1465 lines
35 KiB
C
1465 lines
35 KiB
C
/* $NetBSD: altq_red.c,v 1.17 2006/05/15 00:05:39 christos Exp $ */
|
|
/* $KAME: altq_red.c,v 1.9 2002/01/07 11:25:40 kjc Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1997-2000
|
|
* Sony Computer Science Laboratories Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
/*
|
|
* Copyright (c) 1990-1994 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the Computer Systems
|
|
* Engineering Group at Lawrence Berkeley Laboratory.
|
|
* 4. Neither the name of the University nor of the Laboratory may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: altq_red.c,v 1.17 2006/05/15 00:05:39 christos Exp $");
|
|
|
|
#if defined(__FreeBSD__) || defined(__NetBSD__)
|
|
#include "opt_altq.h"
|
|
#if (__FreeBSD__ != 2)
|
|
#include "opt_inet.h"
|
|
#ifdef __FreeBSD__
|
|
#include "opt_inet6.h"
|
|
#endif
|
|
#endif
|
|
#endif /* __FreeBSD__ || __NetBSD__ */
|
|
#ifdef ALTQ_RED /* red is enabled by ALTQ_RED option in opt_altq.h */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kauth.h>
|
|
#ifdef ALTQ_FLOWVALVE
|
|
#include <sys/queue.h>
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#endif
|
|
|
|
#include <altq/altq.h>
|
|
#include <altq/altq_conf.h>
|
|
#include <altq/altq_red.h>
|
|
#ifdef ALTQ_FLOWVALVE
|
|
#include <altq/altq_flowvalve.h>
|
|
#endif
|
|
|
|
/*
|
|
* ALTQ/RED (Random Early Detection) implementation using 32-bit
|
|
* fixed-point calculation.
|
|
*
|
|
* written by kjc using the ns code as a reference.
|
|
* you can learn more about red and ns from Sally's home page at
|
|
* http://www-nrg.ee.lbl.gov/floyd/
|
|
*
|
|
* most of the red parameter values are fixed in this implementation
|
|
* to prevent fixed-point overflow/underflow.
|
|
* if you change the parameters, watch out for overflow/underflow!
|
|
*
|
|
* the parameters used are recommended values by Sally.
|
|
* the corresponding ns config looks:
|
|
* q_weight=0.00195
|
|
* minthresh=5 maxthresh=15 queue-size=60
|
|
* linterm=30
|
|
* dropmech=drop-tail
|
|
* bytes=false (can't be handled by 32-bit fixed-point)
|
|
* doubleq=false dqthresh=false
|
|
* wait=true
|
|
*/
|
|
/*
|
|
* alternative red parameters for a slow link.
|
|
*
|
|
* assume the queue length becomes from zero to L and keeps L, it takes
|
|
* N packets for q_avg to reach 63% of L.
|
|
* when q_weight is 0.002, N is about 500 packets.
|
|
* for a slow link like dial-up, 500 packets takes more than 1 minute!
|
|
* when q_weight is 0.008, N is about 127 packets.
|
|
* when q_weight is 0.016, N is about 63 packets.
|
|
* bursts of 50 packets are allowd for 0.002, bursts of 25 packets
|
|
* are allowed for 0.016.
|
|
* see Sally's paper for more details.
|
|
*/
|
|
/* normal red parameters */
|
|
#define W_WEIGHT 512 /* inverse of weight of EWMA (511/512) */
|
|
/* q_weight = 0.00195 */
|
|
|
|
/* red parameters for a slow link */
|
|
#define W_WEIGHT_1 128 /* inverse of weight of EWMA (127/128) */
|
|
/* q_weight = 0.0078125 */
|
|
|
|
/* red parameters for a very slow link (e.g., dialup) */
|
|
#define W_WEIGHT_2 64 /* inverse of weight of EWMA (63/64) */
|
|
/* q_weight = 0.015625 */
|
|
|
|
/* fixed-point uses 12-bit decimal places */
|
|
#define FP_SHIFT 12 /* fixed-point shift */
|
|
|
|
/* red parameters for drop probability */
|
|
#define INV_P_MAX 10 /* inverse of max drop probability */
|
|
#define TH_MIN 5 /* min threshold */
|
|
#define TH_MAX 15 /* max threshold */
|
|
|
|
#define RED_LIMIT 60 /* default max queue length */
|
|
|
|
/*
|
|
* our default policy for forced-drop is drop-tail.
|
|
* (in altq-1.1.2 or earlier, the default was random-drop.
|
|
* but it makes more sense to punish the cause of the surge.)
|
|
* to switch to the random-drop policy, define "RED_RANDOM_DROP".
|
|
*/
|
|
|
|
#ifdef ALTQ_FLOWVALVE
|
|
/*
|
|
* flow-valve is an extension to protect red from unresponsive flows
|
|
* and to promote end-to-end congestion control.
|
|
* flow-valve observes the average drop rates of the flows that have
|
|
* experienced packet drops in the recent past.
|
|
* when the average drop rate exceeds the threshold, the flow is
|
|
* blocked by the flow-valve. the trapped flow should back off
|
|
* exponentially to escape from the flow-valve.
|
|
*/
|
|
#ifdef RED_RANDOM_DROP
|
|
#error "random-drop can't be used with flow-valve!"
|
|
#endif
|
|
#endif /* ALTQ_FLOWVALVE */
|
|
|
|
/* red_list keeps all red_queue_t's allocated. */
|
|
static red_queue_t *red_list = NULL;
|
|
|
|
/* default red parameter values */
|
|
static int default_th_min = TH_MIN;
|
|
static int default_th_max = TH_MAX;
|
|
static int default_inv_pmax = INV_P_MAX;
|
|
|
|
/* internal function prototypes */
|
|
static int red_enqueue __P((struct ifaltq *, struct mbuf *,
|
|
struct altq_pktattr *));
|
|
static struct mbuf *red_dequeue __P((struct ifaltq *, int));
|
|
static int red_request __P((struct ifaltq *, int, void *));
|
|
static void red_purgeq __P((red_queue_t *));
|
|
static int red_detach __P((red_queue_t *));
|
|
#ifdef ALTQ_FLOWVALVE
|
|
static inline struct fve *flowlist_lookup __P((struct flowvalve *,
|
|
struct altq_pktattr *, struct timeval *));
|
|
static inline struct fve *flowlist_reclaim __P((struct flowvalve *,
|
|
struct altq_pktattr *));
|
|
static inline void flowlist_move_to_head __P((struct flowvalve *,
|
|
struct fve *));
|
|
static inline int fv_p2f __P((struct flowvalve *, int));
|
|
static struct flowvalve *fv_alloc __P((struct red *));
|
|
static void fv_destroy __P((struct flowvalve *));
|
|
static int fv_checkflow __P((struct flowvalve *, struct altq_pktattr *,
|
|
struct fve **));
|
|
static void fv_dropbyred __P((struct flowvalve *fv, struct altq_pktattr *,
|
|
struct fve *));
|
|
#endif
|
|
|
|
/*
|
|
* red device interface
|
|
*/
|
|
altqdev_decl(red);
|
|
|
|
int
|
|
redopen(dev, flag, fmt, l)
|
|
dev_t dev;
|
|
int flag, fmt;
|
|
struct lwp *l;
|
|
{
|
|
/* everything will be done when the queueing scheme is attached. */
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
redclose(dev, flag, fmt, l)
|
|
dev_t dev;
|
|
int flag, fmt;
|
|
struct lwp *l;
|
|
{
|
|
red_queue_t *rqp;
|
|
int err, error = 0;
|
|
|
|
while ((rqp = red_list) != NULL) {
|
|
/* destroy all */
|
|
err = red_detach(rqp);
|
|
if (err != 0 && error == 0)
|
|
error = err;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
redioctl(dev, cmd, addr, flag, l)
|
|
dev_t dev;
|
|
ioctlcmd_t cmd;
|
|
caddr_t addr;
|
|
int flag;
|
|
struct lwp *l;
|
|
{
|
|
red_queue_t *rqp;
|
|
struct red_interface *ifacep;
|
|
struct ifnet *ifp;
|
|
struct proc *p = l->l_proc;
|
|
int error = 0;
|
|
|
|
/* check super-user privilege */
|
|
switch (cmd) {
|
|
case RED_GETSTATS:
|
|
break;
|
|
default:
|
|
#if (__FreeBSD_version > 400000)
|
|
if ((error = suser(p)) != 0)
|
|
#else
|
|
if ((error = kauth_authorize_generic(p->p_cred,
|
|
KAUTH_GENERIC_ISSUSER,
|
|
&p->p_acflag)) != 0)
|
|
#endif
|
|
return (error);
|
|
break;
|
|
}
|
|
|
|
switch (cmd) {
|
|
|
|
case RED_ENABLE:
|
|
ifacep = (struct red_interface *)addr;
|
|
if ((rqp = altq_lookup(ifacep->red_ifname, ALTQT_RED)) == NULL) {
|
|
error = EBADF;
|
|
break;
|
|
}
|
|
error = altq_enable(rqp->rq_ifq);
|
|
break;
|
|
|
|
case RED_DISABLE:
|
|
ifacep = (struct red_interface *)addr;
|
|
if ((rqp = altq_lookup(ifacep->red_ifname, ALTQT_RED)) == NULL) {
|
|
error = EBADF;
|
|
break;
|
|
}
|
|
error = altq_disable(rqp->rq_ifq);
|
|
break;
|
|
|
|
case RED_IF_ATTACH:
|
|
ifp = ifunit(((struct red_interface *)addr)->red_ifname);
|
|
if (ifp == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
/* allocate and initialize red_queue_t */
|
|
rqp = malloc(sizeof(red_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (rqp == NULL) {
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
|
|
rqp->rq_q = malloc(sizeof(class_queue_t), M_DEVBUF,
|
|
M_WAITOK|M_ZERO);
|
|
if (rqp->rq_q == NULL) {
|
|
free(rqp, M_DEVBUF);
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
|
|
rqp->rq_red = red_alloc(0, 0, 0, 0, 0, 0);
|
|
if (rqp->rq_red == NULL) {
|
|
free(rqp->rq_q, M_DEVBUF);
|
|
free(rqp, M_DEVBUF);
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
|
|
rqp->rq_ifq = &ifp->if_snd;
|
|
qtail(rqp->rq_q) = NULL;
|
|
qlen(rqp->rq_q) = 0;
|
|
qlimit(rqp->rq_q) = RED_LIMIT;
|
|
qtype(rqp->rq_q) = Q_RED;
|
|
|
|
/*
|
|
* set RED to this ifnet structure.
|
|
*/
|
|
error = altq_attach(rqp->rq_ifq, ALTQT_RED, rqp,
|
|
red_enqueue, red_dequeue, red_request,
|
|
NULL, NULL);
|
|
if (error) {
|
|
red_destroy(rqp->rq_red);
|
|
free(rqp->rq_q, M_DEVBUF);
|
|
free(rqp, M_DEVBUF);
|
|
break;
|
|
}
|
|
|
|
/* add this state to the red list */
|
|
rqp->rq_next = red_list;
|
|
red_list = rqp;
|
|
break;
|
|
|
|
case RED_IF_DETACH:
|
|
ifacep = (struct red_interface *)addr;
|
|
if ((rqp = altq_lookup(ifacep->red_ifname, ALTQT_RED)) == NULL) {
|
|
error = EBADF;
|
|
break;
|
|
}
|
|
error = red_detach(rqp);
|
|
break;
|
|
|
|
case RED_GETSTATS:
|
|
do {
|
|
struct red_stats *q_stats;
|
|
red_t *rp;
|
|
|
|
q_stats = (struct red_stats *)addr;
|
|
if ((rqp = altq_lookup(q_stats->iface.red_ifname,
|
|
ALTQT_RED)) == NULL) {
|
|
error = EBADF;
|
|
break;
|
|
}
|
|
|
|
q_stats->q_len = qlen(rqp->rq_q);
|
|
q_stats->q_limit = qlimit(rqp->rq_q);
|
|
|
|
rp = rqp->rq_red;
|
|
q_stats->q_avg = rp->red_avg >> rp->red_wshift;
|
|
q_stats->xmit_cnt = rp->red_stats.xmit_cnt;
|
|
q_stats->drop_cnt = rp->red_stats.drop_cnt;
|
|
q_stats->drop_forced = rp->red_stats.drop_forced;
|
|
q_stats->drop_unforced = rp->red_stats.drop_unforced;
|
|
q_stats->marked_packets = rp->red_stats.marked_packets;
|
|
|
|
q_stats->weight = rp->red_weight;
|
|
q_stats->inv_pmax = rp->red_inv_pmax;
|
|
q_stats->th_min = rp->red_thmin;
|
|
q_stats->th_max = rp->red_thmax;
|
|
|
|
#ifdef ALTQ_FLOWVALVE
|
|
if (rp->red_flowvalve != NULL) {
|
|
struct flowvalve *fv = rp->red_flowvalve;
|
|
q_stats->fv_flows = fv->fv_flows;
|
|
q_stats->fv_pass = fv->fv_stats.pass;
|
|
q_stats->fv_predrop = fv->fv_stats.predrop;
|
|
q_stats->fv_alloc = fv->fv_stats.alloc;
|
|
q_stats->fv_escape = fv->fv_stats.escape;
|
|
} else {
|
|
#endif /* ALTQ_FLOWVALVE */
|
|
q_stats->fv_flows = 0;
|
|
q_stats->fv_pass = 0;
|
|
q_stats->fv_predrop = 0;
|
|
q_stats->fv_alloc = 0;
|
|
q_stats->fv_escape = 0;
|
|
#ifdef ALTQ_FLOWVALVE
|
|
}
|
|
#endif /* ALTQ_FLOWVALVE */
|
|
} while (0);
|
|
break;
|
|
|
|
case RED_CONFIG:
|
|
do {
|
|
struct red_conf *fc;
|
|
red_t *new;
|
|
int s, limit;
|
|
|
|
fc = (struct red_conf *)addr;
|
|
if ((rqp = altq_lookup(fc->iface.red_ifname,
|
|
ALTQT_RED)) == NULL) {
|
|
error = EBADF;
|
|
break;
|
|
}
|
|
new = red_alloc(fc->red_weight,
|
|
fc->red_inv_pmax,
|
|
fc->red_thmin,
|
|
fc->red_thmax,
|
|
fc->red_flags,
|
|
fc->red_pkttime);
|
|
if (new == NULL) {
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
|
|
s = splnet();
|
|
red_purgeq(rqp);
|
|
limit = fc->red_limit;
|
|
if (limit < fc->red_thmax)
|
|
limit = fc->red_thmax;
|
|
qlimit(rqp->rq_q) = limit;
|
|
fc->red_limit = limit; /* write back the new value */
|
|
|
|
red_destroy(rqp->rq_red);
|
|
rqp->rq_red = new;
|
|
|
|
splx(s);
|
|
|
|
/* write back new values */
|
|
fc->red_limit = limit;
|
|
fc->red_inv_pmax = rqp->rq_red->red_inv_pmax;
|
|
fc->red_thmin = rqp->rq_red->red_thmin;
|
|
fc->red_thmax = rqp->rq_red->red_thmax;
|
|
|
|
} while (0);
|
|
break;
|
|
|
|
case RED_SETDEFAULTS:
|
|
do {
|
|
struct redparams *rp;
|
|
|
|
rp = (struct redparams *)addr;
|
|
|
|
default_th_min = rp->th_min;
|
|
default_th_max = rp->th_max;
|
|
default_inv_pmax = rp->inv_pmax;
|
|
} while (0);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
red_detach(rqp)
|
|
red_queue_t *rqp;
|
|
{
|
|
red_queue_t *tmp;
|
|
int error = 0;
|
|
|
|
if (ALTQ_IS_ENABLED(rqp->rq_ifq))
|
|
altq_disable(rqp->rq_ifq);
|
|
|
|
if ((error = altq_detach(rqp->rq_ifq)))
|
|
return (error);
|
|
|
|
if (red_list == rqp)
|
|
red_list = rqp->rq_next;
|
|
else {
|
|
for (tmp = red_list; tmp != NULL; tmp = tmp->rq_next)
|
|
if (tmp->rq_next == rqp) {
|
|
tmp->rq_next = rqp->rq_next;
|
|
break;
|
|
}
|
|
if (tmp == NULL)
|
|
printf("red_detach: no state found in red_list!\n");
|
|
}
|
|
|
|
red_destroy(rqp->rq_red);
|
|
free(rqp->rq_q, M_DEVBUF);
|
|
free(rqp, M_DEVBUF);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* red support routines
|
|
*/
|
|
|
|
red_t *
|
|
red_alloc(weight, inv_pmax, th_min, th_max, flags, pkttime)
|
|
int weight, inv_pmax, th_min, th_max;
|
|
int flags, pkttime;
|
|
{
|
|
red_t *rp;
|
|
int w, i;
|
|
int npkts_per_sec;
|
|
|
|
rp = malloc(sizeof(red_t), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (rp == NULL)
|
|
return (NULL);
|
|
|
|
rp->red_avg = 0;
|
|
rp->red_idle = 1;
|
|
|
|
if (weight == 0)
|
|
rp->red_weight = W_WEIGHT;
|
|
else
|
|
rp->red_weight = weight;
|
|
if (inv_pmax == 0)
|
|
rp->red_inv_pmax = default_inv_pmax;
|
|
else
|
|
rp->red_inv_pmax = inv_pmax;
|
|
if (th_min == 0)
|
|
rp->red_thmin = default_th_min;
|
|
else
|
|
rp->red_thmin = th_min;
|
|
if (th_max == 0)
|
|
rp->red_thmax = default_th_max;
|
|
else
|
|
rp->red_thmax = th_max;
|
|
|
|
rp->red_flags = flags;
|
|
|
|
if (pkttime == 0)
|
|
/* default packet time: 1000 bytes / 10Mbps * 8 * 1000000 */
|
|
rp->red_pkttime = 800;
|
|
else
|
|
rp->red_pkttime = pkttime;
|
|
|
|
if (weight == 0) {
|
|
/* when the link is very slow, adjust red parameters */
|
|
npkts_per_sec = 1000000 / rp->red_pkttime;
|
|
if (npkts_per_sec < 50) {
|
|
/* up to about 400Kbps */
|
|
rp->red_weight = W_WEIGHT_2;
|
|
} else if (npkts_per_sec < 300) {
|
|
/* up to about 2.4Mbps */
|
|
rp->red_weight = W_WEIGHT_1;
|
|
}
|
|
}
|
|
|
|
/* calculate wshift. weight must be power of 2 */
|
|
w = rp->red_weight;
|
|
for (i = 0; w > 1; i++)
|
|
w = w >> 1;
|
|
rp->red_wshift = i;
|
|
w = 1 << rp->red_wshift;
|
|
if (w != rp->red_weight) {
|
|
printf("invalid weight value %d for red! use %d\n",
|
|
rp->red_weight, w);
|
|
rp->red_weight = w;
|
|
}
|
|
|
|
/*
|
|
* thmin_s and thmax_s are scaled versions of th_min and th_max
|
|
* to be compared with avg.
|
|
*/
|
|
rp->red_thmin_s = rp->red_thmin << (rp->red_wshift + FP_SHIFT);
|
|
rp->red_thmax_s = rp->red_thmax << (rp->red_wshift + FP_SHIFT);
|
|
|
|
/*
|
|
* precompute probability denominator
|
|
* probd = (2 * (TH_MAX-TH_MIN) / pmax) in fixed-point
|
|
*/
|
|
rp->red_probd = (2 * (rp->red_thmax - rp->red_thmin)
|
|
* rp->red_inv_pmax) << FP_SHIFT;
|
|
|
|
/* allocate weight table */
|
|
rp->red_wtab = wtab_alloc(rp->red_weight);
|
|
|
|
microtime(&rp->red_last);
|
|
#ifdef ALTQ_FLOWVALVE
|
|
if (flags & REDF_FLOWVALVE)
|
|
rp->red_flowvalve = fv_alloc(rp);
|
|
/* if fv_alloc failes, flowvalve is just disabled */
|
|
#endif
|
|
return (rp);
|
|
}
|
|
|
|
void
|
|
red_destroy(rp)
|
|
red_t *rp;
|
|
{
|
|
#ifdef ALTQ_FLOWVALVE
|
|
if (rp->red_flowvalve != NULL)
|
|
fv_destroy(rp->red_flowvalve);
|
|
#endif
|
|
wtab_destroy(rp->red_wtab);
|
|
free(rp, M_DEVBUF);
|
|
}
|
|
|
|
void
|
|
red_getstats(rp, sp)
|
|
red_t *rp;
|
|
struct redstats *sp;
|
|
{
|
|
sp->q_avg = rp->red_avg >> rp->red_wshift;
|
|
sp->xmit_cnt = rp->red_stats.xmit_cnt;
|
|
sp->drop_cnt = rp->red_stats.drop_cnt;
|
|
sp->drop_forced = rp->red_stats.drop_forced;
|
|
sp->drop_unforced = rp->red_stats.drop_unforced;
|
|
sp->marked_packets = rp->red_stats.marked_packets;
|
|
}
|
|
|
|
/*
|
|
* enqueue routine:
|
|
*
|
|
* returns: 0 when successfully queued.
|
|
* ENOBUFS when drop occurs.
|
|
*/
|
|
static int
|
|
red_enqueue(ifq, m, pktattr)
|
|
struct ifaltq *ifq;
|
|
struct mbuf *m;
|
|
struct altq_pktattr *pktattr;
|
|
{
|
|
red_queue_t *rqp = (red_queue_t *)ifq->altq_disc;
|
|
|
|
if (red_addq(rqp->rq_red, rqp->rq_q, m, pktattr) < 0)
|
|
return ENOBUFS;
|
|
ifq->ifq_len++;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
red_addq(rp, q, m, pktattr)
|
|
red_t *rp;
|
|
class_queue_t *q;
|
|
struct mbuf *m;
|
|
struct altq_pktattr *pktattr;
|
|
{
|
|
int avg, droptype;
|
|
int n;
|
|
#ifdef ALTQ_FLOWVALVE
|
|
struct fve *fve = NULL;
|
|
|
|
if (rp->red_flowvalve != NULL && rp->red_flowvalve->fv_flows > 0)
|
|
if (fv_checkflow(rp->red_flowvalve, pktattr, &fve)) {
|
|
m_freem(m);
|
|
return (-1);
|
|
}
|
|
#endif
|
|
|
|
avg = rp->red_avg;
|
|
|
|
/*
|
|
* if we were idle, we pretend that n packets arrived during
|
|
* the idle period.
|
|
*/
|
|
if (rp->red_idle) {
|
|
struct timeval now;
|
|
int t;
|
|
|
|
rp->red_idle = 0;
|
|
microtime(&now);
|
|
t = (now.tv_sec - rp->red_last.tv_sec);
|
|
if (t > 60) {
|
|
/*
|
|
* being idle for more than 1 minute, set avg to zero.
|
|
* this prevents t from overflow.
|
|
*/
|
|
avg = 0;
|
|
} else {
|
|
t = t * 1000000 + (now.tv_usec - rp->red_last.tv_usec);
|
|
n = t / rp->red_pkttime - 1;
|
|
|
|
/* the following line does (avg = (1 - Wq)^n * avg) */
|
|
if (n > 0)
|
|
avg = (avg >> FP_SHIFT) *
|
|
pow_w(rp->red_wtab, n);
|
|
}
|
|
}
|
|
|
|
/* run estimator. (note: avg is scaled by WEIGHT in fixed-point) */
|
|
avg += (qlen(q) << FP_SHIFT) - (avg >> rp->red_wshift);
|
|
rp->red_avg = avg; /* save the new value */
|
|
|
|
/*
|
|
* red_count keeps a tally of arriving traffic that has not
|
|
* been dropped.
|
|
*/
|
|
rp->red_count++;
|
|
|
|
/* see if we drop early */
|
|
droptype = DTYPE_NODROP;
|
|
if (avg >= rp->red_thmin_s && qlen(q) > 1) {
|
|
if (avg >= rp->red_thmax_s) {
|
|
/* avg >= th_max: forced drop */
|
|
droptype = DTYPE_FORCED;
|
|
} else if (rp->red_old == 0) {
|
|
/* first exceeds th_min */
|
|
rp->red_count = 1;
|
|
rp->red_old = 1;
|
|
} else if (drop_early((avg - rp->red_thmin_s) >> rp->red_wshift,
|
|
rp->red_probd, rp->red_count)) {
|
|
/* mark or drop by red */
|
|
if ((rp->red_flags & REDF_ECN) &&
|
|
mark_ecn(m, pktattr, rp->red_flags)) {
|
|
/* successfully marked. do not drop. */
|
|
rp->red_count = 0;
|
|
#ifdef RED_STATS
|
|
rp->red_stats.marked_packets++;
|
|
#endif
|
|
} else {
|
|
/* unforced drop by red */
|
|
droptype = DTYPE_EARLY;
|
|
}
|
|
}
|
|
} else {
|
|
/* avg < th_min */
|
|
rp->red_old = 0;
|
|
}
|
|
|
|
/*
|
|
* if the queue length hits the hard limit, it's a forced drop.
|
|
*/
|
|
if (droptype == DTYPE_NODROP && qlen(q) >= qlimit(q))
|
|
droptype = DTYPE_FORCED;
|
|
|
|
#ifdef RED_RANDOM_DROP
|
|
/* if successful or forced drop, enqueue this packet. */
|
|
if (droptype != DTYPE_EARLY)
|
|
_addq(q, m);
|
|
#else
|
|
/* if successful, enqueue this packet. */
|
|
if (droptype == DTYPE_NODROP)
|
|
_addq(q, m);
|
|
#endif
|
|
if (droptype != DTYPE_NODROP) {
|
|
if (droptype == DTYPE_EARLY) {
|
|
/* drop the incoming packet */
|
|
#ifdef RED_STATS
|
|
rp->red_stats.drop_unforced++;
|
|
#endif
|
|
} else {
|
|
/* forced drop, select a victim packet in the queue. */
|
|
#ifdef RED_RANDOM_DROP
|
|
m = _getq_random(q);
|
|
#endif
|
|
#ifdef RED_STATS
|
|
rp->red_stats.drop_forced++;
|
|
#endif
|
|
}
|
|
#ifdef RED_STATS
|
|
PKTCNTR_ADD(&rp->red_stats.drop_cnt, m_pktlen(m));
|
|
#endif
|
|
rp->red_count = 0;
|
|
#ifdef ALTQ_FLOWVALVE
|
|
if (rp->red_flowvalve != NULL)
|
|
fv_dropbyred(rp->red_flowvalve, pktattr, fve);
|
|
#endif
|
|
m_freem(m);
|
|
return (-1);
|
|
}
|
|
/* successfully queued */
|
|
#ifdef RED_STATS
|
|
PKTCNTR_ADD(&rp->red_stats.xmit_cnt, m_pktlen(m));
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* early-drop probability is calculated as follows:
|
|
* prob = p_max * (avg - th_min) / (th_max - th_min)
|
|
* prob_a = prob / (2 - count*prob)
|
|
* = (avg-th_min) / (2*(th_max-th_min)*inv_p_max - count*(avg-th_min))
|
|
* here prob_a increases as successive undrop count increases.
|
|
* (prob_a starts from prob/2, becomes prob when (count == (1 / prob)),
|
|
* becomes 1 when (count >= (2 / prob))).
|
|
*/
|
|
int
|
|
drop_early(fp_len, fp_probd, count)
|
|
int fp_len; /* (avg - TH_MIN) in fixed-point */
|
|
int fp_probd; /* (2 * (TH_MAX-TH_MIN) / pmax) in fixed-point */
|
|
int count; /* how many successive undropped packets */
|
|
{
|
|
int d; /* denominator of drop-probability */
|
|
|
|
d = fp_probd - count * fp_len;
|
|
if (d <= 0)
|
|
/* count exceeds the hard limit: drop or mark */
|
|
return (1);
|
|
|
|
/*
|
|
* now the range of d is [1..600] in fixed-point. (when
|
|
* th_max-th_min=10 and p_max=1/30)
|
|
* drop probability = (avg - TH_MIN) / d
|
|
*/
|
|
|
|
if ((random() % d) < fp_len) {
|
|
/* drop or mark */
|
|
return (1);
|
|
}
|
|
/* no drop/mark */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* try to mark CE bit to the packet.
|
|
* returns 1 if successfully marked, 0 otherwise.
|
|
*/
|
|
int
|
|
mark_ecn(m, pktattr, flags)
|
|
struct mbuf *m;
|
|
struct altq_pktattr *pktattr;
|
|
int flags;
|
|
{
|
|
struct mbuf *m0;
|
|
|
|
if (pktattr == NULL ||
|
|
(pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
|
|
return (0);
|
|
|
|
/* verify that pattr_hdr is within the mbuf data */
|
|
for (m0 = m; m0 != NULL; m0 = m0->m_next)
|
|
if ((pktattr->pattr_hdr >= m0->m_data) &&
|
|
(pktattr->pattr_hdr < m0->m_data + m0->m_len))
|
|
break;
|
|
if (m0 == NULL) {
|
|
/* ick, pattr_hdr is stale */
|
|
pktattr->pattr_af = AF_UNSPEC;
|
|
return (0);
|
|
}
|
|
|
|
switch (pktattr->pattr_af) {
|
|
case AF_INET:
|
|
if (flags & REDF_ECN4) {
|
|
struct ip *ip = (struct ip *)pktattr->pattr_hdr;
|
|
u_int8_t otos;
|
|
int sum;
|
|
|
|
if (ip->ip_v != 4)
|
|
return (0); /* version mismatch! */
|
|
|
|
if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT)
|
|
return (0); /* not-ECT */
|
|
if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE)
|
|
return (1); /* already marked */
|
|
|
|
/*
|
|
* ecn-capable but not marked,
|
|
* mark CE and update checksum
|
|
*/
|
|
otos = ip->ip_tos;
|
|
ip->ip_tos |= IPTOS_ECN_CE;
|
|
/*
|
|
* update checksum (from RFC1624)
|
|
* HC' = ~(~HC + ~m + m')
|
|
*/
|
|
sum = ~ntohs(ip->ip_sum) & 0xffff;
|
|
sum += (~otos & 0xffff) + ip->ip_tos;
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
sum += (sum >> 16); /* add carry */
|
|
ip->ip_sum = htons(~sum & 0xffff);
|
|
return (1);
|
|
}
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (flags & REDF_ECN6) {
|
|
struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
|
|
u_int32_t flowlabel;
|
|
|
|
flowlabel = ntohl(ip6->ip6_flow);
|
|
if ((flowlabel >> 28) != 6)
|
|
return (0); /* version mismatch! */
|
|
if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
|
|
(IPTOS_ECN_NOTECT << 20))
|
|
return (0); /* not-ECT */
|
|
if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
|
|
(IPTOS_ECN_CE << 20))
|
|
return (1); /* already marked */
|
|
/*
|
|
* ecn-capable but not marked, mark CE
|
|
*/
|
|
flowlabel |= (IPTOS_ECN_CE << 20);
|
|
ip6->ip6_flow = htonl(flowlabel);
|
|
return (1);
|
|
}
|
|
break;
|
|
#endif /* INET6 */
|
|
}
|
|
|
|
/* not marked */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* dequeue routine:
|
|
* must be called in splnet.
|
|
*
|
|
* returns: mbuf dequeued.
|
|
* NULL when no packet is available in the queue.
|
|
*/
|
|
|
|
static struct mbuf *
|
|
red_dequeue(ifq, op)
|
|
struct ifaltq *ifq;
|
|
int op;
|
|
{
|
|
red_queue_t *rqp = (red_queue_t *)ifq->altq_disc;
|
|
struct mbuf *m;
|
|
|
|
if (op == ALTDQ_POLL)
|
|
return qhead(rqp->rq_q);
|
|
|
|
/* op == ALTDQ_REMOVE */
|
|
m = red_getq(rqp->rq_red, rqp->rq_q);
|
|
if (m != NULL)
|
|
ifq->ifq_len--;
|
|
return (m);
|
|
}
|
|
|
|
struct mbuf *
|
|
red_getq(rp, q)
|
|
red_t *rp;
|
|
class_queue_t *q;
|
|
{
|
|
struct mbuf *m;
|
|
|
|
if ((m = _getq(q)) == NULL) {
|
|
if (rp->red_idle == 0) {
|
|
rp->red_idle = 1;
|
|
microtime(&rp->red_last);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
rp->red_idle = 0;
|
|
return (m);
|
|
}
|
|
|
|
static int
|
|
red_request(ifq, req, arg)
|
|
struct ifaltq *ifq;
|
|
int req;
|
|
void *arg;
|
|
{
|
|
red_queue_t *rqp = (red_queue_t *)ifq->altq_disc;
|
|
|
|
switch (req) {
|
|
case ALTRQ_PURGE:
|
|
red_purgeq(rqp);
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
red_purgeq(rqp)
|
|
red_queue_t *rqp;
|
|
{
|
|
_flushq(rqp->rq_q);
|
|
if (ALTQ_IS_ENABLED(rqp->rq_ifq))
|
|
rqp->rq_ifq->ifq_len = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* helper routine to calibrate avg during idle.
|
|
* pow_w(wtab, n) returns (1 - Wq)^n in fixed-point
|
|
* here Wq = 1/weight and the code assumes Wq is close to zero.
|
|
*
|
|
* w_tab[n] holds ((1 - Wq)^(2^n)) in fixed-point.
|
|
*/
|
|
static struct wtab *wtab_list = NULL; /* pointer to wtab list */
|
|
|
|
struct wtab *
|
|
wtab_alloc(weight)
|
|
int weight;
|
|
{
|
|
struct wtab *w;
|
|
int i;
|
|
|
|
for (w = wtab_list; w != NULL; w = w->w_next)
|
|
if (w->w_weight == weight) {
|
|
w->w_refcount++;
|
|
return (w);
|
|
}
|
|
|
|
w = malloc(sizeof(struct wtab), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (w == NULL)
|
|
panic("wtab_alloc: malloc failed!");
|
|
w->w_weight = weight;
|
|
w->w_refcount = 1;
|
|
w->w_next = wtab_list;
|
|
wtab_list = w;
|
|
|
|
/* initialize the weight table */
|
|
w->w_tab[0] = ((weight - 1) << FP_SHIFT) / weight;
|
|
for (i = 1; i < 32; i++) {
|
|
w->w_tab[i] = (w->w_tab[i-1] * w->w_tab[i-1]) >> FP_SHIFT;
|
|
if (w->w_tab[i] == 0 && w->w_param_max == 0)
|
|
w->w_param_max = 1 << i;
|
|
}
|
|
|
|
return (w);
|
|
}
|
|
|
|
int
|
|
wtab_destroy(w)
|
|
struct wtab *w;
|
|
{
|
|
struct wtab *prev;
|
|
|
|
if (--w->w_refcount > 0)
|
|
return (0);
|
|
|
|
if (wtab_list == w)
|
|
wtab_list = w->w_next;
|
|
else for (prev = wtab_list; prev->w_next != NULL; prev = prev->w_next)
|
|
if (prev->w_next == w) {
|
|
prev->w_next = w->w_next;
|
|
break;
|
|
}
|
|
|
|
free(w, M_DEVBUF);
|
|
return (0);
|
|
}
|
|
|
|
int32_t
|
|
pow_w(w, n)
|
|
struct wtab *w;
|
|
int n;
|
|
{
|
|
int i, bit;
|
|
int32_t val;
|
|
|
|
if (n >= w->w_param_max)
|
|
return (0);
|
|
|
|
val = 1 << FP_SHIFT;
|
|
if (n <= 0)
|
|
return (val);
|
|
|
|
bit = 1;
|
|
i = 0;
|
|
while (n) {
|
|
if (n & bit) {
|
|
val = (val * w->w_tab[i]) >> FP_SHIFT;
|
|
n &= ~bit;
|
|
}
|
|
i++;
|
|
bit <<= 1;
|
|
}
|
|
return (val);
|
|
}
|
|
|
|
#ifdef ALTQ_FLOWVALVE
|
|
|
|
#define FV_PSHIFT 7 /* weight of average drop rate -- 1/128 */
|
|
#define FV_PSCALE(x) ((x) << FV_PSHIFT)
|
|
#define FV_PUNSCALE(x) ((x) >> FV_PSHIFT)
|
|
#define FV_FSHIFT 5 /* weight of average fraction -- 1/32 */
|
|
#define FV_FSCALE(x) ((x) << FV_FSHIFT)
|
|
#define FV_FUNSCALE(x) ((x) >> FV_FSHIFT)
|
|
|
|
#define FV_TIMER (3 * hz) /* timer value for garbage collector */
|
|
#define FV_FLOWLISTSIZE 64 /* how many flows in flowlist */
|
|
|
|
#define FV_N 10 /* update fve_f every FV_N packets */
|
|
|
|
#define FV_BACKOFFTHRESH 1 /* backoff threshold interval in second */
|
|
#define FV_TTHRESH 3 /* time threshold to delete fve */
|
|
#define FV_ALPHA 5 /* extra packet count */
|
|
|
|
#if (__FreeBSD_version > 300000)
|
|
#define FV_TIMESTAMP(tp) getmicrotime(tp)
|
|
#else
|
|
#define FV_TIMESTAMP(tp) { (*(tp)) = time; }
|
|
#endif
|
|
|
|
/*
|
|
* Brtt table: 127 entry table to convert drop rate (p) to
|
|
* the corresponding bandwidth fraction (f)
|
|
* the following equation is implemented to use scaled values,
|
|
* fve_p and fve_f, in the fixed point format.
|
|
*
|
|
* Brtt(p) = 1 /(sqrt(4*p/3) + min(1,3*sqrt(p*6/8)) * p * (1+32 * p*p))
|
|
* f = Brtt(p) / (max_th + alpha)
|
|
*/
|
|
#define BRTT_SIZE 128
|
|
#define BRTT_SHIFT 12
|
|
#define BRTT_MASK 0x0007f000
|
|
#define BRTT_PMAX (1 << (FV_PSHIFT + FP_SHIFT))
|
|
|
|
const int brtt_tab[BRTT_SIZE] = {
|
|
0, 1262010, 877019, 703694, 598706, 525854, 471107, 427728,
|
|
392026, 361788, 335598, 312506, 291850, 273158, 256081, 240361,
|
|
225800, 212247, 199585, 187788, 178388, 169544, 161207, 153333,
|
|
145888, 138841, 132165, 125836, 119834, 114141, 108739, 103612,
|
|
98747, 94129, 89746, 85585, 81637, 77889, 74333, 70957,
|
|
67752, 64711, 61824, 59084, 56482, 54013, 51667, 49440,
|
|
47325, 45315, 43406, 41591, 39866, 38227, 36667, 35184,
|
|
33773, 32430, 31151, 29933, 28774, 27668, 26615, 25611,
|
|
24653, 23740, 22868, 22035, 21240, 20481, 19755, 19062,
|
|
18399, 17764, 17157, 16576, 16020, 15487, 14976, 14487,
|
|
14017, 13567, 13136, 12721, 12323, 11941, 11574, 11222,
|
|
10883, 10557, 10243, 9942, 9652, 9372, 9103, 8844,
|
|
8594, 8354, 8122, 7898, 7682, 7474, 7273, 7079,
|
|
6892, 6711, 6536, 6367, 6204, 6046, 5893, 5746,
|
|
5603, 5464, 5330, 5201, 5075, 4954, 4836, 4722,
|
|
4611, 4504, 4400, 4299, 4201, 4106, 4014, 3924
|
|
};
|
|
|
|
static inline struct fve *
|
|
flowlist_lookup(fv, pktattr, now)
|
|
struct flowvalve *fv;
|
|
struct altq_pktattr *pktattr;
|
|
struct timeval *now;
|
|
{
|
|
struct fve *fve;
|
|
int flows;
|
|
struct ip *ip;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
struct timeval tthresh;
|
|
|
|
if (pktattr == NULL)
|
|
return (NULL);
|
|
|
|
tthresh.tv_sec = now->tv_sec - FV_TTHRESH;
|
|
flows = 0;
|
|
/*
|
|
* search the flow list
|
|
*/
|
|
switch (pktattr->pattr_af) {
|
|
case AF_INET:
|
|
ip = (struct ip *)pktattr->pattr_hdr;
|
|
TAILQ_FOREACH(fve, &fv->fv_flowlist, fve_lru){
|
|
if (fve->fve_lastdrop.tv_sec == 0)
|
|
break;
|
|
if (fve->fve_lastdrop.tv_sec < tthresh.tv_sec) {
|
|
fve->fve_lastdrop.tv_sec = 0;
|
|
break;
|
|
}
|
|
if (fve->fve_flow.flow_af == AF_INET &&
|
|
fve->fve_flow.flow_ip.ip_src.s_addr ==
|
|
ip->ip_src.s_addr &&
|
|
fve->fve_flow.flow_ip.ip_dst.s_addr ==
|
|
ip->ip_dst.s_addr)
|
|
return (fve);
|
|
flows++;
|
|
}
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
|
|
TAILQ_FOREACH(fve, &fv->fv_flowlist, fve_lru){
|
|
if (fve->fve_lastdrop.tv_sec == 0)
|
|
break;
|
|
if (fve->fve_lastdrop.tv_sec < tthresh.tv_sec) {
|
|
fve->fve_lastdrop.tv_sec = 0;
|
|
break;
|
|
}
|
|
if (fve->fve_flow.flow_af == AF_INET6 &&
|
|
IN6_ARE_ADDR_EQUAL(&fve->fve_flow.flow_ip6.ip6_src,
|
|
&ip6->ip6_src) &&
|
|
IN6_ARE_ADDR_EQUAL(&fve->fve_flow.flow_ip6.ip6_dst,
|
|
&ip6->ip6_dst))
|
|
return (fve);
|
|
flows++;
|
|
}
|
|
break;
|
|
#endif /* INET6 */
|
|
|
|
default:
|
|
/* unknown protocol. no drop. */
|
|
return (NULL);
|
|
}
|
|
fv->fv_flows = flows; /* save the number of active fve's */
|
|
return (NULL);
|
|
}
|
|
|
|
static inline struct fve *
|
|
flowlist_reclaim(fv, pktattr)
|
|
struct flowvalve *fv;
|
|
struct altq_pktattr *pktattr;
|
|
{
|
|
struct fve *fve;
|
|
struct ip *ip;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
|
|
/*
|
|
* get an entry from the tail of the LRU list.
|
|
*/
|
|
fve = TAILQ_LAST(&fv->fv_flowlist, fv_flowhead);
|
|
|
|
switch (pktattr->pattr_af) {
|
|
case AF_INET:
|
|
ip = (struct ip *)pktattr->pattr_hdr;
|
|
fve->fve_flow.flow_af = AF_INET;
|
|
fve->fve_flow.flow_ip.ip_src = ip->ip_src;
|
|
fve->fve_flow.flow_ip.ip_dst = ip->ip_dst;
|
|
break;
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
|
|
fve->fve_flow.flow_af = AF_INET6;
|
|
fve->fve_flow.flow_ip6.ip6_src = ip6->ip6_src;
|
|
fve->fve_flow.flow_ip6.ip6_dst = ip6->ip6_dst;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
fve->fve_state = Green;
|
|
fve->fve_p = 0.0;
|
|
fve->fve_f = 0.0;
|
|
fve->fve_ifseq = fv->fv_ifseq - 1;
|
|
fve->fve_count = 0;
|
|
|
|
fv->fv_flows++;
|
|
#ifdef FV_STATS
|
|
fv->fv_stats.alloc++;
|
|
#endif
|
|
return (fve);
|
|
}
|
|
|
|
static inline void
|
|
flowlist_move_to_head(fv, fve)
|
|
struct flowvalve *fv;
|
|
struct fve *fve;
|
|
{
|
|
if (TAILQ_FIRST(&fv->fv_flowlist) != fve) {
|
|
TAILQ_REMOVE(&fv->fv_flowlist, fve, fve_lru);
|
|
TAILQ_INSERT_HEAD(&fv->fv_flowlist, fve, fve_lru);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* allocate flowvalve structure
|
|
*/
|
|
static struct flowvalve *
|
|
fv_alloc(rp)
|
|
struct red *rp;
|
|
{
|
|
struct flowvalve *fv;
|
|
struct fve *fve;
|
|
int i, num;
|
|
|
|
num = FV_FLOWLISTSIZE;
|
|
fv = malloc(sizeof(struct flowvalve), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
if (fv == NULL)
|
|
return (NULL);
|
|
|
|
fv->fv_fves = malloc(sizeof(struct fve) * num, M_DEVBUF,
|
|
M_WAITOK|M_ZERO);
|
|
if (fv->fv_fves == NULL) {
|
|
free(fv, M_DEVBUF);
|
|
return (NULL);
|
|
}
|
|
|
|
fv->fv_flows = 0;
|
|
TAILQ_INIT(&fv->fv_flowlist);
|
|
for (i = 0; i < num; i++) {
|
|
fve = &fv->fv_fves[i];
|
|
fve->fve_lastdrop.tv_sec = 0;
|
|
TAILQ_INSERT_TAIL(&fv->fv_flowlist, fve, fve_lru);
|
|
}
|
|
|
|
/* initialize drop rate threshold in scaled fixed-point */
|
|
fv->fv_pthresh = (FV_PSCALE(1) << FP_SHIFT) / rp->red_inv_pmax;
|
|
|
|
/* initialize drop rate to fraction table */
|
|
fv->fv_p2ftab = malloc(sizeof(int) * BRTT_SIZE, M_DEVBUF, M_WAITOK);
|
|
if (fv->fv_p2ftab == NULL) {
|
|
free(fv->fv_fves, M_DEVBUF);
|
|
free(fv, M_DEVBUF);
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* create the p2f table.
|
|
* (shift is used to keep the precision)
|
|
*/
|
|
for (i = 1; i < BRTT_SIZE; i++) {
|
|
int f;
|
|
|
|
f = brtt_tab[i] << 8;
|
|
fv->fv_p2ftab[i] = (f / (rp->red_thmax + FV_ALPHA)) >> 8;
|
|
}
|
|
|
|
return (fv);
|
|
}
|
|
|
|
static void fv_destroy(fv)
|
|
struct flowvalve *fv;
|
|
{
|
|
free(fv->fv_p2ftab, M_DEVBUF);
|
|
free(fv->fv_fves, M_DEVBUF);
|
|
free(fv, M_DEVBUF);
|
|
}
|
|
|
|
static inline int
|
|
fv_p2f(fv, p)
|
|
struct flowvalve *fv;
|
|
int p;
|
|
{
|
|
int val, f;
|
|
|
|
if (p >= BRTT_PMAX)
|
|
f = fv->fv_p2ftab[BRTT_SIZE-1];
|
|
else if ((val = (p & BRTT_MASK)))
|
|
f = fv->fv_p2ftab[(val >> BRTT_SHIFT)];
|
|
else
|
|
f = fv->fv_p2ftab[1];
|
|
return (f);
|
|
}
|
|
|
|
/*
|
|
* check if an arriving packet should be pre-dropped.
|
|
* called from red_addq() when a packet arrives.
|
|
* returns 1 when the packet should be pre-dropped.
|
|
* should be called in splnet.
|
|
*/
|
|
static int
|
|
fv_checkflow(fv, pktattr, fcache)
|
|
struct flowvalve *fv;
|
|
struct altq_pktattr *pktattr;
|
|
struct fve **fcache;
|
|
{
|
|
struct fve *fve;
|
|
struct timeval now;
|
|
|
|
fv->fv_ifseq++;
|
|
FV_TIMESTAMP(&now);
|
|
|
|
if ((fve = flowlist_lookup(fv, pktattr, &now)) == NULL)
|
|
/* no matching entry in the flowlist */
|
|
return (0);
|
|
|
|
*fcache = fve;
|
|
|
|
/* update fraction f for every FV_N packets */
|
|
if (++fve->fve_count == FV_N) {
|
|
/*
|
|
* f = Wf * N / (fv_ifseq - fve_ifseq) + (1 - Wf) * f
|
|
*/
|
|
fve->fve_f =
|
|
(FV_N << FP_SHIFT) / (fv->fv_ifseq - fve->fve_ifseq)
|
|
+ fve->fve_f - FV_FUNSCALE(fve->fve_f);
|
|
fve->fve_ifseq = fv->fv_ifseq;
|
|
fve->fve_count = 0;
|
|
}
|
|
|
|
/*
|
|
* overpumping test
|
|
*/
|
|
if (fve->fve_state == Green && fve->fve_p > fv->fv_pthresh) {
|
|
int fthresh;
|
|
|
|
/* calculate a threshold */
|
|
fthresh = fv_p2f(fv, fve->fve_p);
|
|
if (fve->fve_f > fthresh)
|
|
fve->fve_state = Red;
|
|
}
|
|
|
|
if (fve->fve_state == Red) {
|
|
/*
|
|
* backoff test
|
|
*/
|
|
if (now.tv_sec - fve->fve_lastdrop.tv_sec > FV_BACKOFFTHRESH) {
|
|
/* no drop for at least FV_BACKOFFTHRESH sec */
|
|
fve->fve_p = 0;
|
|
fve->fve_state = Green;
|
|
#ifdef FV_STATS
|
|
fv->fv_stats.escape++;
|
|
#endif
|
|
} else {
|
|
/* block this flow */
|
|
flowlist_move_to_head(fv, fve);
|
|
fve->fve_lastdrop = now;
|
|
#ifdef FV_STATS
|
|
fv->fv_stats.predrop++;
|
|
#endif
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* p = (1 - Wp) * p
|
|
*/
|
|
fve->fve_p -= FV_PUNSCALE(fve->fve_p);
|
|
if (fve->fve_p < 0)
|
|
fve->fve_p = 0;
|
|
#ifdef FV_STATS
|
|
fv->fv_stats.pass++;
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* called from red_addq when a packet is dropped by red.
|
|
* should be called in splnet.
|
|
*/
|
|
static void fv_dropbyred(fv, pktattr, fcache)
|
|
struct flowvalve *fv;
|
|
struct altq_pktattr *pktattr;
|
|
struct fve *fcache;
|
|
{
|
|
struct fve *fve;
|
|
struct timeval now;
|
|
|
|
if (pktattr == NULL)
|
|
return;
|
|
FV_TIMESTAMP(&now);
|
|
|
|
if (fcache != NULL)
|
|
/* the fve of this packet is already cached */
|
|
fve = fcache;
|
|
else if ((fve = flowlist_lookup(fv, pktattr, &now)) == NULL)
|
|
fve = flowlist_reclaim(fv, pktattr);
|
|
|
|
flowlist_move_to_head(fv, fve);
|
|
|
|
/*
|
|
* update p: the following line cancels the update
|
|
* in fv_checkflow() and calculate
|
|
* p = Wp + (1 - Wp) * p
|
|
*/
|
|
fve->fve_p = (1 << FP_SHIFT) + fve->fve_p;
|
|
|
|
fve->fve_lastdrop = now;
|
|
}
|
|
|
|
#endif /* ALTQ_FLOWVALVE */
|
|
|
|
#ifdef KLD_MODULE
|
|
|
|
static struct altqsw red_sw =
|
|
{"red", redopen, redclose, redioctl};
|
|
|
|
ALTQ_MODULE(altq_red, ALTQT_RED, &red_sw);
|
|
|
|
#endif /* KLD_MODULE */
|
|
|
|
#endif /* ALTQ_RED */
|