversion here. */
|
||
tree vfn = build1 (ADDR_EXPR, vfunc_ptr_type_node, fndecl);
|
||
TREE_CONSTANT (vfn) = 1;
|
||
|
||
#ifndef DUMB_USER
|
||
if (current_class_type == 0)
|
||
cp_warning ("internal problem, current_class_type is zero when adding `%D', please report",
|
||
fndecl);
|
||
if (current_class_type && t != current_class_type)
|
||
cp_warning ("internal problem, current_class_type differs when adding `%D', please report",
|
||
fndecl);
|
||
#endif
|
||
|
||
/* If the virtual function is a redefinition of a prior one,
|
||
figure out in which base class the new definition goes,
|
||
and if necessary, make a fresh virtual function table
|
||
to hold that entry. */
|
||
if (DECL_VINDEX (fndecl) == error_mark_node)
|
||
{
|
||
tree entry;
|
||
|
||
if (flag_rtti && *has_virtual == 0)
|
||
{
|
||
/* CLASSTYPE_RTTI is only used as a Boolean (NULL or not). */
|
||
CLASSTYPE_RTTI (t) = integer_one_node;
|
||
}
|
||
|
||
/* If we are using thunks, use two slots at the front, one
|
||
for the offset pointer, one for the tdesc pointer. */
|
||
if (*has_virtual == 0 && flag_vtable_thunks)
|
||
{
|
||
*has_virtual = 1;
|
||
}
|
||
|
||
/* Build a new INT_CST for this DECL_VINDEX. */
|
||
{
|
||
static tree index_table[256];
|
||
tree index;
|
||
/* We skip a slot for the offset/tdesc entry. */
|
||
int i = ++(*has_virtual);
|
||
|
||
if (i >= 256 || index_table[i] == 0)
|
||
{
|
||
index = build_int_2 (i, 0);
|
||
if (i < 256)
|
||
index_table[i] = index;
|
||
}
|
||
else
|
||
index = index_table[i];
|
||
|
||
/* Now assign virtual dispatch information. */
|
||
DECL_VINDEX (fndecl) = index;
|
||
DECL_CONTEXT (fndecl) = t;
|
||
}
|
||
entry = build_vtable_entry (integer_zero_node, vfn);
|
||
pending_virtuals = tree_cons (DECL_VINDEX (fndecl), entry, pending_virtuals);
|
||
}
|
||
/* Might already be INTEGER_CST if declared twice in class. We will
|
||
give error later or we've already given it. */
|
||
else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
|
||
{
|
||
/* Need an entry in some other virtual function table.
|
||
Deal with this after we have laid out our virtual base classes. */
|
||
pending_hard_virtuals = temp_tree_cons (fndecl, vfn, pending_hard_virtuals);
|
||
}
|
||
return pending_virtuals;
|
||
}
|
||
|
||
/* Obstack on which to build the vector of class methods. */
|
||
struct obstack class_obstack;
|
||
extern struct obstack *current_obstack;
|
||
|
||
/* Add method METHOD to class TYPE. This is used when a method
|
||
has been defined which did not initially appear in the class definition,
|
||
and helps cut down on spurious error messages.
|
||
|
||
FIELDS is the entry in the METHOD_VEC vector entry of the class type where
|
||
the method should be added. */
|
||
void
|
||
add_method (type, fields, method)
|
||
tree type, *fields, method;
|
||
{
|
||
/* We must make a copy of METHOD here, since we must be sure that
|
||
we have exclusive title to this method's DECL_CHAIN. */
|
||
tree decl;
|
||
|
||
push_obstacks (&permanent_obstack, &permanent_obstack);
|
||
{
|
||
decl = copy_node (method);
|
||
if (DECL_RTL (decl) == 0
|
||
&& (!processing_template_decl
|
||
|| !uses_template_parms (decl)))
|
||
{
|
||
make_function_rtl (decl);
|
||
DECL_RTL (method) = DECL_RTL (decl);
|
||
}
|
||
}
|
||
|
||
if (fields && *fields)
|
||
{
|
||
/* Take care not to hide destructor. */
|
||
DECL_CHAIN (decl) = DECL_CHAIN (*fields);
|
||
DECL_CHAIN (*fields) = decl;
|
||
}
|
||
else if (CLASSTYPE_METHOD_VEC (type) == 0)
|
||
{
|
||
tree method_vec = make_node (TREE_VEC);
|
||
if (TYPE_IDENTIFIER (type) == DECL_NAME (decl))
|
||
{
|
||
TREE_VEC_ELT (method_vec, 0) = decl;
|
||
TREE_VEC_LENGTH (method_vec) = 1;
|
||
}
|
||
else
|
||
{
|
||
/* ??? Is it possible for there to have been enough room in the
|
||
current chunk for the tree_vec structure but not a tree_vec
|
||
plus a tree*? Will this work in that case? */
|
||
obstack_free (current_obstack, method_vec);
|
||
obstack_blank (current_obstack, sizeof (struct tree_vec) + sizeof (tree *));
|
||
TREE_VEC_ELT (method_vec, 1) = decl;
|
||
TREE_VEC_LENGTH (method_vec) = 2;
|
||
obstack_finish (current_obstack);
|
||
}
|
||
CLASSTYPE_METHOD_VEC (type) = method_vec;
|
||
}
|
||
else
|
||
{
|
||
tree method_vec = CLASSTYPE_METHOD_VEC (type);
|
||
int len = TREE_VEC_LENGTH (method_vec);
|
||
|
||
/* Adding a new ctor or dtor. This is easy because our
|
||
METHOD_VEC always has a slot for such entries. */
|
||
if (TYPE_IDENTIFIER (type) == DECL_NAME (decl))
|
||
{
|
||
/* TREE_VEC_ELT (method_vec, 0) = decl; */
|
||
if (decl != TREE_VEC_ELT (method_vec, 0))
|
||
{
|
||
DECL_CHAIN (decl) = TREE_VEC_ELT (method_vec, 0);
|
||
TREE_VEC_ELT (method_vec, 0) = decl;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is trickier. We try to extend the TREE_VEC in-place,
|
||
but if that does not work, we copy all its data to a new
|
||
TREE_VEC that's large enough. */
|
||
struct obstack *ob = &class_obstack;
|
||
tree *end = (tree *)obstack_next_free (ob);
|
||
|
||
if (end != TREE_VEC_END (method_vec))
|
||
{
|
||
ob = current_obstack;
|
||
TREE_VEC_LENGTH (method_vec) += 1;
|
||
TREE_VEC_ELT (method_vec, len) = NULL_TREE;
|
||
method_vec = copy_node (method_vec);
|
||
TREE_VEC_LENGTH (method_vec) -= 1;
|
||
}
|
||
else
|
||
{
|
||
tree tmp_vec = (tree) obstack_base (ob);
|
||
if (obstack_room (ob) < sizeof (tree))
|
||
{
|
||
obstack_blank (ob, sizeof (struct tree_common)
|
||
+ tree_code_length[(int) TREE_VEC]
|
||
* sizeof (char *)
|
||
+ len * sizeof (tree));
|
||
tmp_vec = (tree) obstack_base (ob);
|
||
bcopy ((char *) method_vec, (char *) tmp_vec,
|
||
(sizeof (struct tree_common)
|
||
+ tree_code_length[(int) TREE_VEC] * sizeof (char *)
|
||
+ (len-1) * sizeof (tree)));
|
||
method_vec = tmp_vec;
|
||
}
|
||
else
|
||
obstack_blank (ob, sizeof (tree));
|
||
}
|
||
|
||
obstack_finish (ob);
|
||
TREE_VEC_ELT (method_vec, len) = decl;
|
||
TREE_VEC_LENGTH (method_vec) = len + 1;
|
||
CLASSTYPE_METHOD_VEC (type) = method_vec;
|
||
|
||
if (TYPE_BINFO_BASETYPES (type) && CLASSTYPE_BASELINK_VEC (type))
|
||
{
|
||
/* ??? May be better to know whether these can be extended? */
|
||
tree baselink_vec = CLASSTYPE_BASELINK_VEC (type);
|
||
|
||
TREE_VEC_LENGTH (baselink_vec) += 1;
|
||
CLASSTYPE_BASELINK_VEC (type) = copy_node (baselink_vec);
|
||
TREE_VEC_LENGTH (baselink_vec) -= 1;
|
||
|
||
TREE_VEC_ELT (CLASSTYPE_BASELINK_VEC (type), len) = 0;
|
||
}
|
||
}
|
||
}
|
||
DECL_CONTEXT (decl) = type;
|
||
DECL_CLASS_CONTEXT (decl) = type;
|
||
|
||
pop_obstacks ();
|
||
}
|
||
|
||
/* Subroutines of finish_struct. */
|
||
|
||
/* Look through the list of fields for this struct, deleting
|
||
duplicates as we go. This must be recursive to handle
|
||
anonymous unions.
|
||
|
||
FIELD is the field which may not appear anywhere in FIELDS.
|
||
FIELD_PTR, if non-null, is the starting point at which
|
||
chained deletions may take place.
|
||
The value returned is the first acceptable entry found
|
||
in FIELDS.
|
||
|
||
Note that anonymous fields which are not of UNION_TYPE are
|
||
not duplicates, they are just anonymous fields. This happens
|
||
when we have unnamed bitfields, for example. */
|
||
static tree
|
||
delete_duplicate_fields_1 (field, fields)
|
||
tree field, fields;
|
||
{
|
||
tree x;
|
||
tree prev = 0;
|
||
if (DECL_NAME (field) == 0)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (field)) != UNION_TYPE)
|
||
return fields;
|
||
|
||
for (x = TYPE_FIELDS (TREE_TYPE (field)); x; x = TREE_CHAIN (x))
|
||
fields = delete_duplicate_fields_1 (x, fields);
|
||
return fields;
|
||
}
|
||
else
|
||
{
|
||
for (x = fields; x; prev = x, x = TREE_CHAIN (x))
|
||
{
|
||
if (DECL_NAME (x) == 0)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (x)) != UNION_TYPE)
|
||
continue;
|
||
TYPE_FIELDS (TREE_TYPE (x))
|
||
= delete_duplicate_fields_1 (field, TYPE_FIELDS (TREE_TYPE (x)));
|
||
if (TYPE_FIELDS (TREE_TYPE (x)) == 0)
|
||
{
|
||
if (prev == 0)
|
||
fields = TREE_CHAIN (fields);
|
||
else
|
||
TREE_CHAIN (prev) = TREE_CHAIN (x);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (DECL_NAME (field) == DECL_NAME (x))
|
||
{
|
||
if (TREE_CODE (field) == CONST_DECL
|
||
&& TREE_CODE (x) == CONST_DECL)
|
||
cp_error_at ("duplicate enum value `%D'", x);
|
||
else if (TREE_CODE (field) == CONST_DECL
|
||
|| TREE_CODE (x) == CONST_DECL)
|
||
cp_error_at ("duplicate field `%D' (as enum and non-enum)",
|
||
x);
|
||
else if (TREE_CODE (field) == TYPE_DECL
|
||
&& TREE_CODE (x) == TYPE_DECL)
|
||
cp_error_at ("duplicate nested type `%D'", x);
|
||
else if (TREE_CODE (field) == TYPE_DECL
|
||
|| TREE_CODE (x) == TYPE_DECL)
|
||
cp_error_at ("duplicate field `%D' (as type and non-type)",
|
||
x);
|
||
else
|
||
cp_error_at ("duplicate member `%D'", x);
|
||
if (prev == 0)
|
||
fields = TREE_CHAIN (fields);
|
||
else
|
||
TREE_CHAIN (prev) = TREE_CHAIN (x);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return fields;
|
||
}
|
||
|
||
static void
|
||
delete_duplicate_fields (fields)
|
||
tree fields;
|
||
{
|
||
tree x;
|
||
for (x = fields; x && TREE_CHAIN (x); x = TREE_CHAIN (x))
|
||
TREE_CHAIN (x) = delete_duplicate_fields_1 (x, TREE_CHAIN (x));
|
||
}
|
||
|
||
/* Change the access of FDECL to ACCESS in T.
|
||
Return 1 if change was legit, otherwise return 0. */
|
||
static int
|
||
alter_access (t, fdecl, access)
|
||
tree t;
|
||
tree fdecl;
|
||
enum access_type access;
|
||
{
|
||
tree elem = purpose_member (t, DECL_ACCESS (fdecl));
|
||
if (elem && TREE_VALUE (elem) != (tree)access)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
|
||
{
|
||
cp_error_at ("conflicting access specifications for method `%D', ignored", TREE_TYPE (fdecl));
|
||
}
|
||
else
|
||
error ("conflicting access specifications for field `%s', ignored",
|
||
IDENTIFIER_POINTER (DECL_NAME (fdecl)));
|
||
}
|
||
else if (TREE_PRIVATE (fdecl))
|
||
{
|
||
if (access != access_private)
|
||
cp_error_at ("cannot make private `%D' non-private", fdecl);
|
||
goto alter;
|
||
}
|
||
else if (TREE_PROTECTED (fdecl))
|
||
{
|
||
if (access != access_protected)
|
||
cp_error_at ("cannot make protected `%D' non-protected", fdecl);
|
||
goto alter;
|
||
}
|
||
/* ARM 11.3: an access declaration may not be used to restrict access
|
||
to a member that is accessible in the base class. */
|
||
else if (access != access_public)
|
||
cp_error_at ("cannot reduce access of public member `%D'", fdecl);
|
||
else if (elem == NULL_TREE)
|
||
{
|
||
alter:
|
||
DECL_ACCESS (fdecl) = tree_cons (t, (tree)access,
|
||
DECL_ACCESS (fdecl));
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return the offset to the main vtable for a given base BINFO. */
|
||
tree
|
||
get_vfield_offset (binfo)
|
||
tree binfo;
|
||
{
|
||
return size_binop (PLUS_EXPR,
|
||
size_binop (FLOOR_DIV_EXPR,
|
||
DECL_FIELD_BITPOS (CLASSTYPE_VFIELD (BINFO_TYPE (binfo))),
|
||
size_int (BITS_PER_UNIT)),
|
||
BINFO_OFFSET (binfo));
|
||
}
|
||
|
||
/* Get the offset to the start of the original binfo that we derived
|
||
this binfo from. If we find TYPE first, return the offset only
|
||
that far. The shortened search is useful because the this pointer
|
||
on method calling is expected to point to a DECL_CONTEXT (fndecl)
|
||
object, and not a baseclass of it. */
|
||
static tree
|
||
get_derived_offset (binfo, type)
|
||
tree binfo, type;
|
||
{
|
||
tree offset1 = get_vfield_offset (TYPE_BINFO (BINFO_TYPE (binfo)));
|
||
tree offset2;
|
||
int i;
|
||
while (BINFO_BASETYPES (binfo)
|
||
&& (i=CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo))) != -1)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
if (BINFO_TYPE (binfo) == type)
|
||
break;
|
||
binfo = TREE_VEC_ELT (binfos, i);
|
||
}
|
||
offset2 = get_vfield_offset (TYPE_BINFO (BINFO_TYPE (binfo)));
|
||
return size_binop (MINUS_EXPR, offset1, offset2);
|
||
}
|
||
|
||
/* If FOR_TYPE needs to reinitialize virtual function table pointers
|
||
for TYPE's sub-objects, add such reinitializations to BASE_INIT_LIST.
|
||
Returns BASE_INIT_LIST appropriately modified. */
|
||
|
||
static tree
|
||
maybe_fixup_vptrs (for_type, binfo, base_init_list)
|
||
tree for_type, binfo, base_init_list;
|
||
{
|
||
/* Now reinitialize any slots that don't fall under our virtual
|
||
function table pointer. */
|
||
tree vfields = CLASSTYPE_VFIELDS (BINFO_TYPE (binfo));
|
||
while (vfields)
|
||
{
|
||
tree basetype = VF_NORMAL_VALUE (vfields)
|
||
? TYPE_MAIN_VARIANT (VF_NORMAL_VALUE (vfields))
|
||
: VF_BASETYPE_VALUE (vfields);
|
||
|
||
tree base_binfo = get_binfo (basetype, for_type, 0);
|
||
/* Punt until this is implemented. */
|
||
if (1 /* BINFO_MODIFIED (base_binfo) */)
|
||
{
|
||
tree base_offset = get_vfield_offset (base_binfo);
|
||
if (! tree_int_cst_equal (base_offset, get_vfield_offset (TYPE_BINFO (for_type)))
|
||
&& ! tree_int_cst_equal (base_offset, get_vfield_offset (binfo)))
|
||
base_init_list = tree_cons (error_mark_node, base_binfo,
|
||
base_init_list);
|
||
}
|
||
vfields = TREE_CHAIN (vfields);
|
||
}
|
||
return base_init_list;
|
||
}
|
||
|
||
/* If TYPE does not have a constructor, then the compiler must
|
||
manually deal with all of the initialization this type requires.
|
||
|
||
If a base initializer exists only to fill in the virtual function
|
||
table pointer, then we mark that fact with the TREE_VIRTUAL bit.
|
||
This way, we avoid multiple initializations of the same field by
|
||
each virtual function table up the class hierarchy.
|
||
|
||
Virtual base class pointers are not initialized here. They are
|
||
initialized only at the "top level" of object creation. If we
|
||
initialized them here, we would have to skip a lot of work. */
|
||
|
||
static void
|
||
build_class_init_list (type)
|
||
tree type;
|
||
{
|
||
tree base_init_list = NULL_TREE;
|
||
tree member_init_list = NULL_TREE;
|
||
|
||
/* Since we build member_init_list and base_init_list using
|
||
tree_cons, backwards fields the all through work. */
|
||
tree x;
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (type));
|
||
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
for (x = TYPE_FIELDS (type); x; x = TREE_CHAIN (x))
|
||
{
|
||
if (TREE_CODE (x) != FIELD_DECL)
|
||
continue;
|
||
|
||
if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (x))
|
||
|| DECL_INITIAL (x) != NULL_TREE)
|
||
member_init_list = tree_cons (x, type, member_init_list);
|
||
}
|
||
member_init_list = nreverse (member_init_list);
|
||
|
||
/* We will end up doing this last. Need special marker
|
||
to avoid infinite regress. */
|
||
if (TYPE_VIRTUAL_P (type))
|
||
{
|
||
base_init_list = build_tree_list (error_mark_node, TYPE_BINFO (type));
|
||
if (CLASSTYPE_NEEDS_VIRTUAL_REINIT (type) == 0)
|
||
TREE_VALUE (base_init_list) = NULL_TREE;
|
||
TREE_ADDRESSABLE (base_init_list) = 1;
|
||
}
|
||
|
||
/* Each base class which needs to have initialization
|
||
of some kind gets to make such requests known here. */
|
||
for (i = n_baseclasses-1; i >= 0; i--)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree blist;
|
||
|
||
/* Don't initialize virtual baseclasses this way. */
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
if (TYPE_HAS_CONSTRUCTOR (BINFO_TYPE (base_binfo)))
|
||
{
|
||
/* ...and the last shall come first... */
|
||
base_init_list = maybe_fixup_vptrs (type, base_binfo, base_init_list);
|
||
base_init_list = tree_cons (NULL_TREE, base_binfo, base_init_list);
|
||
continue;
|
||
}
|
||
|
||
if ((blist = CLASSTYPE_BASE_INIT_LIST (BINFO_TYPE (base_binfo))) == NULL_TREE)
|
||
/* Nothing to initialize. */
|
||
continue;
|
||
|
||
/* ...ditto... */
|
||
base_init_list = maybe_fixup_vptrs (type, base_binfo, base_init_list);
|
||
|
||
/* This is normally true for single inheritance.
|
||
The win is we can shrink the chain of initializations
|
||
to be done by only converting to the actual type
|
||
we are interested in. */
|
||
if (TREE_VALUE (blist)
|
||
&& TREE_CODE (TREE_VALUE (blist)) == TREE_VEC
|
||
&& tree_int_cst_equal (BINFO_OFFSET (base_binfo),
|
||
BINFO_OFFSET (TREE_VALUE (blist))))
|
||
{
|
||
if (base_init_list)
|
||
{
|
||
/* Does it do more than just fill in a
|
||
virtual function table pointer? */
|
||
if (! TREE_ADDRESSABLE (blist))
|
||
base_init_list = build_tree_list (blist, base_init_list);
|
||
/* Can we get by just with the virtual function table
|
||
pointer that it fills in? */
|
||
else if (TREE_ADDRESSABLE (base_init_list)
|
||
&& TREE_VALUE (base_init_list) == 0)
|
||
base_init_list = blist;
|
||
/* Maybe, but it is not obvious as the previous case. */
|
||
else if (! CLASSTYPE_NEEDS_VIRTUAL_REINIT (type))
|
||
{
|
||
tree last = tree_last (base_init_list);
|
||
while (TREE_VALUE (last)
|
||
&& TREE_CODE (TREE_VALUE (last)) == TREE_LIST)
|
||
last = tree_last (TREE_VALUE (last));
|
||
if (TREE_VALUE (last) == 0)
|
||
base_init_list = build_tree_list (blist, base_init_list);
|
||
}
|
||
}
|
||
else
|
||
base_init_list = blist;
|
||
}
|
||
else
|
||
{
|
||
/* The function expand_aggr_init knows how to do the
|
||
initialization of `basetype' without getting
|
||
an explicit `blist'. */
|
||
if (base_init_list)
|
||
base_init_list = tree_cons (NULL_TREE, base_binfo, base_init_list);
|
||
else
|
||
base_init_list = CLASSTYPE_BINFO_AS_LIST (BINFO_TYPE (base_binfo));
|
||
}
|
||
}
|
||
|
||
if (base_init_list)
|
||
if (member_init_list)
|
||
CLASSTYPE_BASE_INIT_LIST (type) = build_tree_list (base_init_list, member_init_list);
|
||
else
|
||
CLASSTYPE_BASE_INIT_LIST (type) = base_init_list;
|
||
else if (member_init_list)
|
||
CLASSTYPE_BASE_INIT_LIST (type) = member_init_list;
|
||
}
|
||
|
||
struct base_info
|
||
{
|
||
int has_virtual;
|
||
int max_has_virtual;
|
||
int n_ancestors;
|
||
tree vfield;
|
||
tree vfields;
|
||
char cant_have_default_ctor;
|
||
char cant_have_const_ctor;
|
||
char cant_synth_copy_ctor;
|
||
char cant_synth_asn_ref;
|
||
char no_const_asn_ref;
|
||
char needs_virtual_dtor;
|
||
};
|
||
|
||
/* Record information about type T derived from its base classes.
|
||
Store most of that information in T itself, and place the
|
||
remaining information in the struct BASE_INFO.
|
||
|
||
Propagate basetype offsets throughout the lattice. Note that the
|
||
lattice topped by T is really a pair: it's a DAG that gives the
|
||
structure of the derivation hierarchy, and it's a list of the
|
||
virtual baseclasses that appear anywhere in the DAG. When a vbase
|
||
type appears in the DAG, it's offset is 0, and it's children start
|
||
their offsets from that point. When a vbase type appears in the list,
|
||
its offset is the offset it has in the hierarchy, and its children's
|
||
offsets include that offset in theirs.
|
||
|
||
Returns the index of the first base class to have virtual functions,
|
||
or -1 if no such base class.
|
||
|
||
Note that at this point TYPE_BINFO (t) != t_binfo. */
|
||
|
||
static int
|
||
finish_base_struct (t, b, t_binfo)
|
||
tree t;
|
||
struct base_info *b;
|
||
tree t_binfo;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (t_binfo);
|
||
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
int first_vfn_base_index = -1;
|
||
bzero ((char *) b, sizeof (struct base_info));
|
||
|
||
for (i = 0; i < n_baseclasses; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree basetype = BINFO_TYPE (base_binfo);
|
||
|
||
/* If the type of basetype is incomplete, then
|
||
we already complained about that fact
|
||
(and we should have fixed it up as well). */
|
||
if (TYPE_SIZE (basetype) == 0)
|
||
{
|
||
int j;
|
||
/* The base type is of incomplete type. It is
|
||
probably best to pretend that it does not
|
||
exist. */
|
||
if (i == n_baseclasses-1)
|
||
TREE_VEC_ELT (binfos, i) = NULL_TREE;
|
||
TREE_VEC_LENGTH (binfos) -= 1;
|
||
n_baseclasses -= 1;
|
||
for (j = i; j+1 < n_baseclasses; j++)
|
||
TREE_VEC_ELT (binfos, j) = TREE_VEC_ELT (binfos, j+1);
|
||
}
|
||
|
||
if (TYPE_HAS_INIT_REF (basetype)
|
||
&& !TYPE_HAS_CONST_INIT_REF (basetype))
|
||
b->cant_have_const_ctor = 1;
|
||
if (! TYPE_HAS_INIT_REF (basetype)
|
||
|| (TYPE_HAS_NONPUBLIC_CTOR (basetype) == 2
|
||
&& ! is_friend_type (t, basetype)))
|
||
b->cant_synth_copy_ctor = 1;
|
||
|
||
if (TYPE_HAS_CONSTRUCTOR (basetype)
|
||
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype))
|
||
{
|
||
b->cant_have_default_ctor = 1;
|
||
if (! TYPE_HAS_CONSTRUCTOR (t))
|
||
{
|
||
cp_pedwarn ("base `%T' with only non-default constructor",
|
||
basetype);
|
||
cp_pedwarn ("in class without a constructor");
|
||
}
|
||
}
|
||
|
||
if (TYPE_HAS_ASSIGN_REF (basetype)
|
||
&& !TYPE_HAS_CONST_ASSIGN_REF (basetype))
|
||
b->no_const_asn_ref = 1;
|
||
if (! TYPE_HAS_ASSIGN_REF (basetype)
|
||
|| TYPE_HAS_ABSTRACT_ASSIGN_REF (basetype)
|
||
|| (TYPE_HAS_NONPUBLIC_ASSIGN_REF (basetype) == 2
|
||
&& ! is_friend_type (t, basetype)))
|
||
b->cant_synth_asn_ref = 1;
|
||
|
||
b->n_ancestors += CLASSTYPE_N_SUPERCLASSES (basetype);
|
||
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
|
||
TYPE_NEEDS_DESTRUCTOR (t) |= TYPE_NEEDS_DESTRUCTOR (basetype);
|
||
TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
|
||
TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
|
||
|
||
TYPE_OVERLOADS_CALL_EXPR (t) |= TYPE_OVERLOADS_CALL_EXPR (basetype);
|
||
TYPE_OVERLOADS_ARRAY_REF (t) |= TYPE_OVERLOADS_ARRAY_REF (basetype);
|
||
TYPE_OVERLOADS_ARROW (t) |= TYPE_OVERLOADS_ARROW (basetype);
|
||
|
||
if (! TREE_VIA_VIRTUAL (base_binfo)
|
||
#if 0
|
||
/* This cannot be done, as prepare_fresh_vtable wants to modify
|
||
binfos associated with vfields anywhere in the hierarchy, not
|
||
just immediate base classes. Due to unsharing, the compiler
|
||
might consume 3% more memory on a real program.
|
||
*/
|
||
&& ! BINFO_OFFSET_ZEROP (base_binfo)
|
||
#endif
|
||
&& BINFO_BASETYPES (base_binfo))
|
||
{
|
||
tree base_binfos = BINFO_BASETYPES (base_binfo);
|
||
tree chain = NULL_TREE;
|
||
int j;
|
||
|
||
/* Now unshare the structure beneath BASE_BINFO. */
|
||
for (j = TREE_VEC_LENGTH (base_binfos)-1;
|
||
j >= 0; j--)
|
||
{
|
||
tree base_base_binfo = TREE_VEC_ELT (base_binfos, j);
|
||
if (! TREE_VIA_VIRTUAL (base_base_binfo))
|
||
TREE_VEC_ELT (base_binfos, j)
|
||
= make_binfo (BINFO_OFFSET (base_base_binfo),
|
||
base_base_binfo,
|
||
BINFO_VTABLE (base_base_binfo),
|
||
BINFO_VIRTUALS (base_base_binfo),
|
||
chain);
|
||
chain = TREE_VEC_ELT (base_binfos, j);
|
||
TREE_VIA_PUBLIC (chain) = TREE_VIA_PUBLIC (base_base_binfo);
|
||
TREE_VIA_PROTECTED (chain) = TREE_VIA_PROTECTED (base_base_binfo);
|
||
BINFO_INHERITANCE_CHAIN (chain) = base_binfo;
|
||
}
|
||
|
||
/* Completely unshare potentially shared data, and
|
||
update what is ours. */
|
||
propagate_binfo_offsets (base_binfo, BINFO_OFFSET (base_binfo));
|
||
}
|
||
|
||
if (! TREE_VIA_VIRTUAL (base_binfo))
|
||
CLASSTYPE_N_SUPERCLASSES (t) += 1;
|
||
|
||
if (TYPE_VIRTUAL_P (basetype))
|
||
{
|
||
/* If there's going to be a destructor needed, make
|
||
sure it will be virtual. */
|
||
b->needs_virtual_dtor = 1;
|
||
|
||
/* Don't borrow virtuals from virtual baseclasses. */
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
if (first_vfn_base_index < 0)
|
||
{
|
||
tree vfields;
|
||
first_vfn_base_index = i;
|
||
|
||
/* Update these two, now that we know what vtable we are
|
||
going to extend. This is so that we can add virtual
|
||
functions, and override them properly. */
|
||
BINFO_VTABLE (t_binfo) = TYPE_BINFO_VTABLE (basetype);
|
||
BINFO_VIRTUALS (t_binfo) = TYPE_BINFO_VIRTUALS (basetype);
|
||
b->has_virtual = CLASSTYPE_VSIZE (basetype);
|
||
b->vfield = CLASSTYPE_VFIELD (basetype);
|
||
b->vfields = copy_list (CLASSTYPE_VFIELDS (basetype));
|
||
vfields = b->vfields;
|
||
while (vfields)
|
||
{
|
||
if (VF_BINFO_VALUE (vfields) == NULL_TREE
|
||
|| ! TREE_VIA_VIRTUAL (VF_BINFO_VALUE (vfields)))
|
||
{
|
||
tree value = VF_BASETYPE_VALUE (vfields);
|
||
if (DECL_NAME (CLASSTYPE_VFIELD (value))
|
||
== DECL_NAME (CLASSTYPE_VFIELD (basetype)))
|
||
VF_NORMAL_VALUE (b->vfields) = basetype;
|
||
else
|
||
VF_NORMAL_VALUE (b->vfields) = VF_NORMAL_VALUE (vfields);
|
||
}
|
||
vfields = TREE_CHAIN (vfields);
|
||
}
|
||
CLASSTYPE_VFIELD (t) = b->vfield;
|
||
}
|
||
else
|
||
{
|
||
/* Only add unique vfields, and flatten them out as we go. */
|
||
tree vfields = CLASSTYPE_VFIELDS (basetype);
|
||
while (vfields)
|
||
{
|
||
if (VF_BINFO_VALUE (vfields) == NULL_TREE
|
||
|| ! TREE_VIA_VIRTUAL (VF_BINFO_VALUE (vfields)))
|
||
{
|
||
tree value = VF_BASETYPE_VALUE (vfields);
|
||
b->vfields = tree_cons (base_binfo, value, b->vfields);
|
||
if (DECL_NAME (CLASSTYPE_VFIELD (value))
|
||
== DECL_NAME (CLASSTYPE_VFIELD (basetype)))
|
||
VF_NORMAL_VALUE (b->vfields) = basetype;
|
||
else
|
||
VF_NORMAL_VALUE (b->vfields) = VF_NORMAL_VALUE (vfields);
|
||
}
|
||
vfields = TREE_CHAIN (vfields);
|
||
}
|
||
|
||
if (b->has_virtual == 0)
|
||
{
|
||
first_vfn_base_index = i;
|
||
|
||
/* Update these two, now that we know what vtable we are
|
||
going to extend. This is so that we can add virtual
|
||
functions, and override them properly. */
|
||
BINFO_VTABLE (t_binfo) = TYPE_BINFO_VTABLE (basetype);
|
||
BINFO_VIRTUALS (t_binfo) = TYPE_BINFO_VIRTUALS (basetype);
|
||
b->has_virtual = CLASSTYPE_VSIZE (basetype);
|
||
b->vfield = CLASSTYPE_VFIELD (basetype);
|
||
CLASSTYPE_VFIELD (t) = b->vfield;
|
||
/* When we install the first one, set the VF_NORMAL_VALUE
|
||
to be the current class, as this it is the most derived
|
||
class. Hopefully, this is not set to something else
|
||
later. (mrs) */
|
||
vfields = b->vfields;
|
||
while (vfields)
|
||
{
|
||
if (DECL_NAME (CLASSTYPE_VFIELD (t))
|
||
== DECL_NAME (CLASSTYPE_VFIELD (basetype)))
|
||
{
|
||
VF_NORMAL_VALUE (vfields) = t;
|
||
/* There should only be one of them! And it should
|
||
always be found, if we get into here. (mrs) */
|
||
break;
|
||
}
|
||
vfields = TREE_CHAIN (vfields);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Must come after offsets are fixed for all bases. */
|
||
for (i = 0; i < n_baseclasses; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree basetype = BINFO_TYPE (base_binfo);
|
||
|
||
if (get_base_distance (basetype, t_binfo, 0, (tree*)0) == -2)
|
||
{
|
||
cp_warning ("direct base `%T' inaccessible in `%T' due to ambiguity",
|
||
basetype, t);
|
||
b->cant_synth_asn_ref = 1;
|
||
b->cant_synth_copy_ctor = 1;
|
||
}
|
||
}
|
||
{
|
||
tree v = get_vbase_types (t_binfo);
|
||
|
||
for (; v; v = TREE_CHAIN (v))
|
||
{
|
||
tree basetype = BINFO_TYPE (v);
|
||
if (get_base_distance (basetype, t_binfo, 0, (tree*)0) == -2)
|
||
{
|
||
if (extra_warnings)
|
||
cp_warning ("virtual base `%T' inaccessible in `%T' due to ambiguity",
|
||
basetype, t);
|
||
b->cant_synth_asn_ref = 1;
|
||
b->cant_synth_copy_ctor = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
{
|
||
tree vfields;
|
||
/* Find the base class with the largest number of virtual functions. */
|
||
for (vfields = b->vfields; vfields; vfields = TREE_CHAIN (vfields))
|
||
{
|
||
if (CLASSTYPE_VSIZE (VF_BASETYPE_VALUE (vfields)) > b->max_has_virtual)
|
||
b->max_has_virtual = CLASSTYPE_VSIZE (VF_BASETYPE_VALUE (vfields));
|
||
if (VF_DERIVED_VALUE (vfields)
|
||
&& CLASSTYPE_VSIZE (VF_DERIVED_VALUE (vfields)) > b->max_has_virtual)
|
||
b->max_has_virtual = CLASSTYPE_VSIZE (VF_DERIVED_VALUE (vfields));
|
||
}
|
||
}
|
||
|
||
if (b->vfield == 0)
|
||
/* If all virtual functions come only from virtual baseclasses. */
|
||
return -1;
|
||
return first_vfn_base_index;
|
||
}
|
||
|
||
static int
|
||
typecode_p (type, code)
|
||
tree type;
|
||
enum tree_code code;
|
||
{
|
||
return (TREE_CODE (type) == code
|
||
|| (TREE_CODE (type) == REFERENCE_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == code));
|
||
}
|
||
|
||
/* Set memoizing fields and bits of T (and its variants) for later use.
|
||
MAX_HAS_VIRTUAL is the largest size of any T's virtual function tables. */
|
||
static void
|
||
finish_struct_bits (t, max_has_virtual)
|
||
tree t;
|
||
int max_has_virtual;
|
||
{
|
||
int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
|
||
tree method_vec = CLASSTYPE_METHOD_VEC (t);
|
||
|
||
/* Fix up variants (if any). */
|
||
tree variants = TYPE_NEXT_VARIANT (t);
|
||
while (variants)
|
||
{
|
||
/* These fields are in the _TYPE part of the node, not in
|
||
the TYPE_LANG_SPECIFIC component, so they are not shared. */
|
||
TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
|
||
TYPE_HAS_DESTRUCTOR (variants) = TYPE_HAS_DESTRUCTOR (t);
|
||
TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
|
||
TYPE_NEEDS_DESTRUCTOR (variants) = TYPE_NEEDS_DESTRUCTOR (t);
|
||
|
||
TYPE_USES_COMPLEX_INHERITANCE (variants) = TYPE_USES_COMPLEX_INHERITANCE (t);
|
||
TYPE_VIRTUAL_P (variants) = TYPE_VIRTUAL_P (t);
|
||
TYPE_USES_VIRTUAL_BASECLASSES (variants) = TYPE_USES_VIRTUAL_BASECLASSES (t);
|
||
/* Copy whatever these are holding today. */
|
||
TYPE_MIN_VALUE (variants) = TYPE_MIN_VALUE (t);
|
||
TYPE_MAX_VALUE (variants) = TYPE_MAX_VALUE (t);
|
||
variants = TYPE_NEXT_VARIANT (variants);
|
||
}
|
||
|
||
if (n_baseclasses && max_has_virtual)
|
||
{
|
||
/* Done by `finish_struct' for classes without baseclasses. */
|
||
int might_have_abstract_virtuals = CLASSTYPE_ABSTRACT_VIRTUALS (t) != 0;
|
||
tree binfos = TYPE_BINFO_BASETYPES (t);
|
||
for (i = n_baseclasses-1; i >= 0; i--)
|
||
{
|
||
might_have_abstract_virtuals
|
||
|= (CLASSTYPE_ABSTRACT_VIRTUALS (BINFO_TYPE (TREE_VEC_ELT (binfos, i))) != 0);
|
||
if (might_have_abstract_virtuals)
|
||
break;
|
||
}
|
||
if (might_have_abstract_virtuals)
|
||
{
|
||
/* We use error_mark_node from override_one_vtable to signal
|
||
an artificial abstract. */
|
||
if (CLASSTYPE_ABSTRACT_VIRTUALS (t) == error_mark_node)
|
||
CLASSTYPE_ABSTRACT_VIRTUALS (t) = NULL_TREE;
|
||
CLASSTYPE_ABSTRACT_VIRTUALS (t) = get_abstract_virtuals (t);
|
||
}
|
||
}
|
||
|
||
if (n_baseclasses)
|
||
{
|
||
/* Notice whether this class has type conversion functions defined. */
|
||
tree binfo = TYPE_BINFO (t);
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
tree basetype;
|
||
|
||
for (i = n_baseclasses-1; i >= 0; i--)
|
||
{
|
||
basetype = BINFO_TYPE (TREE_VEC_ELT (binfos, i));
|
||
|
||
if (TYPE_HAS_CONVERSION (basetype))
|
||
{
|
||
TYPE_HAS_CONVERSION (t) = 1;
|
||
TYPE_HAS_INT_CONVERSION (t) |= TYPE_HAS_INT_CONVERSION (basetype);
|
||
TYPE_HAS_REAL_CONVERSION (t) |= TYPE_HAS_REAL_CONVERSION (basetype);
|
||
}
|
||
if (CLASSTYPE_MAX_DEPTH (basetype) >= CLASSTYPE_MAX_DEPTH (t))
|
||
CLASSTYPE_MAX_DEPTH (t) = CLASSTYPE_MAX_DEPTH (basetype) + 1;
|
||
}
|
||
}
|
||
|
||
/* If this type has a copy constructor, force its mode to be BLKmode, and
|
||
force its TREE_ADDRESSABLE bit to be nonzero. This will cause it to
|
||
be passed by invisible reference and prevent it from being returned in
|
||
a register. */
|
||
if (! TYPE_HAS_TRIVIAL_INIT_REF (t))
|
||
{
|
||
tree variants;
|
||
if (TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
|
||
DECL_MODE (TYPE_NAME (t)) = BLKmode;
|
||
for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
|
||
{
|
||
TYPE_MODE (variants) = BLKmode;
|
||
TREE_ADDRESSABLE (variants) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add FN to the method_vec growing on the class_obstack. Used by
|
||
finish_struct_methods. */
|
||
static void
|
||
grow_method (fn, method_vec_ptr)
|
||
tree fn;
|
||
tree *method_vec_ptr;
|
||
{
|
||
tree method_vec = (tree)obstack_base (&class_obstack);
|
||
tree *testp = &TREE_VEC_ELT (method_vec, 0);
|
||
if (*testp == NULL_TREE)
|
||
testp++;
|
||
while (((HOST_WIDE_INT) testp
|
||
< (HOST_WIDE_INT) obstack_next_free (&class_obstack))
|
||
&& DECL_NAME (*testp) != DECL_NAME (fn))
|
||
testp++;
|
||
if ((HOST_WIDE_INT) testp
|
||
< (HOST_WIDE_INT) obstack_next_free (&class_obstack))
|
||
{
|
||
tree x, prev_x;
|
||
|
||
for (x = *testp; x; x = DECL_CHAIN (x))
|
||
{
|
||
if (DECL_NAME (fn) == ansi_opname[(int) DELETE_EXPR]
|
||
|| DECL_NAME (fn) == ansi_opname[(int) VEC_DELETE_EXPR])
|
||
{
|
||
/* ANSI C++ June 5 1992 WP 12.5.5.1 */
|
||
cp_error_at ("`%D' overloaded", fn);
|
||
cp_error_at ("previous declaration as `%D' here", x);
|
||
}
|
||
if (DECL_ASSEMBLER_NAME (fn)==DECL_ASSEMBLER_NAME (x))
|
||
{
|
||
/* We complain about multiple destructors on sight,
|
||
so we do not repeat the warning here. Friend-friend
|
||
ambiguities are warned about outside this loop. */
|
||
if (!DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (fn)))
|
||
cp_error_at ("ambiguous method `%#D' in structure", fn);
|
||
break;
|
||
}
|
||
prev_x = x;
|
||
}
|
||
if (x == 0)
|
||
{
|
||
if (*testp)
|
||
DECL_CHAIN (prev_x) = fn;
|
||
else
|
||
*testp = fn;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
obstack_ptr_grow (&class_obstack, fn);
|
||
*method_vec_ptr = (tree)obstack_base (&class_obstack);
|
||
}
|
||
}
|
||
|
||
/* Warn about duplicate methods in fn_fields. Also compact method
|
||
lists so that lookup can be made faster.
|
||
|
||
Algorithm: Outer loop builds lists by method name. Inner loop
|
||
checks for redundant method names within a list.
|
||
|
||
Data Structure: List of method lists. The outer list is a
|
||
TREE_LIST, whose TREE_PURPOSE field is the field name and the
|
||
TREE_VALUE is the DECL_CHAIN of the FUNCTION_DECLs. TREE_CHAIN
|
||
links the entire list of methods for TYPE_METHODS. Friends are
|
||
chained in the same way as member functions (? TREE_CHAIN or
|
||
DECL_CHAIN), but they live in the TREE_TYPE field of the outer
|
||
list. That allows them to be quickly deleted, and requires no
|
||
extra storage.
|
||
|
||
If there are any constructors/destructors, they are moved to the
|
||
front of the list. This makes pushclass more efficient.
|
||
|
||
We also link each field which has shares a name with its baseclass
|
||
to the head of the list of fields for that base class. This allows
|
||
us to reduce search time in places like `build_method_call' to
|
||
consider only reasonably likely functions. */
|
||
|
||
static tree
|
||
finish_struct_methods (t, fn_fields, nonprivate_method)
|
||
tree t;
|
||
tree fn_fields;
|
||
int nonprivate_method;
|
||
{
|
||
tree method_vec;
|
||
tree save_fn_fields = tree_cons (NULL_TREE, NULL_TREE, fn_fields);
|
||
tree lastp;
|
||
tree name = constructor_name (t);
|
||
int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
|
||
|
||
/* Now prepare to gather fn_fields into vector. */
|
||
struct obstack *ambient_obstack = current_obstack;
|
||
current_obstack = &class_obstack;
|
||
method_vec = make_node (TREE_VEC);
|
||
/* Room has been saved for constructors and destructors. */
|
||
current_obstack = ambient_obstack;
|
||
/* Now make this a live vector. */
|
||
obstack_free (&class_obstack, method_vec);
|
||
obstack_blank (&class_obstack, sizeof (struct tree_vec));
|
||
|
||
/* First fill in entry 0 with the constructors, and the next few with
|
||
type conversion operators (if any). */
|
||
|
||
for (lastp = save_fn_fields; fn_fields; fn_fields = TREE_CHAIN (lastp))
|
||
{
|
||
tree fn_name = DECL_NAME (fn_fields);
|
||
if (fn_name == NULL_TREE)
|
||
fn_name = name;
|
||
|
||
/* Clear out this flag.
|
||
|
||
@@ Doug may figure out how to break
|
||
@@ this with nested classes and friends. */
|
||
DECL_IN_AGGR_P (fn_fields) = 0;
|
||
|
||
/* Note here that a copy ctor is private, so we don't dare generate
|
||
a default copy constructor for a class that has a member
|
||
of this type without making sure they have access to it. */
|
||
if (fn_name == name)
|
||
{
|
||
tree parmtypes = FUNCTION_ARG_CHAIN (fn_fields);
|
||
tree parmtype = parmtypes ? TREE_VALUE (parmtypes) : void_type_node;
|
||
|
||
if (TREE_CODE (parmtype) == REFERENCE_TYPE
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (parmtype)) == t)
|
||
{
|
||
if (TREE_CHAIN (parmtypes) == NULL_TREE
|
||
|| TREE_CHAIN (parmtypes) == void_list_node
|
||
|| TREE_PURPOSE (TREE_CHAIN (parmtypes)))
|
||
{
|
||
if (TREE_PROTECTED (fn_fields))
|
||
TYPE_HAS_NONPUBLIC_CTOR (t) = 1;
|
||
else if (TREE_PRIVATE (fn_fields))
|
||
TYPE_HAS_NONPUBLIC_CTOR (t) = 2;
|
||
}
|
||
}
|
||
/* Constructors are handled easily in search routines. */
|
||
DECL_CHAIN (fn_fields) = TREE_VEC_ELT (method_vec, 0);
|
||
TREE_VEC_ELT (method_vec, 0) = fn_fields;
|
||
}
|
||
else if (IDENTIFIER_TYPENAME_P (fn_name))
|
||
{
|
||
tree return_type = TREE_TYPE (TREE_TYPE (fn_fields));
|
||
|
||
if (typecode_p (return_type, INTEGER_TYPE)
|
||
|| typecode_p (return_type, BOOLEAN_TYPE)
|
||
|| typecode_p (return_type, ENUMERAL_TYPE))
|
||
TYPE_HAS_INT_CONVERSION (t) = 1;
|
||
else if (typecode_p (return_type, REAL_TYPE))
|
||
TYPE_HAS_REAL_CONVERSION (t) = 1;
|
||
|
||
grow_method (fn_fields, &method_vec);
|
||
}
|
||
else
|
||
{
|
||
lastp = fn_fields;
|
||
continue;
|
||
}
|
||
|
||
TREE_CHAIN (lastp) = TREE_CHAIN (fn_fields);
|
||
TREE_CHAIN (fn_fields) = NULL_TREE;
|
||
}
|
||
|
||
fn_fields = TREE_CHAIN (save_fn_fields);
|
||
while (fn_fields)
|
||
{
|
||
tree nextp;
|
||
tree fn_name = DECL_NAME (fn_fields);
|
||
if (fn_name == NULL_TREE)
|
||
fn_name = name;
|
||
|
||
nextp = TREE_CHAIN (fn_fields);
|
||
TREE_CHAIN (fn_fields) = NULL_TREE;
|
||
|
||
if (fn_name == ansi_opname[(int) MODIFY_EXPR])
|
||
{
|
||
tree parmtype = TREE_VALUE (FUNCTION_ARG_CHAIN (fn_fields));
|
||
|
||
if (copy_assignment_arg_p (parmtype, DECL_VIRTUAL_P (fn_fields)))
|
||
{
|
||
if (TREE_PROTECTED (fn_fields))
|
||
TYPE_HAS_NONPUBLIC_ASSIGN_REF (t) = 1;
|
||
else if (TREE_PRIVATE (fn_fields))
|
||
TYPE_HAS_NONPUBLIC_ASSIGN_REF (t) = 2;
|
||
}
|
||
}
|
||
|
||
grow_method (fn_fields, &method_vec);
|
||
fn_fields = nextp;
|
||
}
|
||
|
||
TREE_VEC_LENGTH (method_vec) = (tree *)obstack_next_free (&class_obstack)
|
||
- (&TREE_VEC_ELT (method_vec, 0));
|
||
obstack_finish (&class_obstack);
|
||
CLASSTYPE_METHOD_VEC (t) = method_vec;
|
||
|
||
if (nonprivate_method == 0
|
||
&& CLASSTYPE_FRIEND_CLASSES (t) == NULL_TREE
|
||
&& DECL_FRIENDLIST (TYPE_NAME (t)) == NULL_TREE)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (t));
|
||
for (i = 0; i < n_baseclasses; i++)
|
||
if (TREE_VIA_PUBLIC (TREE_VEC_ELT (binfos, i))
|
||
|| TREE_VIA_PROTECTED (TREE_VEC_ELT (binfos, i)))
|
||
{
|
||
nonprivate_method = 1;
|
||
break;
|
||
}
|
||
if (nonprivate_method == 0)
|
||
cp_warning ("all member functions in class `%T' are private", t);
|
||
}
|
||
|
||
/* If there are constructors (and destructors), they are at the
|
||
front. Place destructors at very front. Also warn if all
|
||
constructors and/or destructors are private (in which case this
|
||
class is effectively unusable. */
|
||
if (TYPE_HAS_DESTRUCTOR (t))
|
||
{
|
||
tree dtor, prev;
|
||
|
||
for (dtor = TREE_VEC_ELT (method_vec, 0);
|
||
dtor;
|
||
prev = dtor, dtor = DECL_CHAIN (dtor))
|
||
{
|
||
if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (dtor)))
|
||
{
|
||
if (TREE_PRIVATE (dtor)
|
||
&& CLASSTYPE_FRIEND_CLASSES (t) == NULL_TREE
|
||
&& DECL_FRIENDLIST (TYPE_NAME (t)) == NULL_TREE
|
||
&& warn_ctor_dtor_privacy)
|
||
cp_warning ("`%#T' only defines a private destructor and has no friends",
|
||
t);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Wild parse errors can cause this to happen. */
|
||
if (dtor == NULL_TREE)
|
||
TYPE_HAS_DESTRUCTOR (t) = 0;
|
||
else if (dtor != TREE_VEC_ELT (method_vec, 0))
|
||
{
|
||
DECL_CHAIN (prev) = DECL_CHAIN (dtor);
|
||
DECL_CHAIN (dtor) = TREE_VEC_ELT (method_vec, 0);
|
||
TREE_VEC_ELT (method_vec, 0) = dtor;
|
||
}
|
||
}
|
||
|
||
/* Now for each member function (except for constructors and
|
||
destructors), compute where member functions of the same
|
||
name reside in base classes. */
|
||
if (n_baseclasses != 0
|
||
&& TREE_VEC_LENGTH (method_vec) > 1)
|
||
{
|
||
int len = TREE_VEC_LENGTH (method_vec);
|
||
tree baselink_vec = make_tree_vec (len);
|
||
int any_links = 0;
|
||
tree baselink_binfo = build_tree_list (NULL_TREE, TYPE_BINFO (t));
|
||
|
||
for (i = 1; i < len; i++)
|
||
{
|
||
TREE_VEC_ELT (baselink_vec, i)
|
||
= get_baselinks (baselink_binfo, t, DECL_NAME (TREE_VEC_ELT (method_vec, i)));
|
||
if (TREE_VEC_ELT (baselink_vec, i) != 0)
|
||
any_links = 1;
|
||
}
|
||
if (any_links != 0)
|
||
CLASSTYPE_BASELINK_VEC (t) = baselink_vec;
|
||
else
|
||
obstack_free (current_obstack, baselink_vec);
|
||
}
|
||
|
||
/* Now add the methods to the TYPE_METHODS of T, arranged in a chain. */
|
||
{
|
||
tree x, last_x = NULL_TREE;
|
||
int limit = TREE_VEC_LENGTH (method_vec);
|
||
|
||
for (i = 1; i < limit; i++)
|
||
{
|
||
for (x = TREE_VEC_ELT (method_vec, i); x; x = DECL_CHAIN (x))
|
||
{
|
||
if (last_x != NULL_TREE)
|
||
TREE_CHAIN (last_x) = x;
|
||
last_x = x;
|
||
}
|
||
}
|
||
|
||
/* Put ctors and dtors at the front of the list. */
|
||
x = TREE_VEC_ELT (method_vec, 0);
|
||
if (x)
|
||
{
|
||
while (DECL_CHAIN (x))
|
||
{
|
||
/* Let's avoid being circular about this. */
|
||
if (x == DECL_CHAIN (x))
|
||
break;
|
||
TREE_CHAIN (x) = DECL_CHAIN (x);
|
||
x = DECL_CHAIN (x);
|
||
}
|
||
if (TREE_VEC_LENGTH (method_vec) > 1)
|
||
TREE_CHAIN (x) = TREE_VEC_ELT (method_vec, 1);
|
||
else
|
||
TREE_CHAIN (x) = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
TYPE_METHODS (t) = method_vec;
|
||
|
||
return method_vec;
|
||
}
|
||
|
||
/* Emit error when a duplicate definition of a type is seen. Patch up. */
|
||
|
||
void
|
||
duplicate_tag_error (t)
|
||
tree t;
|
||
{
|
||
cp_error ("redefinition of `%#T'", t);
|
||
cp_error_at ("previous definition here", t);
|
||
|
||
/* Pretend we haven't defined this type. */
|
||
|
||
/* All of the component_decl's were TREE_CHAINed together in the parser.
|
||
finish_struct_methods walks these chains and assembles all methods with
|
||
the same base name into DECL_CHAINs. Now we don't need the parser chains
|
||
anymore, so we unravel them.
|
||
*/
|
||
/*
|
||
* This used to be in finish_struct, but it turns out that the
|
||
* TREE_CHAIN is used by dbxout_type_methods and perhaps some other things...
|
||
*/
|
||
if (CLASSTYPE_METHOD_VEC(t))
|
||
{
|
||
tree tv = CLASSTYPE_METHOD_VEC(t);
|
||
int i, len = TREE_VEC_LENGTH (tv);
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
tree unchain = TREE_VEC_ELT (tv, i);
|
||
while (unchain != NULL_TREE)
|
||
{
|
||
TREE_CHAIN (unchain) = NULL_TREE;
|
||
unchain = DECL_CHAIN(unchain);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TYPE_LANG_SPECIFIC (t))
|
||
{
|
||
tree as_list = CLASSTYPE_AS_LIST (t);
|
||
tree binfo = TYPE_BINFO (t);
|
||
tree binfo_as_list = CLASSTYPE_BINFO_AS_LIST (t);
|
||
int interface_only = CLASSTYPE_INTERFACE_ONLY (t);
|
||
int interface_unknown = CLASSTYPE_INTERFACE_UNKNOWN (t);
|
||
|
||
bzero ((char *) TYPE_LANG_SPECIFIC (t), sizeof (struct lang_type));
|
||
BINFO_BASETYPES(binfo) = NULL_TREE;
|
||
|
||
CLASSTYPE_AS_LIST (t) = as_list;
|
||
TYPE_BINFO (t) = binfo;
|
||
CLASSTYPE_BINFO_AS_LIST (t) = binfo_as_list;
|
||
CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
|
||
SET_CLASSTYPE_INTERFACE_UNKNOWN_X (t, interface_unknown);
|
||
CLASSTYPE_VBASE_SIZE (t) = integer_zero_node;
|
||
TYPE_REDEFINED (t) = 1;
|
||
}
|
||
TYPE_SIZE (t) = NULL_TREE;
|
||
TYPE_MODE (t) = VOIDmode;
|
||
TYPE_FIELDS (t) = NULL_TREE;
|
||
TYPE_METHODS (t) = NULL_TREE;
|
||
TYPE_VFIELD (t) = NULL_TREE;
|
||
TYPE_CONTEXT (t) = NULL_TREE;
|
||
}
|
||
|
||
/* finish up all new vtables. */
|
||
static void
|
||
finish_vtbls (binfo, do_self, t)
|
||
tree binfo, t;
|
||
int do_self;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (do_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
|
||
{
|
||
if (BINFO_NEW_VTABLE_MARKED (binfo))
|
||
{
|
||
tree decl, context;
|
||
|
||
decl = BINFO_VTABLE (binfo);
|
||
context = DECL_CONTEXT (decl);
|
||
DECL_CONTEXT (decl) = 0;
|
||
if (write_virtuals >= 0
|
||
&& DECL_INITIAL (decl) != BINFO_VIRTUALS (binfo))
|
||
DECL_INITIAL (decl) = build_nt (CONSTRUCTOR, NULL_TREE,
|
||
BINFO_VIRTUALS (binfo));
|
||
cp_finish_decl (decl, DECL_INITIAL (decl), NULL_TREE, 0, 0);
|
||
DECL_CONTEXT (decl) = context;
|
||
}
|
||
CLEAR_BINFO_NEW_VTABLE_MARKED (binfo);
|
||
}
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo));
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
{
|
||
base_binfo = binfo_member (BINFO_TYPE (base_binfo), CLASSTYPE_VBASECLASSES (t));
|
||
}
|
||
finish_vtbls (base_binfo, is_not_base_vtable, t);
|
||
}
|
||
}
|
||
|
||
/* True if we should override the given BASE_FNDECL with the given
|
||
FNDECL. */
|
||
static int
|
||
overrides (fndecl, base_fndecl)
|
||
tree fndecl, base_fndecl;
|
||
{
|
||
/* Destructors have special names. */
|
||
if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (base_fndecl)) &&
|
||
DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (fndecl)))
|
||
return 1;
|
||
if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (base_fndecl)) ||
|
||
DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (fndecl)))
|
||
return 0;
|
||
if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl))
|
||
{
|
||
tree rettype, base_rettype, types, base_types;
|
||
#if 0
|
||
retypes = TREE_TYPE (TREE_TYPE (fndecl));
|
||
base_retypes = TREE_TYPE (TREE_TYPE (base_fndecl));
|
||
#endif
|
||
types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
||
base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
|
||
if ((TYPE_READONLY (TREE_TYPE (TREE_VALUE (base_types)))
|
||
== TYPE_READONLY (TREE_TYPE (TREE_VALUE (types))))
|
||
&& compparms (TREE_CHAIN (base_types), TREE_CHAIN (types), 3))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static tree
|
||
get_class_offset_1 (parent, binfo, context, t, fndecl)
|
||
tree parent, binfo, context, t, fndecl;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
tree rval = NULL_TREE;
|
||
|
||
if (binfo == parent)
|
||
return error_mark_node;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree nrval;
|
||
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
base_binfo = binfo_member (BINFO_TYPE (base_binfo),
|
||
CLASSTYPE_VBASECLASSES (t));
|
||
nrval = get_class_offset_1 (parent, base_binfo, context, t, fndecl);
|
||
/* See if we have a new value */
|
||
if (nrval && (nrval != error_mark_node || rval==0))
|
||
{
|
||
/* Only compare if we have two offsets */
|
||
if (rval && rval != error_mark_node
|
||
&& ! tree_int_cst_equal (nrval, rval))
|
||
{
|
||
/* Only give error if the two offsets are different */
|
||
error ("every virtual function must have a unique final overrider");
|
||
cp_error (" found two (or more) `%T' class subobjects in `%T'", context, t);
|
||
cp_error (" with virtual `%D' from virtual base class", fndecl);
|
||
return rval;
|
||
}
|
||
rval = nrval;
|
||
}
|
||
|
||
if (rval && BINFO_TYPE (binfo) == context)
|
||
{
|
||
my_friendly_assert (rval == error_mark_node
|
||
|| tree_int_cst_equal (rval, BINFO_OFFSET (binfo)), 999);
|
||
rval = BINFO_OFFSET (binfo);
|
||
}
|
||
}
|
||
return rval;
|
||
}
|
||
|
||
/* Get the offset to the CONTEXT subobject that is related to the
|
||
given BINFO. */
|
||
static tree
|
||
get_class_offset (context, t, binfo, fndecl)
|
||
tree context, t, binfo, fndecl;
|
||
{
|
||
tree first_binfo = binfo;
|
||
tree offset;
|
||
int i;
|
||
|
||
if (context == t)
|
||
return integer_zero_node;
|
||
|
||
if (BINFO_TYPE (binfo) == context)
|
||
return BINFO_OFFSET (binfo);
|
||
|
||
/* Check less derived binfos first. */
|
||
while (BINFO_BASETYPES (binfo)
|
||
&& (i=CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo))) != -1)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
binfo = TREE_VEC_ELT (binfos, i);
|
||
if (BINFO_TYPE (binfo) == context)
|
||
return BINFO_OFFSET (binfo);
|
||
}
|
||
|
||
/* Ok, not found in the less derived binfos, now check the more
|
||
derived binfos. */
|
||
offset = get_class_offset_1 (first_binfo, TYPE_BINFO (t), context, t, fndecl);
|
||
if (offset==0 || TREE_CODE (offset) != INTEGER_CST)
|
||
my_friendly_abort (999); /* we have to find it. */
|
||
return offset;
|
||
}
|
||
|
||
/* Skip RTTI information at the front of the virtual list. */
|
||
unsigned HOST_WIDE_INT
|
||
skip_rtti_stuff (virtuals)
|
||
tree *virtuals;
|
||
{
|
||
int n;
|
||
|
||
n = 0;
|
||
if (*virtuals)
|
||
{
|
||
/* We always reserve a slot for the offset/tdesc entry. */
|
||
++n;
|
||
*virtuals = TREE_CHAIN (*virtuals);
|
||
}
|
||
if (flag_vtable_thunks && *virtuals)
|
||
{
|
||
/* The second slot is reserved for the tdesc pointer when thunks
|
||
are used. */
|
||
++n;
|
||
*virtuals = TREE_CHAIN (*virtuals);
|
||
}
|
||
return n;
|
||
}
|
||
|
||
static void
|
||
modify_one_vtable (binfo, t, fndecl, pfn)
|
||
tree binfo, t, fndecl, pfn;
|
||
{
|
||
tree virtuals = BINFO_VIRTUALS (binfo);
|
||
tree old_rtti;
|
||
unsigned HOST_WIDE_INT n;
|
||
|
||
/* update rtti entry */
|
||
if (flag_rtti)
|
||
{
|
||
if (binfo == TYPE_BINFO (t))
|
||
{
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
build_vtable (TYPE_BINFO (DECL_CONTEXT (CLASSTYPE_VFIELD (t))), t);
|
||
}
|
||
else
|
||
{
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
prepare_fresh_vtable (binfo, t);
|
||
}
|
||
}
|
||
if (fndecl == NULL_TREE)
|
||
return;
|
||
|
||
n = skip_rtti_stuff (&virtuals);
|
||
|
||
while (virtuals)
|
||
{
|
||
tree current_fndecl = TREE_VALUE (virtuals);
|
||
current_fndecl = FNADDR_FROM_VTABLE_ENTRY (current_fndecl);
|
||
current_fndecl = TREE_OPERAND (current_fndecl, 0);
|
||
if (current_fndecl && overrides (fndecl, current_fndecl))
|
||
{
|
||
tree base_offset, offset;
|
||
tree context = DECL_CLASS_CONTEXT (fndecl);
|
||
tree vfield = CLASSTYPE_VFIELD (t);
|
||
tree this_offset;
|
||
|
||
offset = get_class_offset (context, t, binfo, fndecl);
|
||
|
||
/* Find the right offset for the this pointer based on the
|
||
base class we just found. We have to take into
|
||
consideration the virtual base class pointers that we
|
||
stick in before the virtual function table pointer.
|
||
|
||
Also, we want just the delta between the most base class
|
||
that we derived this vfield from and us. */
|
||
base_offset = size_binop (PLUS_EXPR,
|
||
get_derived_offset (binfo, DECL_CONTEXT (current_fndecl)),
|
||
BINFO_OFFSET (binfo));
|
||
this_offset = size_binop (MINUS_EXPR, offset, base_offset);
|
||
|
||
/* Make sure we can modify the derived association with immunity. */
|
||
if (TREE_USED (binfo))
|
||
my_friendly_assert (0, 999);
|
||
|
||
if (binfo == TYPE_BINFO (t))
|
||
{
|
||
/* In this case, it is *type*'s vtable we are modifying.
|
||
We start with the approximation that it's vtable is that
|
||
of the immediate base class. */
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
build_vtable (TYPE_BINFO (DECL_CONTEXT (vfield)), t);
|
||
}
|
||
else
|
||
{
|
||
/* This is our very own copy of `basetype' to play with.
|
||
Later, we will fill in all the virtual functions
|
||
that override the virtual functions in these base classes
|
||
which are not defined by the current type. */
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
prepare_fresh_vtable (binfo, t);
|
||
}
|
||
|
||
#ifdef NOTQUITE
|
||
cp_warning ("in %D", DECL_NAME (BINFO_VTABLE (binfo)));
|
||
#endif
|
||
modify_vtable_entry (get_vtable_entry_n (BINFO_VIRTUALS (binfo), n),
|
||
build_vtable_entry (this_offset, pfn),
|
||
fndecl);
|
||
}
|
||
++n;
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
}
|
||
|
||
/* These are the ones that are not through virtual base classes. */
|
||
static void
|
||
modify_all_direct_vtables (binfo, do_self, t, fndecl, pfn)
|
||
tree binfo, t, fndecl, pfn;
|
||
int do_self;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (do_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
|
||
{
|
||
modify_one_vtable (binfo, t, fndecl, pfn);
|
||
}
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo));
|
||
if (! TREE_VIA_VIRTUAL (base_binfo))
|
||
modify_all_direct_vtables (base_binfo, is_not_base_vtable, t, fndecl, pfn);
|
||
}
|
||
}
|
||
|
||
/* Fixup all the delta entries in this one vtable that need updating. */
|
||
static void
|
||
fixup_vtable_deltas1 (binfo, t)
|
||
tree binfo, t;
|
||
{
|
||
tree virtuals = BINFO_VIRTUALS (binfo);
|
||
unsigned HOST_WIDE_INT n;
|
||
|
||
n = skip_rtti_stuff (&virtuals);
|
||
|
||
while (virtuals)
|
||
{
|
||
tree fndecl = TREE_VALUE (virtuals);
|
||
tree pfn = FNADDR_FROM_VTABLE_ENTRY (fndecl);
|
||
tree delta = DELTA_FROM_VTABLE_ENTRY (fndecl);
|
||
fndecl = TREE_OPERAND (pfn, 0);
|
||
if (fndecl)
|
||
{
|
||
tree base_offset, offset;
|
||
tree context = DECL_CLASS_CONTEXT (fndecl);
|
||
tree vfield = CLASSTYPE_VFIELD (t);
|
||
tree this_offset;
|
||
|
||
offset = get_class_offset (context, t, binfo, fndecl);
|
||
|
||
/* Find the right offset for the this pointer based on the
|
||
base class we just found. We have to take into
|
||
consideration the virtual base class pointers that we
|
||
stick in before the virtual function table pointer.
|
||
|
||
Also, we want just the delta between the most base class
|
||
that we derived this vfield from and us. */
|
||
base_offset = size_binop (PLUS_EXPR,
|
||
get_derived_offset (binfo, DECL_CONTEXT (fndecl)),
|
||
BINFO_OFFSET (binfo));
|
||
this_offset = size_binop (MINUS_EXPR, offset, base_offset);
|
||
|
||
if (! tree_int_cst_equal (this_offset, delta))
|
||
{
|
||
/* Make sure we can modify the derived association with immunity. */
|
||
if (TREE_USED (binfo))
|
||
my_friendly_assert (0, 999);
|
||
|
||
if (binfo == TYPE_BINFO (t))
|
||
{
|
||
/* In this case, it is *type*'s vtable we are modifying.
|
||
We start with the approximation that it's vtable is that
|
||
of the immediate base class. */
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
build_vtable (TYPE_BINFO (DECL_CONTEXT (vfield)), t);
|
||
}
|
||
else
|
||
{
|
||
/* This is our very own copy of `basetype' to play with.
|
||
Later, we will fill in all the virtual functions
|
||
that override the virtual functions in these base classes
|
||
which are not defined by the current type. */
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
prepare_fresh_vtable (binfo, t);
|
||
}
|
||
|
||
modify_vtable_entry (get_vtable_entry_n (BINFO_VIRTUALS (binfo), n),
|
||
build_vtable_entry (this_offset, pfn),
|
||
fndecl);
|
||
}
|
||
}
|
||
++n;
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
}
|
||
|
||
/* Fixup all the delta entries in all the direct vtables that need updating.
|
||
This happens when we have non-overridden virtual functions from a
|
||
virtual base class, that are at a different offset, in the new
|
||
hierarchy, because the layout of the virtual bases has changed. */
|
||
static void
|
||
fixup_vtable_deltas (binfo, init_self, t)
|
||
tree binfo, t;
|
||
int init_self;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo));
|
||
if (! TREE_VIA_VIRTUAL (base_binfo))
|
||
fixup_vtable_deltas (base_binfo, is_not_base_vtable, t);
|
||
}
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (init_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
|
||
{
|
||
fixup_vtable_deltas1 (binfo, t);
|
||
}
|
||
}
|
||
|
||
/* These are the ones that are through virtual base classes. */
|
||
static void
|
||
modify_all_indirect_vtables (binfo, do_self, via_virtual, t, fndecl, pfn)
|
||
tree binfo, t, fndecl, pfn;
|
||
int do_self, via_virtual;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (do_self && via_virtual && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
|
||
{
|
||
modify_one_vtable (binfo, t, fndecl, pfn);
|
||
}
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo));
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
{
|
||
via_virtual = 1;
|
||
base_binfo = binfo_member (BINFO_TYPE (base_binfo), CLASSTYPE_VBASECLASSES (t));
|
||
}
|
||
modify_all_indirect_vtables (base_binfo, is_not_base_vtable, via_virtual, t, fndecl, pfn);
|
||
}
|
||
}
|
||
|
||
static void
|
||
modify_all_vtables (t, fndecl, vfn)
|
||
tree t, fndecl, vfn;
|
||
{
|
||
/* Do these first, so that we will make use of any non-virtual class's
|
||
vtable, over a virtual classes vtable. */
|
||
modify_all_direct_vtables (TYPE_BINFO (t), 1, t, fndecl, vfn);
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (t))
|
||
modify_all_indirect_vtables (TYPE_BINFO (t), 1, 0, t, fndecl, vfn);
|
||
}
|
||
|
||
/* Here, we already know that they match in every respect.
|
||
All we have to check is where they had their declarations. */
|
||
static int
|
||
strictly_overrides (fndecl1, fndecl2)
|
||
tree fndecl1, fndecl2;
|
||
{
|
||
int distance = get_base_distance (DECL_CLASS_CONTEXT (fndecl2),
|
||
DECL_CLASS_CONTEXT (fndecl1),
|
||
0, (tree *)0);
|
||
if (distance == -2 || distance > 0)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Merge overrides for one vtable.
|
||
If we want to merge in same function, we are fine.
|
||
else
|
||
if one has a DECL_CLASS_CONTEXT that is a parent of the
|
||
other, than choose the more derived one
|
||
else
|
||
potentially ill-formed (see 10.3 [class.virtual])
|
||
we have to check later to see if there was an
|
||
override in this class. If there was ok, if not
|
||
then it is ill-formed. (mrs)
|
||
|
||
We take special care to reuse a vtable, if we can. */
|
||
static void
|
||
override_one_vtable (binfo, old, t)
|
||
tree binfo, old, t;
|
||
{
|
||
tree virtuals = BINFO_VIRTUALS (binfo);
|
||
tree old_virtuals = BINFO_VIRTUALS (old);
|
||
enum { REUSE_NEW, REUSE_OLD, UNDECIDED, NEITHER } choose = UNDECIDED;
|
||
|
||
/* If we have already committed to modifying it, then don't try and
|
||
reuse another vtable. */
|
||
if (BINFO_NEW_VTABLE_MARKED (binfo))
|
||
choose = NEITHER;
|
||
|
||
skip_rtti_stuff (&virtuals);
|
||
skip_rtti_stuff (&old_virtuals);
|
||
|
||
while (virtuals)
|
||
{
|
||
tree fndecl = TREE_VALUE (virtuals);
|
||
tree old_fndecl = TREE_VALUE (old_virtuals);
|
||
fndecl = FNADDR_FROM_VTABLE_ENTRY (fndecl);
|
||
old_fndecl = FNADDR_FROM_VTABLE_ENTRY (old_fndecl);
|
||
fndecl = TREE_OPERAND (fndecl, 0);
|
||
old_fndecl = TREE_OPERAND (old_fndecl, 0);
|
||
/* First check to see if they are the same. */
|
||
if (DECL_ASSEMBLER_NAME (fndecl) == DECL_ASSEMBLER_NAME (old_fndecl))
|
||
{
|
||
/* No need to do anything. */
|
||
}
|
||
else if (strictly_overrides (fndecl, old_fndecl))
|
||
{
|
||
if (choose == UNDECIDED)
|
||
choose = REUSE_NEW;
|
||
else if (choose == REUSE_OLD)
|
||
{
|
||
choose = NEITHER;
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
{
|
||
prepare_fresh_vtable (binfo, t);
|
||
override_one_vtable (binfo, old, t);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else if (strictly_overrides (old_fndecl, fndecl))
|
||
{
|
||
if (choose == UNDECIDED)
|
||
choose = REUSE_OLD;
|
||
else if (choose == REUSE_NEW)
|
||
{
|
||
choose = NEITHER;
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
{
|
||
prepare_fresh_vtable (binfo, t);
|
||
override_one_vtable (binfo, old, t);
|
||
return;
|
||
}
|
||
TREE_VALUE (virtuals) = TREE_VALUE (old_virtuals);
|
||
}
|
||
else if (choose == NEITHER)
|
||
{
|
||
TREE_VALUE (virtuals) = TREE_VALUE (old_virtuals);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
choose = NEITHER;
|
||
if (! BINFO_NEW_VTABLE_MARKED (binfo))
|
||
{
|
||
prepare_fresh_vtable (binfo, t);
|
||
override_one_vtable (binfo, old, t);
|
||
return;
|
||
}
|
||
{
|
||
/* This MUST be overridden, or the class is ill-formed. */
|
||
/* For now, we just make it abstract. */
|
||
tree fndecl = TREE_OPERAND (FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (virtuals)), 0);
|
||
tree vfn;
|
||
|
||
fndecl = copy_node (fndecl);
|
||
copy_lang_decl (fndecl);
|
||
DECL_ABSTRACT_VIRTUAL_P (fndecl) = 1;
|
||
/* Make sure we search for it later. */
|
||
if (! CLASSTYPE_ABSTRACT_VIRTUALS (t))
|
||
CLASSTYPE_ABSTRACT_VIRTUALS (t) = error_mark_node;
|
||
|
||
vfn = build1 (ADDR_EXPR, vfunc_ptr_type_node, fndecl);
|
||
TREE_CONSTANT (vfn) = 1;
|
||
|
||
/* We can use integer_zero_node, as we will will core dump
|
||
if this is used anyway. */
|
||
TREE_VALUE (virtuals) = build_vtable_entry (integer_zero_node, vfn);
|
||
}
|
||
}
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
old_virtuals = TREE_CHAIN (old_virtuals);
|
||
}
|
||
|
||
/* Let's reuse the old vtable. */
|
||
if (choose == REUSE_OLD)
|
||
{
|
||
BINFO_VTABLE (binfo) = BINFO_VTABLE (old);
|
||
BINFO_VIRTUALS (binfo) = BINFO_VIRTUALS (old);
|
||
}
|
||
}
|
||
|
||
/* Merge in overrides for virtual bases.
|
||
BINFO is the hierarchy we want to modify, and OLD has the potential
|
||
overrides. */
|
||
static void
|
||
merge_overrides (binfo, old, do_self, t)
|
||
tree binfo, old, t;
|
||
int do_self;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
tree old_binfos = BINFO_BASETYPES (old);
|
||
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (do_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
|
||
{
|
||
override_one_vtable (binfo, old, t);
|
||
}
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree old_base_binfo = TREE_VEC_ELT (old_binfos, i);
|
||
int is_not_base_vtable =
|
||
i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo));
|
||
if (! TREE_VIA_VIRTUAL (base_binfo))
|
||
merge_overrides (base_binfo, old_base_binfo, is_not_base_vtable, t);
|
||
}
|
||
}
|
||
|
||
extern int interface_only, interface_unknown;
|
||
|
||
/* Create a RECORD_TYPE or UNION_TYPE node for a C struct or union declaration
|
||
(or C++ class declaration).
|
||
|
||
For C++, we must handle the building of derived classes.
|
||
Also, C++ allows static class members. The way that this is
|
||
handled is to keep the field name where it is (as the DECL_NAME
|
||
of the field), and place the overloaded decl in the DECL_FIELD_BITPOS
|
||
of the field. layout_record and layout_union will know about this.
|
||
|
||
More C++ hair: inline functions have text in their
|
||
DECL_PENDING_INLINE_INFO nodes which must somehow be parsed into
|
||
meaningful tree structure. After the struct has been laid out, set
|
||
things up so that this can happen.
|
||
|
||
And still more: virtual functions. In the case of single inheritance,
|
||
when a new virtual function is seen which redefines a virtual function
|
||
from the base class, the new virtual function is placed into
|
||
the virtual function table at exactly the same address that
|
||
it had in the base class. When this is extended to multiple
|
||
inheritance, the same thing happens, except that multiple virtual
|
||
function tables must be maintained. The first virtual function
|
||
table is treated in exactly the same way as in the case of single
|
||
inheritance. Additional virtual function tables have different
|
||
DELTAs, which tell how to adjust `this' to point to the right thing.
|
||
|
||
LIST_OF_FIELDLISTS is just that. The elements of the list are
|
||
TREE_LIST elements, whose TREE_PURPOSE field tells what access
|
||
the list has, and the TREE_VALUE slot gives the actual fields.
|
||
|
||
If flag_all_virtual == 1, then we lay all functions into
|
||
the virtual function table, as though they were declared
|
||
virtual. Constructors do not lay down in the virtual function table.
|
||
|
||
If flag_all_virtual == 2, then we lay all functions into
|
||
the virtual function table, such that virtual functions
|
||
occupy a space by themselves, and then all functions
|
||
of the class occupy a space by themselves. This is illustrated
|
||
in the following diagram:
|
||
|
||
class A; class B : A;
|
||
|
||
Class A's vtbl: Class B's vtbl:
|
||
--------------------------------------------------------------------
|
||
| A's virtual functions| | B's virtual functions |
|
||
| | | (may inherit some from A). |
|
||
--------------------------------------------------------------------
|
||
| All of A's functions | | All of A's functions |
|
||
| (such as a->A::f). | | (such as b->A::f) |
|
||
--------------------------------------------------------------------
|
||
| B's new virtual functions |
|
||
| (not defined in A.) |
|
||
-------------------------------
|
||
| All of B's functions |
|
||
| (such as b->B::f) |
|
||
-------------------------------
|
||
|
||
this allows the program to make references to any function, virtual
|
||
or otherwise in a type-consistent manner. */
|
||
|
||
tree
|
||
finish_struct_1 (t, warn_anon)
|
||
tree t;
|
||
int warn_anon;
|
||
{
|
||
int old;
|
||
int round_up_size = 1;
|
||
|
||
tree name = TYPE_IDENTIFIER (t);
|
||
enum tree_code code = TREE_CODE (t);
|
||
tree fields = TYPE_FIELDS (t);
|
||
tree fn_fields = CLASSTYPE_METHODS (t);
|
||
tree x, last_x, method_vec;
|
||
int needs_virtual_dtor;
|
||
int all_virtual;
|
||
int has_virtual;
|
||
int max_has_virtual;
|
||
tree pending_virtuals = NULL_TREE;
|
||
tree abstract_virtuals = NULL_TREE;
|
||
tree vfield;
|
||
tree vfields;
|
||
int cant_have_default_ctor;
|
||
int cant_have_const_ctor;
|
||
int cant_synth_copy_ctor;
|
||
int cant_synth_asn_ref;
|
||
int no_const_asn_ref;
|
||
|
||
/* The index of the first base class which has virtual
|
||
functions. Only applied to non-virtual baseclasses. */
|
||
int first_vfn_base_index;
|
||
|
||
int n_baseclasses;
|
||
int any_default_members = 0;
|
||
int const_sans_init = 0;
|
||
int ref_sans_init = 0;
|
||
int nonprivate_method = 0;
|
||
tree t_binfo = TYPE_BINFO (t);
|
||
tree access_decls = NULL_TREE;
|
||
int aggregate = 1;
|
||
|
||
if (warn_anon && code != UNION_TYPE && ANON_AGGRNAME_P (TYPE_IDENTIFIER (t)))
|
||
pedwarn ("anonymous class type not used to declare any objects");
|
||
|
||
if (TYPE_SIZE (t))
|
||
{
|
||
if (IS_AGGR_TYPE (t))
|
||
cp_error ("redefinition of `%#T'", t);
|
||
else
|
||
my_friendly_abort (172);
|
||
popclass (0);
|
||
return t;
|
||
}
|
||
|
||
if (dont_allow_type_definitions)
|
||
{
|
||
pedwarn ("types cannot be defined %s",
|
||
dont_allow_type_definitions);
|
||
}
|
||
|
||
GNU_xref_decl (current_function_decl, t);
|
||
|
||
/* If this type was previously laid out as a forward reference,
|
||
make sure we lay it out again. */
|
||
|
||
TYPE_SIZE (t) = NULL_TREE;
|
||
CLASSTYPE_GOT_SEMICOLON (t) = 0;
|
||
|
||
#if 0
|
||
/* This is in general too late to do this. I moved the main case up to
|
||
left_curly, what else needs to move? */
|
||
if (! IS_SIGNATURE (t))
|
||
{
|
||
my_friendly_assert (CLASSTYPE_INTERFACE_ONLY (t) == interface_only, 999);
|
||
my_friendly_assert (CLASSTYPE_INTERFACE_KNOWN (t) == ! interface_unknown, 999);
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
if (flag_rtti)
|
||
build_t_desc (t, 0);
|
||
#endif
|
||
|
||
TYPE_BINFO (t) = NULL_TREE;
|
||
|
||
old = suspend_momentary ();
|
||
|
||
/* Install struct as DECL_FIELD_CONTEXT of each field decl.
|
||
Also process specified field sizes.
|
||
Set DECL_FIELD_SIZE to the specified size, or 0 if none specified.
|
||
The specified size is found in the DECL_INITIAL.
|
||
Store 0 there, except for ": 0" fields (so we can find them
|
||
and delete them, below). */
|
||
|
||
if (t_binfo && BINFO_BASETYPES (t_binfo))
|
||
n_baseclasses = TREE_VEC_LENGTH (BINFO_BASETYPES (t_binfo));
|
||
else
|
||
n_baseclasses = 0;
|
||
|
||
if (n_baseclasses > 0)
|
||
{
|
||
struct base_info base_info;
|
||
|
||
/* If using multiple inheritance, this may cause variants of our
|
||
basetypes to be used (instead of their canonical forms). */
|
||
tree vf = layout_basetypes (t, BINFO_BASETYPES (t_binfo));
|
||
last_x = tree_last (vf);
|
||
fields = chainon (vf, fields);
|
||
|
||
first_vfn_base_index = finish_base_struct (t, &base_info, t_binfo);
|
||
/* Remember where we got our vfield from */
|
||
CLASSTYPE_VFIELD_PARENT (t) = first_vfn_base_index;
|
||
has_virtual = base_info.has_virtual;
|
||
max_has_virtual = base_info.max_has_virtual;
|
||
CLASSTYPE_N_SUPERCLASSES (t) += base_info.n_ancestors;
|
||
vfield = base_info.vfield;
|
||
vfields = base_info.vfields;
|
||
cant_have_default_ctor = base_info.cant_have_default_ctor;
|
||
cant_have_const_ctor = base_info.cant_have_const_ctor;
|
||
cant_synth_copy_ctor = base_info.cant_synth_copy_ctor;
|
||
cant_synth_asn_ref = base_info.cant_synth_asn_ref;
|
||
no_const_asn_ref = base_info.no_const_asn_ref;
|
||
needs_virtual_dtor = base_info.needs_virtual_dtor;
|
||
n_baseclasses = TREE_VEC_LENGTH (BINFO_BASETYPES (t_binfo));
|
||
aggregate = 0;
|
||
}
|
||
else
|
||
{
|
||
first_vfn_base_index = -1;
|
||
has_virtual = 0;
|
||
max_has_virtual = has_virtual;
|
||
vfield = NULL_TREE;
|
||
vfields = NULL_TREE;
|
||
last_x = NULL_TREE;
|
||
cant_have_default_ctor = 0;
|
||
cant_have_const_ctor = 0;
|
||
cant_synth_copy_ctor = 0;
|
||
cant_synth_asn_ref = 0;
|
||
no_const_asn_ref = 0;
|
||
needs_virtual_dtor = 0;
|
||
}
|
||
|
||
#if 0
|
||
/* Both of these should be done before now. */
|
||
if (write_virtuals == 3 && CLASSTYPE_INTERFACE_KNOWN (t)
|
||
&& ! IS_SIGNATURE (t))
|
||
{
|
||
my_friendly_assert (CLASSTYPE_INTERFACE_ONLY (t) == interface_only, 999);
|
||
my_friendly_assert (CLASSTYPE_VTABLE_NEEDS_WRITING (t) == ! interface_only, 999);
|
||
}
|
||
#endif
|
||
|
||
/* The three of these are approximations which may later be
|
||
modified. Needed at this point to make add_virtual_function
|
||
and modify_vtable_entries work. */
|
||
TREE_CHAIN (t_binfo) = TYPE_BINFO (t);
|
||
TYPE_BINFO (t) = t_binfo;
|
||
CLASSTYPE_VFIELDS (t) = vfields;
|
||
CLASSTYPE_VFIELD (t) = vfield;
|
||
|
||
if (IS_SIGNATURE (t))
|
||
all_virtual = 0;
|
||
else if (flag_all_virtual == 1 && TYPE_OVERLOADS_METHOD_CALL_EXPR (t))
|
||
all_virtual = 1;
|
||
else
|
||
all_virtual = 0;
|
||
|
||
for (x = CLASSTYPE_METHODS (t); x; x = TREE_CHAIN (x))
|
||
{
|
||
GNU_xref_member (current_class_name, x);
|
||
|
||
nonprivate_method |= ! TREE_PRIVATE (x);
|
||
|
||
/* If this was an evil function, don't keep it in class. */
|
||
if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (x)))
|
||
continue;
|
||
|
||
DECL_CLASS_CONTEXT (x) = t;
|
||
|
||
/* Do both of these, even though they're in the same union;
|
||
if the insn `r' member and the size `i' member are
|
||
different sizes, as on the alpha, the larger of the two
|
||
will end up with garbage in it. */
|
||
DECL_SAVED_INSNS (x) = NULL_RTX;
|
||
DECL_FIELD_SIZE (x) = 0;
|
||
|
||
/* The name of the field is the original field name
|
||
Save this in auxiliary field for later overloading. */
|
||
if (DECL_VINDEX (x)
|
||
|| (all_virtual == 1 && ! DECL_CONSTRUCTOR_P (x)))
|
||
{
|
||
pending_virtuals = add_virtual_function (pending_virtuals,
|
||
&has_virtual, x, t);
|
||
if (DECL_ABSTRACT_VIRTUAL_P (x))
|
||
abstract_virtuals = tree_cons (NULL_TREE, x, abstract_virtuals);
|
||
else
|
||
TREE_USED (x) = 1;
|
||
}
|
||
}
|
||
|
||
for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
|
||
{
|
||
GNU_xref_member (current_class_name, x);
|
||
|
||
/* Handle access declarations. */
|
||
if (DECL_NAME (x) && TREE_CODE (DECL_NAME (x)) == SCOPE_REF)
|
||
{
|
||
tree fdecl = TREE_OPERAND (DECL_NAME (x), 1);
|
||
enum access_type access
|
||
= TREE_PRIVATE (x) ? access_private :
|
||
TREE_PROTECTED (x) ? access_protected : access_public;
|
||
|
||
if (last_x)
|
||
TREE_CHAIN (last_x) = TREE_CHAIN (x);
|
||
else
|
||
fields = TREE_CHAIN (x);
|
||
|
||
access_decls = tree_cons ((tree) access, fdecl, access_decls);
|
||
continue;
|
||
}
|
||
|
||
last_x = x;
|
||
|
||
if (TREE_CODE (x) == TYPE_DECL)
|
||
continue;
|
||
|
||
/* If we've gotten this far, it's a data member, possibly static,
|
||
or an enumerator. */
|
||
|
||
DECL_FIELD_CONTEXT (x) = t;
|
||
|
||
/* ``A local class cannot have static data members.'' ARM 9.4 */
|
||
if (current_function_decl && TREE_STATIC (x))
|
||
cp_error_at ("field `%D' in local class cannot be static", x);
|
||
|
||
/* Perform error checking that did not get done in
|
||
grokdeclarator. */
|
||
if (TREE_CODE (TREE_TYPE (x)) == FUNCTION_TYPE)
|
||
{
|
||
cp_error_at ("field `%D' invalidly declared function type",
|
||
x);
|
||
TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x));
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE)
|
||
{
|
||
cp_error_at ("field `%D' invalidly declared method type", x);
|
||
TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x));
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (x)) == OFFSET_TYPE)
|
||
{
|
||
cp_error_at ("field `%D' invalidly declared offset type", x);
|
||
TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x));
|
||
}
|
||
|
||
#if 0
|
||
if (DECL_NAME (x) == constructor_name (t))
|
||
cant_have_default_ctor = cant_synth_copy_ctor = 1;
|
||
#endif
|
||
|
||
if (TREE_TYPE (x) == error_mark_node)
|
||
continue;
|
||
|
||
DECL_SAVED_INSNS (x) = NULL_RTX;
|
||
DECL_FIELD_SIZE (x) = 0;
|
||
|
||
/* When this goes into scope, it will be a non-local reference. */
|
||
DECL_NONLOCAL (x) = 1;
|
||
|
||
if (TREE_CODE (x) == CONST_DECL)
|
||
continue;
|
||
|
||
if (TREE_CODE (x) == VAR_DECL)
|
||
{
|
||
if (TREE_CODE (t) == UNION_TYPE)
|
||
/* Unions cannot have static members. */
|
||
cp_error_at ("field `%D' declared static in union", x);
|
||
|
||
continue;
|
||
}
|
||
|
||
/* Now it can only be a FIELD_DECL. */
|
||
|
||
if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
|
||
aggregate = 0;
|
||
|
||
/* If this is of reference type, check if it needs an init.
|
||
Also do a little ANSI jig if necessary. */
|
||
if (TREE_CODE (TREE_TYPE (x)) == REFERENCE_TYPE)
|
||
{
|
||
if (DECL_INITIAL (x) == NULL_TREE)
|
||
ref_sans_init = 1;
|
||
|
||
/* ARM $12.6.2: [A member initializer list] (or, for an
|
||
aggregate, initialization by a brace-enclosed list) is the
|
||
only way to initialize nonstatic const and reference
|
||
members. */
|
||
cant_synth_asn_ref = 1;
|
||
cant_have_default_ctor = 1;
|
||
|
||
if (! TYPE_HAS_CONSTRUCTOR (t) && extra_warnings)
|
||
{
|
||
if (DECL_NAME (x))
|
||
cp_warning_at ("non-static reference `%#D' in class without a constructor", x);
|
||
else
|
||
cp_warning_at ("non-static reference in class without a constructor", x);
|
||
}
|
||
}
|
||
|
||
/* If any field is const, the structure type is pseudo-const. */
|
||
if (TREE_READONLY (x))
|
||
{
|
||
C_TYPE_FIELDS_READONLY (t) = 1;
|
||
if (DECL_INITIAL (x) == NULL_TREE)
|
||
const_sans_init = 1;
|
||
|
||
/* ARM $12.6.2: [A member initializer list] (or, for an
|
||
aggregate, initialization by a brace-enclosed list) is the
|
||
only way to initialize nonstatic const and reference
|
||
members. */
|
||
cant_synth_asn_ref = 1;
|
||
cant_have_default_ctor = 1;
|
||
|
||
if (! TYPE_HAS_CONSTRUCTOR (t) && !IS_SIGNATURE (t)
|
||
&& extra_warnings)
|
||
{
|
||
if (DECL_NAME (x))
|
||
cp_warning_at ("non-static const member `%#D' in class without a constructor", x);
|
||
else
|
||
cp_warning_at ("non-static const member in class without a constructor", x);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* A field that is pseudo-const makes the structure
|
||
likewise. */
|
||
tree t1 = TREE_TYPE (x);
|
||
while (TREE_CODE (t1) == ARRAY_TYPE)
|
||
t1 = TREE_TYPE (t1);
|
||
if (IS_AGGR_TYPE (t1))
|
||
{
|
||
if (C_TYPE_FIELDS_READONLY (t1))
|
||
C_TYPE_FIELDS_READONLY (t) = 1;
|
||
if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (t1))
|
||
const_sans_init = 1;
|
||
}
|
||
}
|
||
|
||
/* We set DECL_BIT_FIELD tentatively in grokbitfield.
|
||
If the type and width are valid, we'll keep it set.
|
||
Otherwise, the flag is cleared. */
|
||
if (DECL_BIT_FIELD (x))
|
||
{
|
||
DECL_BIT_FIELD (x) = 0;
|
||
/* Invalid bit-field size done by grokfield. */
|
||
/* Detect invalid bit-field type. */
|
||
if (DECL_INITIAL (x)
|
||
&& ! INTEGRAL_TYPE_P (TREE_TYPE (x)))
|
||
{
|
||
cp_error_at ("bit-field `%#D' with non-integral type", x);
|
||
DECL_INITIAL (x) = NULL;
|
||
}
|
||
|
||
/* Detect and ignore out of range field width. */
|
||
if (DECL_INITIAL (x))
|
||
{
|
||
register int width = TREE_INT_CST_LOW (DECL_INITIAL (x));
|
||
|
||
if (width < 0)
|
||
{
|
||
DECL_INITIAL (x) = NULL;
|
||
cp_error_at ("negative width in bit-field `%D'", x);
|
||
}
|
||
else if (width == 0 && DECL_NAME (x) != 0)
|
||
{
|
||
DECL_INITIAL (x) = NULL;
|
||
cp_error_at ("zero width for bit-field `%D'", x);
|
||
}
|
||
else if (width
|
||
> TYPE_PRECISION (long_long_unsigned_type_node))
|
||
{
|
||
/* The backend will dump if you try to use something
|
||
too big; avoid that. */
|
||
DECL_INITIAL (x) = NULL;
|
||
sorry ("bit-fields larger than %d bits",
|
||
TYPE_PRECISION (long_long_unsigned_type_node));
|
||
cp_error_at (" in declaration of `%D'", x);
|
||
}
|
||
else if (width > TYPE_PRECISION (TREE_TYPE (x))
|
||
&& TREE_CODE (TREE_TYPE (x)) != ENUMERAL_TYPE)
|
||
{
|
||
cp_warning_at ("width of `%D' exceeds its type", x);
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (x)) == ENUMERAL_TYPE
|
||
&& ((min_precision (TYPE_MIN_VALUE (TREE_TYPE (x)),
|
||
TREE_UNSIGNED (TREE_TYPE (x))) > width)
|
||
|| (min_precision (TYPE_MAX_VALUE (TREE_TYPE (x)),
|
||
TREE_UNSIGNED (TREE_TYPE (x))) > width)))
|
||
{
|
||
cp_warning_at ("`%D' is too small to hold all values of `%#T'",
|
||
x, TREE_TYPE (x));
|
||
}
|
||
}
|
||
|
||
/* Process valid field width. */
|
||
if (DECL_INITIAL (x))
|
||
{
|
||
register int width = TREE_INT_CST_LOW (DECL_INITIAL (x));
|
||
|
||
if (width == 0)
|
||
{
|
||
#ifdef EMPTY_FIELD_BOUNDARY
|
||
/* field size 0 => mark following field as "aligned" */
|
||
if (TREE_CHAIN (x))
|
||
DECL_ALIGN (TREE_CHAIN (x))
|
||
= MAX (DECL_ALIGN (TREE_CHAIN (x)), EMPTY_FIELD_BOUNDARY);
|
||
/* field of size 0 at the end => round up the size. */
|
||
else
|
||
round_up_size = EMPTY_FIELD_BOUNDARY;
|
||
#endif
|
||
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
||
DECL_ALIGN (x) = MAX (DECL_ALIGN (x),
|
||
TYPE_ALIGN (TREE_TYPE (x)));
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
DECL_INITIAL (x) = NULL_TREE;
|
||
DECL_FIELD_SIZE (x) = width;
|
||
DECL_BIT_FIELD (x) = 1;
|
||
/* Traditionally a bit field is unsigned
|
||
even if declared signed. */
|
||
if (flag_traditional
|
||
&& TREE_CODE (TREE_TYPE (x)) == INTEGER_TYPE)
|
||
TREE_TYPE (x) = unsigned_type_node;
|
||
}
|
||
}
|
||
else
|
||
/* Non-bit-fields are aligned for their type. */
|
||
DECL_ALIGN (x) = MAX (DECL_ALIGN (x), TYPE_ALIGN (TREE_TYPE (x)));
|
||
}
|
||
else
|
||
{
|
||
tree type = TREE_TYPE (x);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
if (TYPE_LANG_SPECIFIC (type) && ! ANON_UNION_P (x)
|
||
&& ! TYPE_PTRMEMFUNC_P (type))
|
||
{
|
||
/* Never let anything with uninheritable virtuals
|
||
make it through without complaint. */
|
||
if (CLASSTYPE_ABSTRACT_VIRTUALS (type))
|
||
abstract_virtuals_error (x, type);
|
||
|
||
/* Don't let signatures make it through either. */
|
||
if (IS_SIGNATURE (type))
|
||
signature_error (x, type);
|
||
|
||
if (code == UNION_TYPE)
|
||
{
|
||
char *fie = NULL;
|
||
if (TYPE_NEEDS_CONSTRUCTING (type))
|
||
fie = "constructor";
|
||
else if (TYPE_NEEDS_DESTRUCTOR (type))
|
||
fie = "destructor";
|
||
else if (TYPE_HAS_REAL_ASSIGNMENT (type))
|
||
fie = "assignment operator";
|
||
if (fie)
|
||
cp_error_at ("member `%#D' with %s not allowed in union", x,
|
||
fie);
|
||
}
|
||
else
|
||
{
|
||
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
|
||
TYPE_NEEDS_DESTRUCTOR (t) |= TYPE_NEEDS_DESTRUCTOR (type);
|
||
TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
|
||
TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
|
||
}
|
||
|
||
if (! TYPE_HAS_INIT_REF (type)
|
||
|| (TYPE_HAS_NONPUBLIC_CTOR (type)
|
||
&& ! is_friend (t, type)))
|
||
cant_synth_copy_ctor = 1;
|
||
else if (!TYPE_HAS_CONST_INIT_REF (type))
|
||
cant_have_const_ctor = 1;
|
||
|
||
if (! TYPE_HAS_ASSIGN_REF (type)
|
||
|| (TYPE_HAS_NONPUBLIC_ASSIGN_REF (type)
|
||
&& ! is_friend (t, type)))
|
||
cant_synth_asn_ref = 1;
|
||
else if (!TYPE_HAS_CONST_ASSIGN_REF (type))
|
||
no_const_asn_ref = 1;
|
||
|
||
if (TYPE_HAS_CONSTRUCTOR (type)
|
||
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
|
||
{
|
||
cant_have_default_ctor = 1;
|
||
#if 0
|
||
/* This is wrong for aggregates. */
|
||
if (! TYPE_HAS_CONSTRUCTOR (t))
|
||
{
|
||
if (DECL_NAME (x))
|
||
cp_pedwarn_at ("member `%#D' with only non-default constructor", x);
|
||
else
|
||
cp_pedwarn_at ("member with only non-default constructor", x);
|
||
cp_pedwarn_at ("in class without a constructor",
|
||
x);
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
if (DECL_INITIAL (x) != NULL_TREE)
|
||
{
|
||
/* `build_class_init_list' does not recognize
|
||
non-FIELD_DECLs. */
|
||
if (code == UNION_TYPE && any_default_members != 0)
|
||
cp_error_at ("multiple fields in union `%T' initialized");
|
||
any_default_members = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this type has any constant members which did not come
|
||
with their own initialization, mark that fact here. It is
|
||
not an error here, since such types can be saved either by their
|
||
constructors, or by fortuitous initialization. */
|
||
CLASSTYPE_READONLY_FIELDS_NEED_INIT (t) = const_sans_init;
|
||
CLASSTYPE_REF_FIELDS_NEED_INIT (t) = ref_sans_init;
|
||
CLASSTYPE_ABSTRACT_VIRTUALS (t) = abstract_virtuals;
|
||
|
||
/* Synthesize any needed methods. Note that methods will be synthesized
|
||
for anonymous unions; grok_x_components undoes that. */
|
||
|
||
if (! fn_fields)
|
||
nonprivate_method = 1;
|
||
|
||
if (TYPE_NEEDS_DESTRUCTOR (t) && !TYPE_HAS_DESTRUCTOR (t)
|
||
&& !IS_SIGNATURE (t))
|
||
{
|
||
/* Here we must cons up a destructor on the fly. */
|
||
tree dtor = cons_up_default_function (t, name, needs_virtual_dtor != 0);
|
||
|
||
/* If we couldn't make it work, then pretend we didn't need it. */
|
||
if (dtor == void_type_node)
|
||
TYPE_NEEDS_DESTRUCTOR (t) = 0;
|
||
else
|
||
{
|
||
/* Link dtor onto end of fn_fields. */
|
||
|
||
TREE_CHAIN (dtor) = fn_fields;
|
||
fn_fields = dtor;
|
||
|
||
if (DECL_VINDEX (dtor) == NULL_TREE
|
||
&& (needs_virtual_dtor
|
||
|| pending_virtuals != NULL_TREE
|
||
|| pending_hard_virtuals != NULL_TREE))
|
||
DECL_VINDEX (dtor) = error_mark_node;
|
||
if (DECL_VINDEX (dtor))
|
||
pending_virtuals = add_virtual_function (pending_virtuals,
|
||
&has_virtual, dtor, t);
|
||
nonprivate_method = 1;
|
||
}
|
||
}
|
||
|
||
TYPE_NEEDS_DESTRUCTOR (t) |= TYPE_HAS_DESTRUCTOR (t);
|
||
if (flag_rtti && (max_has_virtual > 0 || needs_virtual_dtor) &&
|
||
has_virtual == 0)
|
||
has_virtual = 1;
|
||
|
||
TYPE_HAS_COMPLEX_INIT_REF (t)
|
||
|= (TYPE_HAS_INIT_REF (t) || TYPE_USES_VIRTUAL_BASECLASSES (t)
|
||
|| any_default_members);
|
||
TYPE_NEEDS_CONSTRUCTING (t)
|
||
|= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_USES_VIRTUAL_BASECLASSES (t)
|
||
|| has_virtual || any_default_members || first_vfn_base_index >= 0);
|
||
if (! IS_SIGNATURE (t))
|
||
CLASSTYPE_NON_AGGREGATE (t)
|
||
= ! aggregate || has_virtual || TYPE_HAS_CONSTRUCTOR (t);
|
||
|
||
/* ARM $12.1: A default constructor will be generated for a class X
|
||
only if no constructor has been declared for class X. So we
|
||
check TYPE_HAS_CONSTRUCTOR also, to make sure we don't generate
|
||
one if they declared a constructor in this class. */
|
||
if (! TYPE_HAS_CONSTRUCTOR (t) && ! cant_have_default_ctor
|
||
&& ! IS_SIGNATURE (t))
|
||
{
|
||
tree default_fn = cons_up_default_function (t, name, 2);
|
||
TREE_CHAIN (default_fn) = fn_fields;
|
||
fn_fields = default_fn;
|
||
}
|
||
|
||
/* Create default copy constructor, if needed. */
|
||
if (! TYPE_HAS_INIT_REF (t) && ! cant_synth_copy_ctor
|
||
&& ! IS_SIGNATURE (t))
|
||
{
|
||
/* ARM 12.18: You get either X(X&) or X(const X&), but
|
||
not both. --Chip */
|
||
tree default_fn = cons_up_default_function (t, name,
|
||
3 + cant_have_const_ctor);
|
||
TREE_CHAIN (default_fn) = fn_fields;
|
||
fn_fields = default_fn;
|
||
}
|
||
|
||
TYPE_HAS_REAL_ASSIGNMENT (t) |= TYPE_HAS_ASSIGNMENT (t);
|
||
TYPE_HAS_REAL_ASSIGN_REF (t) |= TYPE_HAS_ASSIGN_REF (t);
|
||
TYPE_HAS_COMPLEX_ASSIGN_REF (t)
|
||
|= TYPE_HAS_ASSIGN_REF (t) || TYPE_USES_VIRTUAL_BASECLASSES (t);
|
||
|
||
if (! TYPE_HAS_ASSIGN_REF (t) && ! cant_synth_asn_ref
|
||
&& ! IS_SIGNATURE (t))
|
||
{
|
||
tree default_fn = cons_up_default_function (t, name,
|
||
5 + no_const_asn_ref);
|
||
TREE_CHAIN (default_fn) = fn_fields;
|
||
fn_fields = default_fn;
|
||
}
|
||
|
||
if (fn_fields)
|
||
{
|
||
method_vec = finish_struct_methods (t, fn_fields, nonprivate_method);
|
||
|
||
if (TYPE_HAS_CONSTRUCTOR (t)
|
||
&& CLASSTYPE_FRIEND_CLASSES (t) == NULL_TREE
|
||
&& DECL_FRIENDLIST (TYPE_NAME (t)) == NULL_TREE)
|
||
{
|
||
int nonprivate_ctor = 0;
|
||
tree ctor;
|
||
|
||
for (ctor = TREE_VEC_ELT (method_vec, 0);
|
||
ctor;
|
||
ctor = DECL_CHAIN (ctor))
|
||
if (! TREE_PRIVATE (ctor))
|
||
{
|
||
nonprivate_ctor = 1;
|
||
break;
|
||
}
|
||
|
||
if (nonprivate_ctor == 0 && warn_ctor_dtor_privacy)
|
||
cp_warning ("`%#T' only defines private constructors and has no friends",
|
||
t);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
method_vec = 0;
|
||
|
||
/* Just in case these got accidentally
|
||
filled in by syntax errors. */
|
||
TYPE_HAS_CONSTRUCTOR (t) = 0;
|
||
TYPE_HAS_DESTRUCTOR (t) = 0;
|
||
}
|
||
|
||
{
|
||
int n_methods = method_vec ? TREE_VEC_LENGTH (method_vec) : 0;
|
||
|
||
for (access_decls = nreverse (access_decls); access_decls;
|
||
access_decls = TREE_CHAIN (access_decls))
|
||
{
|
||
tree fdecl = TREE_VALUE (access_decls);
|
||
tree flist = NULL_TREE;
|
||
tree name;
|
||
enum access_type access = (enum access_type)TREE_PURPOSE(access_decls);
|
||
int i = TREE_VEC_ELT (method_vec, 0) ? 0 : 1;
|
||
tree tmp;
|
||
|
||
if (TREE_CODE (fdecl) == TREE_LIST)
|
||
{
|
||
flist = fdecl;
|
||
fdecl = TREE_VALUE (flist);
|
||
}
|
||
|
||
name = DECL_NAME (fdecl);
|
||
|
||
for (; i < n_methods; i++)
|
||
if (DECL_NAME (TREE_VEC_ELT (method_vec, i)) == name)
|
||
{
|
||
cp_error ("cannot adjust access to `%#D' in `%#T'", fdecl, t);
|
||
cp_error_at (" because of local method `%#D' with same name",
|
||
TREE_VEC_ELT (method_vec, i));
|
||
fdecl = NULL_TREE;
|
||
break;
|
||
}
|
||
|
||
if (! fdecl)
|
||
continue;
|
||
|
||
for (tmp = fields; tmp; tmp = TREE_CHAIN (tmp))
|
||
if (DECL_NAME (tmp) == name)
|
||
{
|
||
cp_error ("cannot adjust access to `%#D' in `%#T'", fdecl, t);
|
||
cp_error_at (" because of local field `%#D' with same name", tmp);
|
||
fdecl = NULL_TREE;
|
||
break;
|
||
}
|
||
|
||
if (!fdecl)
|
||
continue;
|
||
|
||
/* Make type T see field decl FDECL with access ACCESS.*/
|
||
if (flist)
|
||
{
|
||
fdecl = TREE_VALUE (flist);
|
||
while (fdecl)
|
||
{
|
||
if (alter_access (t, fdecl, access) == 0)
|
||
break;
|
||
fdecl = DECL_CHAIN (fdecl);
|
||
}
|
||
}
|
||
else
|
||
alter_access (t, fdecl, access);
|
||
}
|
||
|
||
}
|
||
|
||
if (vfield == NULL_TREE && has_virtual)
|
||
{
|
||
/* We build this decl with ptr_type_node, and
|
||
change the type when we know what it should be. */
|
||
vfield = build_lang_field_decl (FIELD_DECL, get_vfield_name (t),
|
||
ptr_type_node);
|
||
/* If you change any of the below, take a look at all the
|
||
other VFIELD_BASEs and VTABLE_BASEs in the code, and change
|
||
them too. */
|
||
DECL_ASSEMBLER_NAME (vfield) = get_identifier (VFIELD_BASE);
|
||
CLASSTYPE_VFIELD (t) = vfield;
|
||
DECL_VIRTUAL_P (vfield) = 1;
|
||
DECL_FIELD_CONTEXT (vfield) = t;
|
||
DECL_CLASS_CONTEXT (vfield) = t;
|
||
DECL_FCONTEXT (vfield) = t;
|
||
DECL_SAVED_INSNS (vfield) = NULL_RTX;
|
||
DECL_FIELD_SIZE (vfield) = 0;
|
||
DECL_ALIGN (vfield) = TYPE_ALIGN (ptr_type_node);
|
||
if (CLASSTYPE_RTTI (t))
|
||
{
|
||
/* vfield is always first entry in structure. */
|
||
TREE_CHAIN (vfield) = fields;
|
||
fields = vfield;
|
||
}
|
||
else if (last_x)
|
||
{
|
||
my_friendly_assert (TREE_CHAIN (last_x) == NULL_TREE, 175);
|
||
TREE_CHAIN (last_x) = vfield;
|
||
last_x = vfield;
|
||
}
|
||
else
|
||
fields = vfield;
|
||
vfields = chainon (vfields, CLASSTYPE_AS_LIST (t));
|
||
}
|
||
|
||
/* Now DECL_INITIAL is null on all members except for zero-width bit-fields.
|
||
And they have already done their work.
|
||
|
||
C++: maybe we will support default field initialization some day... */
|
||
|
||
/* Delete all zero-width bit-fields from the front of the fieldlist */
|
||
while (fields && DECL_BIT_FIELD (fields)
|
||
&& DECL_INITIAL (fields))
|
||
fields = TREE_CHAIN (fields);
|
||
/* Delete all such fields from the rest of the fields. */
|
||
for (x = fields; x;)
|
||
{
|
||
if (TREE_CHAIN (x) && DECL_BIT_FIELD (TREE_CHAIN (x))
|
||
&& DECL_INITIAL (TREE_CHAIN (x)))
|
||
TREE_CHAIN (x) = TREE_CHAIN (TREE_CHAIN (x));
|
||
else
|
||
x = TREE_CHAIN (x);
|
||
}
|
||
/* Delete all duplicate fields from the fields */
|
||
delete_duplicate_fields (fields);
|
||
|
||
/* Catch function/field name conflict. We don't need to do this for a
|
||
signature, since it can only contain the fields constructed in
|
||
append_signature_fields. */
|
||
if (! IS_SIGNATURE (t))
|
||
{
|
||
int n_methods = method_vec ? TREE_VEC_LENGTH (method_vec) : 0;
|
||
for (x = fields; x; x = TREE_CHAIN (x))
|
||
{
|
||
tree name = DECL_NAME (x);
|
||
int i = /*TREE_VEC_ELT (method_vec, 0) ? 0 : */ 1;
|
||
for (; i < n_methods; ++i)
|
||
if (DECL_NAME (TREE_VEC_ELT (method_vec, i)) == name)
|
||
{
|
||
cp_error_at ("data member `%#D' conflicts with", x);
|
||
cp_error_at ("function member `%#D'",
|
||
TREE_VEC_ELT (method_vec, i));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now we have the final fieldlist for the data fields. Record it,
|
||
then lay out the structure or union (including the fields). */
|
||
|
||
TYPE_FIELDS (t) = fields;
|
||
|
||
/* If there's a :0 field at the end, round the size to the
|
||
EMPTY_FIELD_BOUNDARY. */
|
||
TYPE_ALIGN (t) = round_up_size;
|
||
|
||
/* Pass layout information about base classes to layout_type, if any. */
|
||
if (n_baseclasses)
|
||
{
|
||
tree pseudo_basetype = TREE_TYPE (base_layout_decl);
|
||
|
||
TREE_CHAIN (base_layout_decl) = TYPE_FIELDS (t);
|
||
TYPE_FIELDS (t) = base_layout_decl;
|
||
|
||
TYPE_SIZE (pseudo_basetype) = CLASSTYPE_SIZE (t);
|
||
TYPE_MODE (pseudo_basetype) = TYPE_MODE (t);
|
||
TYPE_ALIGN (pseudo_basetype) = CLASSTYPE_ALIGN (t);
|
||
DECL_ALIGN (base_layout_decl) = TYPE_ALIGN (pseudo_basetype);
|
||
/* Don't re-use old size. */
|
||
DECL_SIZE (base_layout_decl) = NULL_TREE;
|
||
}
|
||
|
||
layout_type (t);
|
||
|
||
{
|
||
tree field;
|
||
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_STATIC (field))
|
||
continue;
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
continue;
|
||
|
||
/* If this field is an anonymous union,
|
||
give each union-member the same position as the union has.
|
||
|
||
??? This is a real kludge because it makes the structure
|
||
of the types look strange. This feature is only used by
|
||
C++, which should have build_component_ref build two
|
||
COMPONENT_REF operations, one for the union and one for
|
||
the inner field. We set the offset of this field to zero
|
||
so that either the old or the correct method will work.
|
||
Setting DECL_FIELD_CONTEXT is wrong unless the inner fields are
|
||
moved into the type of this field, but nothing seems to break
|
||
by doing this. */
|
||
|
||
if (DECL_NAME (field) == NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
|
||
{
|
||
tree uelt = TYPE_FIELDS (TREE_TYPE (field));
|
||
for (; uelt; uelt = TREE_CHAIN (uelt))
|
||
{
|
||
if (TREE_CODE (uelt) != FIELD_DECL)
|
||
continue;
|
||
|
||
if (TREE_PRIVATE (uelt))
|
||
cp_pedwarn_at ("private member `%#D' in anonymous union",
|
||
uelt);
|
||
else if (TREE_PROTECTED (uelt))
|
||
cp_pedwarn_at ("protected member `%#D' in anonymous union",
|
||
uelt);
|
||
|
||
DECL_FIELD_CONTEXT (uelt) = DECL_FIELD_CONTEXT (field);
|
||
DECL_FIELD_BITPOS (uelt) = DECL_FIELD_BITPOS (field);
|
||
}
|
||
|
||
DECL_FIELD_BITPOS (field) = integer_zero_node;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (n_baseclasses)
|
||
TYPE_FIELDS (t) = TREE_CHAIN (TYPE_FIELDS (t));
|
||
|
||
/* C++: do not let empty structures exist. */
|
||
if (integer_zerop (TYPE_SIZE (t)))
|
||
TYPE_SIZE (t) = TYPE_SIZE (char_type_node);
|
||
|
||
/* Set the TYPE_DECL for this type to contain the right
|
||
value for DECL_OFFSET, so that we can use it as part
|
||
of a COMPONENT_REF for multiple inheritance. */
|
||
|
||
if (TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
|
||
layout_decl (TYPE_NAME (t), 0);
|
||
|
||
/* Now fix up any virtual base class types that we left lying
|
||
around. We must get these done before we try to lay out the
|
||
virtual function table. */
|
||
doing_hard_virtuals = 1;
|
||
pending_hard_virtuals = nreverse (pending_hard_virtuals);
|
||
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (t))
|
||
{
|
||
tree vbases;
|
||
|
||
max_has_virtual = layout_vbasetypes (t, max_has_virtual);
|
||
vbases = CLASSTYPE_VBASECLASSES (t);
|
||
CLASSTYPE_N_VBASECLASSES (t) = list_length (vbases);
|
||
|
||
/* The rtti code should do this. (mrs) */
|
||
#if 0
|
||
while (vbases)
|
||
{
|
||
/* Update rtti info with offsets for virtual baseclasses. */
|
||
if (flag_rtti && ! BINFO_NEW_VTABLE_MARKED (vbases))
|
||
prepare_fresh_vtable (vbases, t);
|
||
vbases = TREE_CHAIN (vbases);
|
||
}
|
||
#endif
|
||
|
||
{
|
||
/* Now fixup overrides of all functions in vtables from all
|
||
direct or indirect virtual base classes. */
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (t));
|
||
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
for (i = 0; i < n_baseclasses; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree basetype = BINFO_TYPE (base_binfo);
|
||
tree vbases;
|
||
|
||
vbases = CLASSTYPE_VBASECLASSES (basetype);
|
||
while (vbases)
|
||
{
|
||
merge_overrides (binfo_member (BINFO_TYPE (vbases),
|
||
CLASSTYPE_VBASECLASSES (t)),
|
||
vbases, 1, t);
|
||
vbases = TREE_CHAIN (vbases);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now fixup any virtual function entries from virtual bases
|
||
that have different deltas. */
|
||
vbases = CLASSTYPE_VBASECLASSES (t);
|
||
while (vbases)
|
||
{
|
||
/* We might be able to shorten the amount of work we do by
|
||
only doing this for vtables that come from virtual bases
|
||
that have differing offsets, but don't want to miss any
|
||
entries. */
|
||
fixup_vtable_deltas (vbases, 1, t);
|
||
vbases = TREE_CHAIN (vbases);
|
||
}
|
||
}
|
||
|
||
/* Set up the DECL_FIELD_BITPOS of the vfield if we need to, as we
|
||
might need to know it for setting up the offsets in the vtable
|
||
(or in thunks) below. */
|
||
if (vfield != NULL_TREE
|
||
&& DECL_FIELD_CONTEXT (vfield) != t)
|
||
{
|
||
tree binfo = get_binfo (DECL_FIELD_CONTEXT (vfield), t, 0);
|
||
tree offset = BINFO_OFFSET (binfo);
|
||
|
||
vfield = copy_node (vfield);
|
||
copy_lang_decl (vfield);
|
||
|
||
if (! integer_zerop (offset))
|
||
offset = size_binop (MULT_EXPR, offset, size_int (BITS_PER_UNIT));
|
||
DECL_FIELD_CONTEXT (vfield) = t;
|
||
DECL_CLASS_CONTEXT (vfield) = t;
|
||
DECL_FIELD_BITPOS (vfield)
|
||
= size_binop (PLUS_EXPR, offset, DECL_FIELD_BITPOS (vfield));
|
||
CLASSTYPE_VFIELD (t) = vfield;
|
||
}
|
||
|
||
#ifdef NOTQUITE
|
||
cp_warning ("Doing hard virtuals for %T...", t);
|
||
#endif
|
||
|
||
if (has_virtual > max_has_virtual)
|
||
max_has_virtual = has_virtual;
|
||
if (max_has_virtual > 0)
|
||
TYPE_VIRTUAL_P (t) = 1;
|
||
|
||
if (flag_rtti && TYPE_VIRTUAL_P (t) && !pending_hard_virtuals)
|
||
modify_all_vtables (t, NULL_TREE, NULL_TREE);
|
||
|
||
while (pending_hard_virtuals)
|
||
{
|
||
modify_all_vtables (t,
|
||
TREE_PURPOSE (pending_hard_virtuals),
|
||
TREE_VALUE (pending_hard_virtuals));
|
||
pending_hard_virtuals = TREE_CHAIN (pending_hard_virtuals);
|
||
}
|
||
doing_hard_virtuals = 0;
|
||
|
||
/* Under our model of GC, every C++ class gets its own virtual
|
||
function table, at least virtually. */
|
||
if (pending_virtuals || (flag_rtti && TYPE_VIRTUAL_P (t)))
|
||
{
|
||
pending_virtuals = nreverse (pending_virtuals);
|
||
/* We must enter these virtuals into the table. */
|
||
if (first_vfn_base_index < 0)
|
||
{
|
||
/* The first slot is for the rtti offset. */
|
||
pending_virtuals = tree_cons (NULL_TREE, NULL_TREE, pending_virtuals);
|
||
|
||
/* The second slot is for the tdesc pointer when thunks are used. */
|
||
if (flag_vtable_thunks)
|
||
pending_virtuals = tree_cons (NULL_TREE, NULL_TREE, pending_virtuals);
|
||
|
||
set_rtti_entry (pending_virtuals, integer_zero_node, t);
|
||
build_vtable (NULL_TREE, t);
|
||
}
|
||
else
|
||
{
|
||
tree offset;
|
||
/* Here we know enough to change the type of our virtual
|
||
function table, but we will wait until later this function. */
|
||
|
||
if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
|
||
build_vtable (TREE_VEC_ELT (TYPE_BINFO_BASETYPES (t), first_vfn_base_index), t);
|
||
|
||
offset = get_derived_offset (TYPE_BINFO (t), NULL_TREE);
|
||
offset = size_binop (MINUS_EXPR, integer_zero_node, offset);
|
||
set_rtti_entry (TYPE_BINFO_VIRTUALS (t), offset, t);
|
||
}
|
||
|
||
/* If this type has basetypes with constructors, then those
|
||
constructors might clobber the virtual function table. But
|
||
they don't if the derived class shares the exact vtable of the base
|
||
class. */
|
||
|
||
CLASSTYPE_NEEDS_VIRTUAL_REINIT (t) = 1;
|
||
}
|
||
else if (first_vfn_base_index >= 0)
|
||
{
|
||
tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (t), first_vfn_base_index);
|
||
/* This class contributes nothing new to the virtual function
|
||
table. However, it may have declared functions which
|
||
went into the virtual function table "inherited" from the
|
||
base class. If so, we grab a copy of those updated functions,
|
||
and pretend they are ours. */
|
||
|
||
/* See if we should steal the virtual info from base class. */
|
||
if (TYPE_BINFO_VTABLE (t) == NULL_TREE)
|
||
TYPE_BINFO_VTABLE (t) = BINFO_VTABLE (binfo);
|
||
if (TYPE_BINFO_VIRTUALS (t) == NULL_TREE)
|
||
TYPE_BINFO_VIRTUALS (t) = BINFO_VIRTUALS (binfo);
|
||
if (TYPE_BINFO_VTABLE (t) != BINFO_VTABLE (binfo))
|
||
CLASSTYPE_NEEDS_VIRTUAL_REINIT (t) = 1;
|
||
}
|
||
|
||
if (max_has_virtual || first_vfn_base_index >= 0)
|
||
{
|
||
CLASSTYPE_VSIZE (t) = has_virtual;
|
||
if (first_vfn_base_index >= 0)
|
||
{
|
||
if (pending_virtuals)
|
||
TYPE_BINFO_VIRTUALS (t) = chainon (TYPE_BINFO_VIRTUALS (t),
|
||
pending_virtuals);
|
||
}
|
||
else if (has_virtual)
|
||
{
|
||
TYPE_BINFO_VIRTUALS (t) = pending_virtuals;
|
||
if (write_virtuals >= 0)
|
||
DECL_VIRTUAL_P (TYPE_BINFO_VTABLE (t)) = 1;
|
||
}
|
||
}
|
||
|
||
/* Now lay out the virtual function table. */
|
||
if (has_virtual)
|
||
{
|
||
tree atype, itype;
|
||
|
||
if (TREE_TYPE (vfield) == ptr_type_node)
|
||
{
|
||
/* We must create a pointer to this table because
|
||
the one inherited from base class does not exist.
|
||
We will fill in the type when we know what it
|
||
should really be. Use `size_int' so values are memoized
|
||
in common cases. */
|
||
itype = build_index_type (size_int (has_virtual));
|
||
atype = build_array_type (vtable_entry_type, itype);
|
||
layout_type (atype);
|
||
TREE_TYPE (vfield) = build_pointer_type (atype);
|
||
}
|
||
else
|
||
{
|
||
atype = TREE_TYPE (TREE_TYPE (vfield));
|
||
|
||
if (has_virtual != TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))))
|
||
{
|
||
/* We must extend (or create) the boundaries on this array,
|
||
because we picked up virtual functions from multiple
|
||
base classes. */
|
||
itype = build_index_type (size_int (has_virtual));
|
||
atype = build_array_type (vtable_entry_type, itype);
|
||
layout_type (atype);
|
||
vfield = copy_node (vfield);
|
||
TREE_TYPE (vfield) = build_pointer_type (atype);
|
||
}
|
||
}
|
||
|
||
CLASSTYPE_VFIELD (t) = vfield;
|
||
if (TREE_TYPE (TYPE_BINFO_VTABLE (t)) != atype)
|
||
{
|
||
TREE_TYPE (TYPE_BINFO_VTABLE (t)) = atype;
|
||
DECL_SIZE (TYPE_BINFO_VTABLE (t)) = 0;
|
||
layout_decl (TYPE_BINFO_VTABLE (t), 0);
|
||
/* At one time the vtable info was grabbed 2 words at a time. This
|
||
fails on sparc unless you have 8-byte alignment. (tiemann) */
|
||
DECL_ALIGN (TYPE_BINFO_VTABLE (t))
|
||
= MAX (TYPE_ALIGN (double_type_node),
|
||
DECL_ALIGN (TYPE_BINFO_VTABLE (t)));
|
||
}
|
||
}
|
||
else if (first_vfn_base_index >= 0)
|
||
CLASSTYPE_VFIELD (t) = vfield;
|
||
CLASSTYPE_VFIELDS (t) = vfields;
|
||
|
||
finish_struct_bits (t, max_has_virtual);
|
||
|
||
/* Complete the rtl for any static member objects of the type we're
|
||
working on. */
|
||
for (x = fields; x; x = TREE_CHAIN (x))
|
||
{
|
||
if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
|
||
&& TREE_TYPE (x) == t)
|
||
{
|
||
DECL_MODE (x) = TYPE_MODE (t);
|
||
make_decl_rtl (x, NULL, 0);
|
||
}
|
||
}
|
||
|
||
/* Now add the tags, if any, to the list of TYPE_DECLs
|
||
defined for this type. */
|
||
if (CLASSTYPE_TAGS (t))
|
||
{
|
||
x = CLASSTYPE_TAGS (t);
|
||
last_x = tree_last (TYPE_FIELDS (t));
|
||
while (x)
|
||
{
|
||
tree tag = TYPE_NAME (TREE_VALUE (x));
|
||
|
||
/* Check to see if it is already there. This will be the case if
|
||
was do enum { red; } color; */
|
||
if (chain_member (tag, TYPE_FIELDS (t)))
|
||
{
|
||
x = TREE_CHAIN (x);
|
||
continue;
|
||
}
|
||
|
||
#ifdef DWARF_DEBUGGING_INFO
|
||
if (write_symbols == DWARF_DEBUG)
|
||
{
|
||
/* Notify dwarfout.c that this TYPE_DECL node represent a
|
||
gratuitous typedef. */
|
||
DECL_IGNORED_P (tag) = 1;
|
||
}
|
||
#endif /* DWARF_DEBUGGING_INFO */
|
||
|
||
TREE_NONLOCAL_FLAG (TREE_VALUE (x)) = 0;
|
||
x = TREE_CHAIN (x);
|
||
last_x = chainon (last_x, tag);
|
||
}
|
||
if (TYPE_FIELDS (t) == NULL_TREE)
|
||
TYPE_FIELDS (t) = last_x;
|
||
CLASSTYPE_LOCAL_TYPEDECLS (t) = 1;
|
||
}
|
||
|
||
if (TYPE_HAS_CONSTRUCTOR (t))
|
||
{
|
||
tree vfields = CLASSTYPE_VFIELDS (t);
|
||
|
||
while (vfields)
|
||
{
|
||
/* Mark the fact that constructor for T
|
||
could affect anybody inheriting from T
|
||
who wants to initialize vtables for VFIELDS's type. */
|
||
if (VF_DERIVED_VALUE (vfields))
|
||
TREE_ADDRESSABLE (vfields) = 1;
|
||
vfields = TREE_CHAIN (vfields);
|
||
}
|
||
if (any_default_members != 0)
|
||
build_class_init_list (t);
|
||
}
|
||
else if (TYPE_NEEDS_CONSTRUCTING (t))
|
||
build_class_init_list (t);
|
||
|
||
if (! IS_SIGNATURE (t))
|
||
embrace_waiting_friends (t);
|
||
|
||
/* Write out inline function definitions. */
|
||
do_inline_function_hair (t, CLASSTYPE_INLINE_FRIENDS (t));
|
||
CLASSTYPE_INLINE_FRIENDS (t) = 0;
|
||
|
||
if (CLASSTYPE_VSIZE (t) != 0)
|
||
{
|
||
#if 0
|
||
/* This is now done above. */
|
||
if (DECL_FIELD_CONTEXT (vfield) != t)
|
||
{
|
||
tree binfo = get_binfo (DECL_FIELD_CONTEXT (vfield), t, 0);
|
||
tree offset = BINFO_OFFSET (binfo);
|
||
|
||
vfield = copy_node (vfield);
|
||
copy_lang_decl (vfield);
|
||
|
||
if (! integer_zerop (offset))
|
||
offset = size_binop (MULT_EXPR, offset, size_int (BITS_PER_UNIT));
|
||
DECL_FIELD_CONTEXT (vfield) = t;
|
||
DECL_CLASS_CONTEXT (vfield) = t;
|
||
DECL_FIELD_BITPOS (vfield)
|
||
= size_binop (PLUS_EXPR, offset, DECL_FIELD_BITPOS (vfield));
|
||
CLASSTYPE_VFIELD (t) = vfield;
|
||
}
|
||
#endif
|
||
|
||
/* In addition to this one, all the other vfields should be listed. */
|
||
/* Before that can be done, we have to have FIELD_DECLs for them, and
|
||
a place to find them. */
|
||
TYPE_NONCOPIED_PARTS (t) = build_tree_list (default_conversion (TYPE_BINFO_VTABLE (t)), vfield);
|
||
|
||
if (warn_nonvdtor && TYPE_HAS_DESTRUCTOR (t)
|
||
&& DECL_VINDEX (TREE_VEC_ELT (method_vec, 0)) == NULL_TREE)
|
||
cp_warning ("`%#T' has virtual functions but non-virtual destructor",
|
||
t);
|
||
}
|
||
|
||
/* Make the rtl for any new vtables we have created, and unmark
|
||
the base types we marked. */
|
||
finish_vtbls (TYPE_BINFO (t), 1, t);
|
||
TYPE_BEING_DEFINED (t) = 0;
|
||
hack_incomplete_structures (t);
|
||
|
||
#if 0
|
||
if (TYPE_NAME (t) && TYPE_IDENTIFIER (t))
|
||
undo_template_name_overload (TYPE_IDENTIFIER (t), 1);
|
||
#endif
|
||
if (current_class_type)
|
||
popclass (0);
|
||
else
|
||
error ("trying to finish struct, but kicked out due to previous parse errors.");
|
||
|
||
resume_momentary (old);
|
||
|
||
if (flag_cadillac)
|
||
cadillac_finish_struct (t);
|
||
|
||
#if 0
|
||
/* This has to be done after we have sorted out what to do with
|
||
the enclosing type. */
|
||
if (write_symbols != DWARF_DEBUG)
|
||
{
|
||
/* Be smarter about nested classes here. If a type is nested,
|
||
only output it if we would output the enclosing type. */
|
||
if (DECL_CONTEXT (TYPE_NAME (t))
|
||
&& TREE_CODE_CLASS (TREE_CODE (DECL_CONTEXT (TYPE_NAME (t)))) == 't')
|
||
DECL_IGNORED_P (TYPE_NAME (t)) = TREE_ASM_WRITTEN (TYPE_NAME (t));
|
||
}
|
||
#endif
|
||
|
||
if (write_symbols != DWARF_DEBUG)
|
||
{
|
||
/* If the type has methods, we want to think about cutting down
|
||
the amount of symbol table stuff we output. The value stored in
|
||
the TYPE_DECL's DECL_IGNORED_P slot is a first approximation.
|
||
For example, if a member function is seen and we decide to
|
||
write out that member function, then we can change the value
|
||
of the DECL_IGNORED_P slot, and the type will be output when
|
||
that member function's debug info is written out. */
|
||
if (CLASSTYPE_METHOD_VEC (t))
|
||
{
|
||
extern tree pending_vtables;
|
||
|
||
/* Don't output full info about any type
|
||
which does not have its implementation defined here. */
|
||
if (TYPE_VIRTUAL_P (t) && write_virtuals == 2)
|
||
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t))
|
||
= (value_member (TYPE_IDENTIFIER (t), pending_vtables) == 0);
|
||
else if (CLASSTYPE_INTERFACE_ONLY (t))
|
||
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t)) = 1;
|
||
else if (CLASSTYPE_INTERFACE_UNKNOWN (t))
|
||
/* Only a first approximation! */
|
||
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t)) = 1;
|
||
}
|
||
else if (CLASSTYPE_INTERFACE_ONLY (t))
|
||
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t)) = 1;
|
||
}
|
||
|
||
/* Finish debugging output for this type. */
|
||
rest_of_type_compilation (t, toplevel_bindings_p ());
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
finish_struct (t, list_of_fieldlists, warn_anon)
|
||
tree t;
|
||
tree list_of_fieldlists;
|
||
int warn_anon;
|
||
{
|
||
tree fields = NULL_TREE, fn_fields, *tail;
|
||
tree *tail_user_methods = &CLASSTYPE_METHODS (t);
|
||
tree name = TYPE_NAME (t);
|
||
tree x, last_x = NULL_TREE;
|
||
enum access_type access;
|
||
|
||
if (TREE_CODE (name) == TYPE_DECL)
|
||
{
|
||
extern int lineno;
|
||
|
||
DECL_SOURCE_FILE (name) = input_filename;
|
||
/* For TYPE_DECL that are not typedefs (those marked with a line
|
||
number of zero, we don't want to mark them as real typedefs.
|
||
If this fails one needs to make sure real typedefs have a
|
||
previous line number, even if it is wrong, that way the below
|
||
will fill in the right line number. (mrs) */
|
||
if (DECL_SOURCE_LINE (name))
|
||
DECL_SOURCE_LINE (name) = lineno;
|
||
CLASSTYPE_SOURCE_LINE (t) = lineno;
|
||
name = DECL_NAME (name);
|
||
}
|
||
|
||
/* Append the fields we need for constructing signature tables. */
|
||
if (IS_SIGNATURE (t))
|
||
append_signature_fields (list_of_fieldlists);
|
||
|
||
tail = &fn_fields;
|
||
if (last_x && list_of_fieldlists)
|
||
TREE_CHAIN (last_x) = TREE_VALUE (list_of_fieldlists);
|
||
|
||
/* For signatures, we made all methods `public' in the parser and
|
||
reported an error if a access specifier was used. */
|
||
if (CLASSTYPE_DECLARED_CLASS (t) == 0)
|
||
{
|
||
if (list_of_fieldlists
|
||
&& TREE_PURPOSE (list_of_fieldlists) == (tree)access_default)
|
||
TREE_PURPOSE (list_of_fieldlists) = (tree)access_public;
|
||
}
|
||
else if (list_of_fieldlists
|
||
&& TREE_PURPOSE (list_of_fieldlists) == (tree)access_default)
|
||
TREE_PURPOSE (list_of_fieldlists) = (tree)access_private;
|
||
|
||
while (list_of_fieldlists)
|
||
{
|
||
access = (enum access_type)TREE_PURPOSE (list_of_fieldlists);
|
||
|
||
for (x = TREE_VALUE (list_of_fieldlists); x; x = TREE_CHAIN (x))
|
||
{
|
||
TREE_PRIVATE (x) = access == access_private;
|
||
TREE_PROTECTED (x) = access == access_protected;
|
||
|
||
/* Check for inconsistent use of this name in the class body.
|
||
Enums, types and static vars have already been checked. */
|
||
if (TREE_CODE (x) != TYPE_DECL
|
||
&& TREE_CODE (x) != CONST_DECL && TREE_CODE (x) != VAR_DECL)
|
||
{
|
||
tree name = DECL_NAME (x);
|
||
tree icv;
|
||
|
||
/* Don't get confused by access decls. */
|
||
if (name && TREE_CODE (name) == IDENTIFIER_NODE)
|
||
icv = IDENTIFIER_CLASS_VALUE (name);
|
||
else
|
||
icv = NULL_TREE;
|
||
|
||
if (icv
|
||
/* Don't complain about constructors. */
|
||
&& name != constructor_name (current_class_type)
|
||
/* Or inherited names. */
|
||
&& id_in_current_class (name)
|
||
/* Or shadowed tags. */
|
||
&& !(TREE_CODE (icv) == TYPE_DECL
|
||
&& DECL_CONTEXT (icv) == t))
|
||
{
|
||
cp_error_at ("declaration of identifier `%D' as `%+#D'",
|
||
name, x);
|
||
cp_error_at ("conflicts with other use in class as `%#D'",
|
||
icv);
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (x) == FUNCTION_DECL)
|
||
{
|
||
if (last_x)
|
||
TREE_CHAIN (last_x) = TREE_CHAIN (x);
|
||
/* Link x onto end of fn_fields and CLASSTYPE_METHODS. */
|
||
*tail = x;
|
||
tail = &TREE_CHAIN (x);
|
||
*tail_user_methods = x;
|
||
tail_user_methods = &DECL_NEXT_METHOD (x);
|
||
continue;
|
||
}
|
||
|
||
#if 0
|
||
/* Handle access declarations. */
|
||
if (DECL_NAME (x) && TREE_CODE (DECL_NAME (x)) == SCOPE_REF)
|
||
{
|
||
tree n = DECL_NAME (x);
|
||
x = build_decl
|
||
(USING_DECL, DECL_NAME (TREE_OPERAND (n, 1)), TREE_TYPE (x));
|
||
DECL_RESULT (x) = n;
|
||
}
|
||
#endif
|
||
|
||
if (! fields)
|
||
fields = x;
|
||
last_x = x;
|
||
}
|
||
list_of_fieldlists = TREE_CHAIN (list_of_fieldlists);
|
||
/* link the tail while we have it! */
|
||
if (last_x)
|
||
{
|
||
TREE_CHAIN (last_x) = NULL_TREE;
|
||
|
||
if (list_of_fieldlists
|
||
&& TREE_VALUE (list_of_fieldlists)
|
||
&& TREE_CODE (TREE_VALUE (list_of_fieldlists)) != FUNCTION_DECL)
|
||
TREE_CHAIN (last_x) = TREE_VALUE (list_of_fieldlists);
|
||
}
|
||
}
|
||
|
||
*tail = NULL_TREE;
|
||
*tail_user_methods = NULL_TREE;
|
||
TYPE_FIELDS (t) = fields;
|
||
|
||
if (0 && processing_template_defn)
|
||
{
|
||
CLASSTYPE_METHOD_VEC (t) = finish_struct_methods (t, fn_fields, 1);
|
||
return t;
|
||
}
|
||
else
|
||
return finish_struct_1 (t, warn_anon);
|
||
}
|
||
|
||
/* Return non-zero if the effective type of INSTANCE is static.
|
||
Used to determine whether the virtual function table is needed
|
||
or not.
|
||
|
||
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless
|
||
of our knowledge of its type. */
|
||
int
|
||
resolves_to_fixed_type_p (instance, nonnull)
|
||
tree instance;
|
||
int *nonnull;
|
||
{
|
||
switch (TREE_CODE (instance))
|
||
{
|
||
case INDIRECT_REF:
|
||
/* Check that we are not going through a cast of some sort. */
|
||
if (TREE_TYPE (instance)
|
||
== TREE_TYPE (TREE_TYPE (TREE_OPERAND (instance, 0))))
|
||
instance = TREE_OPERAND (instance, 0);
|
||
/* fall through... */
|
||
case CALL_EXPR:
|
||
/* This is a call to a constructor, hence it's never zero. */
|
||
if (TREE_HAS_CONSTRUCTOR (instance))
|
||
{
|
||
if (nonnull)
|
||
*nonnull = 1;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
|
||
case SAVE_EXPR:
|
||
/* This is a call to a constructor, hence it's never zero. */
|
||
if (TREE_HAS_CONSTRUCTOR (instance))
|
||
{
|
||
if (nonnull)
|
||
*nonnull = 1;
|
||
return 1;
|
||
}
|
||
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
|
||
|
||
case RTL_EXPR:
|
||
/* This is a call to `new', hence it's never zero. */
|
||
if (TREE_CALLS_NEW (instance))
|
||
{
|
||
if (nonnull)
|
||
*nonnull = 1;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
|
||
/* Propagate nonnull. */
|
||
resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
|
||
if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
|
||
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
|
||
return 0;
|
||
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
|
||
|
||
case ADDR_EXPR:
|
||
if (nonnull)
|
||
*nonnull = 1;
|
||
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
|
||
|
||
case COMPONENT_REF:
|
||
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 1), nonnull);
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
|
||
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
|
||
/* fall through... */
|
||
case VAR_DECL:
|
||
case FIELD_DECL:
|
||
if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
|
||
&& IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
|
||
{
|
||
if (nonnull)
|
||
*nonnull = 1;
|
||
return 1;
|
||
}
|
||
/* fall through... */
|
||
case TARGET_EXPR:
|
||
case PARM_DECL:
|
||
if (IS_AGGR_TYPE (TREE_TYPE (instance)))
|
||
{
|
||
if (nonnull)
|
||
*nonnull = 1;
|
||
return 1;
|
||
}
|
||
else if (nonnull)
|
||
{
|
||
if (instance == current_class_decl
|
||
&& flag_this_is_variable <= 0)
|
||
{
|
||
/* Some people still use `this = 0' inside destructors. */
|
||
*nonnull = ! DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (current_function_decl));
|
||
/* In a constructor, we know our type. */
|
||
if (flag_this_is_variable < 0)
|
||
return 1;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
|
||
/* Reference variables should be references to objects. */
|
||
*nonnull = 1;
|
||
}
|
||
return 0;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
void
|
||
init_class_processing ()
|
||
{
|
||
current_class_depth = 0;
|
||
current_class_stacksize = 10;
|
||
current_class_base = (tree *)xmalloc(current_class_stacksize * sizeof (tree));
|
||
current_class_stack = current_class_base;
|
||
|
||
current_lang_stacksize = 10;
|
||
current_lang_base = (tree *)xmalloc(current_lang_stacksize * sizeof (tree));
|
||
current_lang_stack = current_lang_base;
|
||
|
||
/* Keep these values lying around. */
|
||
the_null_vtable_entry = build_vtable_entry (integer_zero_node, integer_zero_node);
|
||
base_layout_decl = build_lang_field_decl (FIELD_DECL, NULL_TREE, error_mark_node);
|
||
TREE_TYPE (base_layout_decl) = make_node (RECORD_TYPE);
|
||
|
||
gcc_obstack_init (&class_obstack);
|
||
}
|
||
|
||
/* Set current scope to NAME. CODE tells us if this is a
|
||
STRUCT, UNION, or ENUM environment.
|
||
|
||
NAME may end up being NULL_TREE if this is an anonymous or
|
||
late-bound struct (as in "struct { ... } foo;") */
|
||
|
||
/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE to
|
||
appropriate values, found by looking up the type definition of
|
||
NAME (as a CODE).
|
||
|
||
If MODIFY is 1, we set IDENTIFIER_CLASS_VALUE's of names
|
||
which can be seen locally to the class. They are shadowed by
|
||
any subsequent local declaration (including parameter names).
|
||
|
||
If MODIFY is 2, we set IDENTIFIER_CLASS_VALUE's of names
|
||
which have static meaning (i.e., static members, static
|
||
member functions, enum declarations, etc).
|
||
|
||
If MODIFY is 3, we set IDENTIFIER_CLASS_VALUE of names
|
||
which can be seen locally to the class (as in 1), but
|
||
know that we are doing this for declaration purposes
|
||
(i.e. friend foo::bar (int)).
|
||
|
||
So that we may avoid calls to lookup_name, we cache the _TYPE
|
||
nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
|
||
|
||
For multiple inheritance, we perform a two-pass depth-first search
|
||
of the type lattice. The first pass performs a pre-order search,
|
||
marking types after the type has had its fields installed in
|
||
the appropriate IDENTIFIER_CLASS_VALUE slot. The second pass merely
|
||
unmarks the marked types. If a field or member function name
|
||
appears in an ambiguous way, the IDENTIFIER_CLASS_VALUE of
|
||
that name becomes `error_mark_node'. */
|
||
|
||
void
|
||
pushclass (type, modify)
|
||
tree type;
|
||
int modify;
|
||
{
|
||
push_memoized_context (type, modify);
|
||
|
||
current_class_depth++;
|
||
*current_class_stack++ = current_class_name;
|
||
*current_class_stack++ = current_class_type;
|
||
if (current_class_stack >= current_class_base + current_class_stacksize)
|
||
{
|
||
current_class_base =
|
||
(tree *)xrealloc (current_class_base,
|
||
sizeof (tree) * (current_class_stacksize + 10));
|
||
current_class_stack = current_class_base + current_class_stacksize;
|
||
current_class_stacksize += 10;
|
||
}
|
||
|
||
current_class_name = TYPE_NAME (type);
|
||
if (TREE_CODE (current_class_name) == TYPE_DECL)
|
||
current_class_name = DECL_NAME (current_class_name);
|
||
current_class_type = type;
|
||
|
||
if (previous_class_type != NULL_TREE
|
||
&& (type != previous_class_type || TYPE_SIZE (previous_class_type) == NULL_TREE)
|
||
&& current_class_depth == 1)
|
||
{
|
||
/* Forcibly remove any old class remnants. */
|
||
popclass (-1);
|
||
previous_class_type = NULL_TREE;
|
||
}
|
||
|
||
pushlevel_class ();
|
||
|
||
if (modify)
|
||
{
|
||
tree tags;
|
||
tree this_fndecl = current_function_decl;
|
||
|
||
if (current_function_decl
|
||
&& DECL_CONTEXT (current_function_decl)
|
||
&& TREE_CODE (DECL_CONTEXT (current_function_decl)) == FUNCTION_DECL)
|
||
current_function_decl = DECL_CONTEXT (current_function_decl);
|
||
else
|
||
current_function_decl = NULL_TREE;
|
||
|
||
if (TREE_CODE (type) == UNINSTANTIATED_P_TYPE)
|
||
declare_uninstantiated_type_level ();
|
||
else if (type != previous_class_type || current_class_depth > 1)
|
||
{
|
||
build_mi_matrix (type);
|
||
push_class_decls (type);
|
||
free_mi_matrix ();
|
||
if (current_class_depth == 1)
|
||
previous_class_type = type;
|
||
}
|
||
else
|
||
{
|
||
tree item;
|
||
|
||
/* Hooray, we successfully cached; let's just install the
|
||
cached class_shadowed list, and walk through it to get the
|
||
IDENTIFIER_TYPE_VALUEs correct. */
|
||
set_class_shadows (previous_class_values);
|
||
for (item = previous_class_values; item; item = TREE_CHAIN (item))
|
||
{
|
||
tree id = TREE_PURPOSE (item);
|
||
tree decl = IDENTIFIER_CLASS_VALUE (id);
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
set_identifier_type_value (id, TREE_TYPE (decl));
|
||
}
|
||
unuse_fields (type);
|
||
}
|
||
|
||
if (IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (type)))
|
||
overload_template_name (current_class_name, 0);
|
||
|
||
for (tags = CLASSTYPE_TAGS (type); tags; tags = TREE_CHAIN (tags))
|
||
{
|
||
TREE_NONLOCAL_FLAG (TREE_VALUE (tags)) = 1;
|
||
if (! TREE_PURPOSE (tags))
|
||
continue;
|
||
pushtag (TREE_PURPOSE (tags), TREE_VALUE (tags), 0);
|
||
}
|
||
|
||
current_function_decl = this_fndecl;
|
||
}
|
||
|
||
if (flag_cadillac)
|
||
cadillac_push_class (type);
|
||
}
|
||
|
||
/* Get out of the current class scope. If we were in a class scope
|
||
previously, that is the one popped to. The flag MODIFY tells whether
|
||
the current scope declarations needs to be modified as a result of
|
||
popping to the previous scope. 0 is used for class definitions. */
|
||
void
|
||
popclass (modify)
|
||
int modify;
|
||
{
|
||
if (flag_cadillac)
|
||
cadillac_pop_class ();
|
||
|
||
if (modify < 0)
|
||
{
|
||
/* Back this old class out completely. */
|
||
tree tags = CLASSTYPE_TAGS (previous_class_type);
|
||
tree t;
|
||
|
||
/* This code can be seen as a cache miss. When we've cached a
|
||
class' scope's bindings and we can't use them, we need to reset
|
||
them. This is it! */
|
||
for (t = previous_class_values; t; t = TREE_CHAIN (t))
|
||
IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (t)) = NULL_TREE;
|
||
while (tags)
|
||
{
|
||
TREE_NONLOCAL_FLAG (TREE_VALUE (tags)) = 0;
|
||
tags = TREE_CHAIN (tags);
|
||
}
|
||
goto ret;
|
||
}
|
||
|
||
if (modify)
|
||
{
|
||
/* Just remove from this class what didn't make
|
||
it into IDENTIFIER_CLASS_VALUE. */
|
||
tree tags = CLASSTYPE_TAGS (current_class_type);
|
||
|
||
while (tags)
|
||
{
|
||
TREE_NONLOCAL_FLAG (TREE_VALUE (tags)) = 0;
|
||
tags = TREE_CHAIN (tags);
|
||
}
|
||
if (IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (current_class_type)))
|
||
undo_template_name_overload (current_class_name, 0);
|
||
}
|
||
|
||
/* Force clearing of IDENTIFIER_CLASS_VALUEs after a class definition,
|
||
since not all class decls make it there currently. */
|
||
poplevel_class (! modify);
|
||
|
||
/* Since poplevel_class does the popping of class decls nowadays,
|
||
this really only frees the obstack used for these decls.
|
||
That's why it had to be moved down here. */
|
||
if (modify)
|
||
pop_class_decls (current_class_type);
|
||
|
||
current_class_depth--;
|
||
current_class_type = *--current_class_stack;
|
||
current_class_name = *--current_class_stack;
|
||
|
||
pop_memoized_context (modify);
|
||
|
||
ret:
|
||
;
|
||
}
|
||
|
||
/* When entering a class scope, all enclosing class scopes' names with
|
||
static meaning (static variables, static functions, types and enumerators)
|
||
have to be visible. This recursive function calls pushclass for all
|
||
enclosing class contexts until global or a local scope is reached.
|
||
TYPE is the enclosed class and MODIFY is equivalent with the pushclass
|
||
formal of the same name. */
|
||
|
||
void
|
||
push_nested_class (type, modify)
|
||
tree type;
|
||
int modify;
|
||
{
|
||
tree context;
|
||
|
||
if (type == NULL_TREE || type == error_mark_node || ! IS_AGGR_TYPE (type))
|
||
return;
|
||
|
||
context = DECL_CONTEXT (TYPE_NAME (type));
|
||
|
||
if (context && TREE_CODE (context) == RECORD_TYPE)
|
||
push_nested_class (context, 2);
|
||
pushclass (type, modify);
|
||
}
|
||
|
||
/* Undoes a push_nested_class call. MODIFY is passed on to popclass. */
|
||
|
||
void
|
||
pop_nested_class (modify)
|
||
int modify;
|
||
{
|
||
tree context = DECL_CONTEXT (TYPE_NAME (current_class_type));
|
||
|
||
popclass (modify);
|
||
if (context && TREE_CODE (context) == RECORD_TYPE)
|
||
pop_nested_class (modify);
|
||
}
|
||
|
||
/* Set global variables CURRENT_LANG_NAME to appropriate value
|
||
so that behavior of name-mangling machinery is correct. */
|
||
|
||
void
|
||
push_lang_context (name)
|
||
tree name;
|
||
{
|
||
*current_lang_stack++ = current_lang_name;
|
||
if (current_lang_stack >= current_lang_base + current_lang_stacksize)
|
||
{
|
||
current_lang_base =
|
||
(tree *)xrealloc (current_lang_base,
|
||
sizeof (tree) * (current_lang_stacksize + 10));
|
||
current_lang_stack = current_lang_base + current_lang_stacksize;
|
||
current_lang_stacksize += 10;
|
||
}
|
||
|
||
if (name == lang_name_cplusplus)
|
||
{
|
||
strict_prototype = strict_prototypes_lang_cplusplus;
|
||
current_lang_name = name;
|
||
}
|
||
else if (name == lang_name_c)
|
||
{
|
||
strict_prototype = strict_prototypes_lang_c;
|
||
current_lang_name = name;
|
||
}
|
||
else
|
||
error ("language string `\"%s\"' not recognized", IDENTIFIER_POINTER (name));
|
||
|
||
if (flag_cadillac)
|
||
cadillac_push_lang (name);
|
||
}
|
||
|
||
/* Get out of the current language scope. */
|
||
void
|
||
pop_lang_context ()
|
||
{
|
||
if (flag_cadillac)
|
||
cadillac_pop_lang ();
|
||
|
||
current_lang_name = *--current_lang_stack;
|
||
if (current_lang_name == lang_name_cplusplus)
|
||
strict_prototype = strict_prototypes_lang_cplusplus;
|
||
else if (current_lang_name == lang_name_c)
|
||
strict_prototype = strict_prototypes_lang_c;
|
||
}
|
||
|
||
int
|
||
root_lang_context_p ()
|
||
{
|
||
return current_lang_stack == current_lang_base;
|
||
}
|
||
|
||
/* Type instantiation routines. */
|
||
|
||
/* This function will instantiate the type of the expression given
|
||
in RHS to match the type of LHSTYPE. If LHSTYPE is NULL_TREE,
|
||
or other errors exist, the TREE_TYPE of RHS will be ERROR_MARK_NODE.
|
||
|
||
This function is used in build_modify_expr, convert_arguments,
|
||
build_c_cast, and compute_conversion_costs. */
|
||
tree
|
||
instantiate_type (lhstype, rhs, complain)
|
||
tree lhstype, rhs;
|
||
int complain;
|
||
{
|
||
if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
|
||
{
|
||
if (complain)
|
||
error ("not enough type information");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
|
||
return rhs;
|
||
|
||
/* This should really only be used when attempting to distinguish
|
||
what sort of a pointer to function we have. For now, any
|
||
arithmetic operation which is not supported on pointers
|
||
is rejected as an error. */
|
||
|
||
switch (TREE_CODE (rhs))
|
||
{
|
||
case TYPE_EXPR:
|
||
case CONVERT_EXPR:
|
||
case SAVE_EXPR:
|
||
case CONSTRUCTOR:
|
||
case BUFFER_REF:
|
||
my_friendly_abort (177);
|
||
return error_mark_node;
|
||
|
||
case INDIRECT_REF:
|
||
case ARRAY_REF:
|
||
TREE_TYPE (rhs) = lhstype;
|
||
lhstype = build_pointer_type (lhstype);
|
||
TREE_OPERAND (rhs, 0)
|
||
= instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
|
||
if (TREE_OPERAND (rhs, 0) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return rhs;
|
||
|
||
case NOP_EXPR:
|
||
rhs = copy_node (TREE_OPERAND (rhs, 0));
|
||
TREE_TYPE (rhs) = unknown_type_node;
|
||
return instantiate_type (lhstype, rhs, complain);
|
||
|
||
case COMPONENT_REF:
|
||
{
|
||
tree field = TREE_OPERAND (rhs, 1);
|
||
if (TREE_CODE (field) == TREE_LIST)
|
||
{
|
||
tree function = instantiate_type (lhstype, field, complain);
|
||
if (function == error_mark_node)
|
||
return error_mark_node;
|
||
my_friendly_assert (TREE_CODE (function) == FUNCTION_DECL, 185);
|
||
if (DECL_VINDEX (function))
|
||
{
|
||
tree base = TREE_OPERAND (rhs, 0);
|
||
tree base_ptr = build_unary_op (ADDR_EXPR, base, 0);
|
||
if (base_ptr == error_mark_node)
|
||
return error_mark_node;
|
||
base_ptr = convert_pointer_to (DECL_CONTEXT (function), base_ptr);
|
||
if (base_ptr == error_mark_node)
|
||
return error_mark_node;
|
||
return build_vfn_ref (&base_ptr, base, DECL_VINDEX (function));
|
||
}
|
||
return function;
|
||
}
|
||
|
||
my_friendly_assert (TREE_CODE (field) == FIELD_DECL, 178);
|
||
my_friendly_assert (!(TREE_CODE (TREE_TYPE (field)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (field)) == METHOD_TYPE),
|
||
179);
|
||
|
||
TREE_TYPE (rhs) = lhstype;
|
||
/* First look for an exact match */
|
||
|
||
while (field && TREE_TYPE (field) != lhstype)
|
||
field = DECL_CHAIN (field);
|
||
if (field)
|
||
{
|
||
TREE_OPERAND (rhs, 1) = field;
|
||
return rhs;
|
||
}
|
||
|
||
/* No exact match found, look for a compatible function. */
|
||
field = TREE_OPERAND (rhs, 1);
|
||
while (field && ! comptypes (lhstype, TREE_TYPE (field), 0))
|
||
field = DECL_CHAIN (field);
|
||
if (field)
|
||
{
|
||
TREE_OPERAND (rhs, 1) = field;
|
||
field = DECL_CHAIN (field);
|
||
while (field && ! comptypes (lhstype, TREE_TYPE (field), 0))
|
||
field = DECL_CHAIN (field);
|
||
if (field)
|
||
{
|
||
if (complain)
|
||
error ("ambiguous overload for COMPONENT_REF requested");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (complain)
|
||
error ("no appropriate overload exists for COMPONENT_REF");
|
||
return error_mark_node;
|
||
}
|
||
return rhs;
|
||
}
|
||
|
||
case TREE_LIST:
|
||
{
|
||
tree elem, baselink, name;
|
||
int globals = overloaded_globals_p (rhs);
|
||
|
||
#if 0 /* obsolete */
|
||
/* If there's only one function we know about, return that. */
|
||
if (globals > 0 && TREE_CHAIN (rhs) == NULL_TREE)
|
||
return TREE_VALUE (rhs);
|
||
#endif
|
||
|
||
/* First look for an exact match. Search either overloaded
|
||
functions or member functions. May have to undo what
|
||
`default_conversion' might do to lhstype. */
|
||
|
||
if (TYPE_PTRMEMFUNC_P (lhstype))
|
||
lhstype = TYPE_PTRMEMFUNC_FN_TYPE (lhstype);
|
||
|
||
if (TREE_CODE (lhstype) == POINTER_TYPE)
|
||
if (TREE_CODE (TREE_TYPE (lhstype)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (lhstype)) == METHOD_TYPE)
|
||
lhstype = TREE_TYPE (lhstype);
|
||
else
|
||
{
|
||
if (complain)
|
||
error ("invalid type combination for overload");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (lhstype) != FUNCTION_TYPE && globals > 0)
|
||
{
|
||
if (complain)
|
||
cp_error ("cannot resolve overloaded function `%D' based on non-function type",
|
||
TREE_PURPOSE (rhs));
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (globals > 0)
|
||
{
|
||
elem = get_first_fn (rhs);
|
||
while (elem)
|
||
if (! comptypes (lhstype, TREE_TYPE (elem), 1))
|
||
elem = DECL_CHAIN (elem);
|
||
else
|
||
return elem;
|
||
|
||
/* No exact match found, look for a compatible template. */
|
||
{
|
||
tree save_elem = 0;
|
||
for (elem = get_first_fn (rhs); elem; elem = DECL_CHAIN (elem))
|
||
if (TREE_CODE (elem) == TEMPLATE_DECL)
|
||
{
|
||
int n = TREE_VEC_LENGTH (DECL_TEMPLATE_PARMS (elem));
|
||
tree *t = (tree *) alloca (sizeof (tree) * n);
|
||
int i, d = 0;
|
||
i = type_unification (DECL_TEMPLATE_PARMS (elem), t,
|
||
TYPE_ARG_TYPES (TREE_TYPE (elem)),
|
||
TYPE_ARG_TYPES (lhstype), &d, 0);
|
||
if (i == 0)
|
||
{
|
||
if (save_elem)
|
||
{
|
||
cp_error ("ambiguous template instantiation converting to `%#T'", lhstype);
|
||
return error_mark_node;
|
||
}
|
||
save_elem = instantiate_template (elem, t);
|
||
/* Check the return type. */
|
||
if (! comptypes (TREE_TYPE (lhstype),
|
||
TREE_TYPE (TREE_TYPE (save_elem)), 1))
|
||
save_elem = 0;
|
||
}
|
||
}
|
||
if (save_elem)
|
||
return save_elem;
|
||
}
|
||
|
||
/* No match found, look for a compatible function. */
|
||
elem = get_first_fn (rhs);
|
||
while (elem && comp_target_types (lhstype,
|
||
TREE_TYPE (elem), 1) <= 0)
|
||
elem = DECL_CHAIN (elem);
|
||
if (elem)
|
||
{
|
||
tree save_elem = elem;
|
||
elem = DECL_CHAIN (elem);
|
||
while (elem && comp_target_types (lhstype,
|
||
TREE_TYPE (elem), 0) <= 0)
|
||
elem = DECL_CHAIN (elem);
|
||
if (elem)
|
||
{
|
||
if (complain)
|
||
{
|
||
cp_error ("cannot resolve overload to target type `%#T'",
|
||
lhstype);
|
||
cp_error_at (" ambiguity between `%#D'", save_elem);
|
||
cp_error_at (" and `%#D', at least", elem);
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
return save_elem;
|
||
}
|
||
if (complain)
|
||
{
|
||
cp_error ("cannot resolve overload to target type `%#T'",
|
||
lhstype);
|
||
cp_error (" because no suitable overload of function `%D' exists",
|
||
TREE_PURPOSE (rhs));
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_NONLOCAL_FLAG (rhs))
|
||
{
|
||
/* Got to get it as a baselink. */
|
||
rhs = lookup_fnfields (TYPE_BINFO (current_class_type),
|
||
TREE_PURPOSE (rhs), 0);
|
||
}
|
||
else
|
||
{
|
||
my_friendly_assert (TREE_CHAIN (rhs) == NULL_TREE, 181);
|
||
if (TREE_CODE (TREE_VALUE (rhs)) == TREE_LIST)
|
||
rhs = TREE_VALUE (rhs);
|
||
my_friendly_assert (TREE_CODE (TREE_VALUE (rhs)) == FUNCTION_DECL,
|
||
182);
|
||
}
|
||
|
||
for (baselink = rhs; baselink;
|
||
baselink = next_baselink (baselink))
|
||
{
|
||
elem = TREE_VALUE (baselink);
|
||
while (elem)
|
||
if (comptypes (lhstype, TREE_TYPE (elem), 1))
|
||
return elem;
|
||
else
|
||
elem = DECL_CHAIN (elem);
|
||
}
|
||
|
||
/* No exact match found, look for a compatible method. */
|
||
for (baselink = rhs; baselink;
|
||
baselink = next_baselink (baselink))
|
||
{
|
||
elem = TREE_VALUE (baselink);
|
||
while (elem && comp_target_types (lhstype,
|
||
TREE_TYPE (elem), 1) <= 0)
|
||
elem = DECL_CHAIN (elem);
|
||
if (elem)
|
||
{
|
||
tree save_elem = elem;
|
||
elem = DECL_CHAIN (elem);
|
||
while (elem && comp_target_types (lhstype,
|
||
TREE_TYPE (elem), 0) <= 0)
|
||
elem = DECL_CHAIN (elem);
|
||
if (elem)
|
||
{
|
||
if (complain)
|
||
error ("ambiguous overload for overloaded method requested");
|
||
return error_mark_node;
|
||
}
|
||
return save_elem;
|
||
}
|
||
name = DECL_NAME (TREE_VALUE (rhs));
|
||
#if 0
|
||
if (TREE_CODE (lhstype) == FUNCTION_TYPE && globals < 0)
|
||
{
|
||
/* Try to instantiate from non-member functions. */
|
||
rhs = lookup_name_nonclass (name);
|
||
if (rhs && TREE_CODE (rhs) == TREE_LIST)
|
||
{
|
||
/* This code seems to be missing a `return'. */
|
||
my_friendly_abort (4);
|
||
instantiate_type (lhstype, rhs, complain);
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
if (complain)
|
||
cp_error ("no compatible member functions named `%D'", name);
|
||
return error_mark_node;
|
||
}
|
||
|
||
case CALL_EXPR:
|
||
/* This is too hard for now. */
|
||
my_friendly_abort (183);
|
||
return error_mark_node;
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case COMPOUND_EXPR:
|
||
TREE_OPERAND (rhs, 0)
|
||
= instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
|
||
if (TREE_OPERAND (rhs, 0) == error_mark_node)
|
||
return error_mark_node;
|
||
TREE_OPERAND (rhs, 1)
|
||
= instantiate_type (lhstype, TREE_OPERAND (rhs, 1), complain);
|
||
if (TREE_OPERAND (rhs, 1) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
TREE_TYPE (rhs) = lhstype;
|
||
return rhs;
|
||
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case RDIV_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
case FLOAT_EXPR:
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
case FFS_EXPR:
|
||
|
||
case BIT_AND_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
if (complain)
|
||
error ("invalid operation on uninstantiated type");
|
||
return error_mark_node;
|
||
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case LT_EXPR:
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
case GE_EXPR:
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_NOT_EXPR:
|
||
if (complain)
|
||
error ("not enough type information");
|
||
return error_mark_node;
|
||
|
||
case COND_EXPR:
|
||
if (type_unknown_p (TREE_OPERAND (rhs, 0)))
|
||
{
|
||
if (complain)
|
||
error ("not enough type information");
|
||
return error_mark_node;
|
||
}
|
||
TREE_OPERAND (rhs, 1)
|
||
= instantiate_type (lhstype, TREE_OPERAND (rhs, 1), complain);
|
||
if (TREE_OPERAND (rhs, 1) == error_mark_node)
|
||
return error_mark_node;
|
||
TREE_OPERAND (rhs, 2)
|
||
= instantiate_type (lhstype, TREE_OPERAND (rhs, 2), complain);
|
||
if (TREE_OPERAND (rhs, 2) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
TREE_TYPE (rhs) = lhstype;
|
||
return rhs;
|
||
|
||
case MODIFY_EXPR:
|
||
TREE_OPERAND (rhs, 1)
|
||
= instantiate_type (lhstype, TREE_OPERAND (rhs, 1), complain);
|
||
if (TREE_OPERAND (rhs, 1) == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
TREE_TYPE (rhs) = lhstype;
|
||
return rhs;
|
||
|
||
case ADDR_EXPR:
|
||
if (TYPE_PTRMEMFUNC_P (lhstype))
|
||
lhstype = TYPE_PTRMEMFUNC_FN_TYPE (lhstype);
|
||
else if (TREE_CODE (lhstype) != POINTER_TYPE)
|
||
{
|
||
if (complain)
|
||
error ("type for resolving address of overloaded function must be pointer type");
|
||
return error_mark_node;
|
||
}
|
||
TREE_TYPE (rhs) = lhstype;
|
||
lhstype = TREE_TYPE (lhstype);
|
||
{
|
||
tree fn = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
|
||
if (fn == error_mark_node)
|
||
return error_mark_node;
|
||
mark_addressable (fn);
|
||
TREE_OPERAND (rhs, 0) = fn;
|
||
TREE_CONSTANT (rhs) = staticp (fn);
|
||
}
|
||
return rhs;
|
||
|
||
case ENTRY_VALUE_EXPR:
|
||
my_friendly_abort (184);
|
||
return error_mark_node;
|
||
|
||
case ERROR_MARK:
|
||
return error_mark_node;
|
||
|
||
default:
|
||
my_friendly_abort (185);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Return the name of the virtual function pointer field
|
||
(as an IDENTIFIER_NODE) for the given TYPE. Note that
|
||
this may have to look back through base types to find the
|
||
ultimate field name. (For single inheritance, these could
|
||
all be the same name. Who knows for multiple inheritance). */
|
||
static tree
|
||
get_vfield_name (type)
|
||
tree type;
|
||
{
|
||
tree binfo = TYPE_BINFO (type);
|
||
char *buf;
|
||
|
||
while (BINFO_BASETYPES (binfo)
|
||
&& TYPE_VIRTUAL_P (BINFO_TYPE (BINFO_BASETYPE (binfo, 0)))
|
||
&& ! TREE_VIA_VIRTUAL (BINFO_BASETYPE (binfo, 0)))
|
||
binfo = BINFO_BASETYPE (binfo, 0);
|
||
|
||
type = BINFO_TYPE (binfo);
|
||
buf = (char *)alloca (sizeof (VFIELD_NAME_FORMAT)
|
||
+ TYPE_NAME_LENGTH (type) + 2);
|
||
sprintf (buf, VFIELD_NAME_FORMAT, TYPE_NAME_STRING (type));
|
||
return get_identifier (buf);
|
||
}
|
||
|
||
void
|
||
print_class_statistics ()
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
|
||
fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
|
||
fprintf (stderr, "build_method_call = %d (inner = %d)\n",
|
||
n_build_method_call, n_inner_fields_searched);
|
||
if (n_vtables)
|
||
{
|
||
fprintf (stderr, "vtables = %d; vtable searches = %d\n",
|
||
n_vtables, n_vtable_searches);
|
||
fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
|
||
n_vtable_entries, n_vtable_elems);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Push an obstack which is sufficiently long-lived to hold such class
|
||
decls that may be cached in the previous_class_values list. For now, let's
|
||
use the permanent obstack, later we may create a dedicated obstack just
|
||
for this purpose. The effect is undone by pop_obstacks. */
|
||
void
|
||
maybe_push_cache_obstack ()
|
||
{
|
||
push_obstacks_nochange ();
|
||
if (current_class_depth == 1)
|
||
current_obstack = &permanent_obstack;
|
||
}
|