NetBSD/usr.sbin/acpitools/acpidump/acpi.c

2487 lines
64 KiB
C

/* $NetBSD: acpi.c,v 1.8 2011/02/17 10:18:05 jmcneill Exp $ */
/*-
* Copyright (c) 1998 Doug Rabson
* Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/usr.sbin/acpi/acpidump/acpi.c,v 1.37 2009/08/25 20:35:57 jhb Exp $
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: acpi.c,v 1.8 2011/02/17 10:18:05 jmcneill Exp $");
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <assert.h>
#include <err.h>
#include <fcntl.h>
#include <paths.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stddef.h>
#include "acpidump.h"
#define BEGIN_COMMENT "/*\n"
#define END_COMMENT " */\n"
static void acpi_print_string(char *s, size_t length);
static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas);
static void acpi_print_pci(uint16_t vendorid, uint16_t deviceid,
uint8_t seg, uint8_t bus, uint8_t device, uint8_t func);
static void acpi_print_pci_sbfd(uint8_t seg, uint8_t bus, uint8_t device,
uint8_t func);
#ifdef notyet
static void acpi_print_hest_generic_status(ACPI_HEST_GENERIC_STATUS *);
static void acpi_print_hest_generic_data(ACPI_HEST_GENERIC_DATA *);
#endif
static void acpi_print_whea(ACPI_WHEA_HEADER *whea,
void (*print_action)(ACPI_WHEA_HEADER *),
void (*print_ins)(ACPI_WHEA_HEADER *),
void (*print_flags)(ACPI_WHEA_HEADER *));
static int acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt);
static void acpi_handle_fadt(ACPI_TABLE_HEADER *fadt);
static void acpi_print_cpu(u_char cpu_id);
static void acpi_print_cpu_uid(uint32_t uid, char *uid_string);
static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags);
static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base,
uint64_t apic_addr);
static void acpi_print_mps_flags(uint16_t flags);
static void acpi_print_intr(uint32_t intr, uint16_t mps_flags);
static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags);
static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp);
static void acpi_handle_bert(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_boot(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_cpep(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_dbgp(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_einj(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_erst(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_hest(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_msct(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_sbst(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_spcr(ACPI_TABLE_HEADER *sdp);
static void acpi_print_srat_cpu(uint32_t apic_id,
uint32_t proximity_domain,
uint32_t flags, uint32_t clockdomain);
static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp);
static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat);
static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_waet(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_wdat(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_wdrt(ACPI_TABLE_HEADER *sdp);
static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp);
static void acpi_dump_bytes(ACPI_TABLE_HEADER *sdp);
static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp);
static void acpi_print_facs(ACPI_TABLE_FACS *facs);
static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp);
static ACPI_TABLE_HEADER *acpi_map_sdt(vm_offset_t pa);
static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp);
static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp);
static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_SUBTABLE_HEADER *));
/* Size of an address. 32-bit for ACPI 1.0, 64-bit for ACPI 2.0 and up. */
static int addr_size;
static void
acpi_print_string(char *s, size_t length)
{
int c;
/* Trim trailing spaces and NULLs */
while (length > 0 && (s[length - 1] == ' ' || s[length - 1] == '\0'))
length--;
while (length--) {
c = *s++;
putchar(c);
}
}
static void
acpi_print_gas(ACPI_GENERIC_ADDRESS *gas)
{
switch(gas->SpaceId) {
case ACPI_GAS_MEMORY:
printf("0x%08lx:%u[%u] (Memory)", (u_long)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_IO:
printf("0x%02lx:%u[%u] (IO)", (u_long)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_PCI:
printf("%x:%x+0x%x (PCI)", (uint16_t)(gas->Address >> 32),
(uint16_t)((gas->Address >> 16) & 0xffff),
(uint16_t)gas->Address);
break;
/* XXX How to handle these below? */
case ACPI_GAS_EMBEDDED:
printf("0x%x:%u[%u] (EC)", (uint16_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_SMBUS:
printf("0x%x:%u[%u] (SMBus)", (uint16_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_CMOS:
case ACPI_GAS_PCIBAR:
case ACPI_GAS_DATATABLE:
case ACPI_GAS_FIXED:
default:
printf("0x%08lx (?)", (u_long)gas->Address);
break;
}
}
static void
acpi_print_pci(uint16_t vendorid, uint16_t deviceid,
uint8_t seg, uint8_t bus, uint8_t device, uint8_t func)
{
if (vendorid == 0xffff && deviceid == 0xffff) {
printf("\tPCI Device=NONE\n");
return;
}
printf("\tPCI device={\n");
printf("\t\tVendor=0x%x\n", vendorid);
printf("\t\tDevice=0x%x\n", deviceid);
printf("\n");
printf("\t\tSegment Group=%d\n", seg);
printf("\t\tBus=%d\n", bus);
printf("\t\tDevice=%d\n", device);
printf("\t\tFunction=%d\n", func);
printf("\t}\n");
}
static void
acpi_print_pci_sbfd(uint8_t seg, uint8_t bus, uint8_t device, uint8_t func)
{
if (bus == 0xff && device == 0xff && func == 0xff) {
printf("\tPCI Device=NONE\n");
return;
}
printf("\tPCI device={\n");
printf("\t\tSegment Group=%d\n", seg);
printf("\t\tBus=%d\n", bus);
printf("\t\tDevice=%d\n", device);
printf("\t\tFunction=%d\n", func);
printf("\t}\n");
}
#ifdef notyet
static void
acpi_print_hest_errorseverity(uint32_t error)
{
printf("\tError Severity={ ");
switch (error) {
case 0:
printf("Recoverable");
break;
case 1:
printf("Fatal");
break;
case 2:
printf("Corrected");
break;
case 3:
printf("None");
break;
default:
printf("%d (reserved)", error);
break;
}
printf("}\n");
}
#endif
static void
acpi_print_hest_errorbank(ACPI_HEST_IA_ERROR_BANK *bank)
{
printf("\n");
printf("\tBank Number=%d\n", bank->BankNumber);
printf("\tClear Status On Init={ %s }\n",
bank->ClearStatusOnInit ? "NO" : "YES");
printf("\tStatus Data Format={ ");
switch (bank->StatusFormat) {
case 0:
printf("IA32 MCA");
break;
case 1:
printf("EMT64 MCA");
break;
case 2:
printf("AMD64 MCA");
break;
}
printf(" }\n");
if (bank->ControlRegister)
printf("\tControl Register=0x%x\n", bank->ControlRegister);
printf("\tControl Init Data=0x%"PRIx64"\n", bank->ControlData);
printf("\tStatus MSR=0x%x\n", bank->StatusRegister);
printf("\tAddress MSR=0x%x\n", bank->AddressRegister);
printf("\tMisc MSR=0x%x\n", bank->MiscRegister);
}
static void
acpi_print_hest_header(ACPI_HEST_HEADER *hest)
{
printf("\tType={ ");
switch (hest->Type) {
case ACPI_HEST_TYPE_IA32_CHECK:
printf("IA32 Machine Check Exception");
break;
case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK:
printf("IA32 Corrected Machine Check\n");
break;
case ACPI_HEST_TYPE_IA32_NMI:
printf("IA32 Non-Maskable Interrupt\n");
break;
case ACPI_HEST_TYPE_NOT_USED3:
case ACPI_HEST_TYPE_NOT_USED4:
case ACPI_HEST_TYPE_NOT_USED5:
printf("unused type: %d\n", hest->Type);
break;
case ACPI_HEST_TYPE_AER_ROOT_PORT:
printf("PCI Express Root Port AER\n");
break;
case ACPI_HEST_TYPE_AER_ENDPOINT:
printf("PCI Express Endpoint AER\n");
break;
case ACPI_HEST_TYPE_AER_BRIDGE:
printf("PCI Express/PCI-X Bridge AER\n");
break;
case ACPI_HEST_TYPE_GENERIC_ERROR:
printf("Generic Hardware Error Source\n");
break;
case ACPI_HEST_TYPE_RESERVED:
default:
printf("Reserved\n");
break;
}
printf(" }\n");
printf("\tSourceId=%d\n", hest->SourceId);
}
static void
acpi_print_hest_aer_common(ACPI_HEST_AER_COMMON *data)
{
printf("\tFlags={ ");
if (data->Flags & ACPI_HEST_FIRMWARE_FIRST)
printf("FIRMWARE_FIRST");
if (data->Flags & ACPI_HEST_GLOBAL)
printf("GLOBAL");
printf(" }\n");
printf("\tEnabled={ %s ", data->Flags ? "YES" : "NO");
if (data->Flags & ACPI_HEST_FIRMWARE_FIRST)
printf("(ignored) ");
printf("}\n");
printf("\tNumber of Record to pre-allocate=%d\n",
data->RecordsToPreallocate);
printf("\tMax. Sections per Record=%d\n", data->MaxSectionsPerRecord);
if (!(data->Flags & ACPI_HEST_GLOBAL))
acpi_print_pci_sbfd(0, data->Bus, data->Device, data->Function);
printf("\tDevice Control=0x%x\n", data->DeviceControl);
printf("\tUncorrectable Error Mask Register=0x%x\n",
data->UncorrectableMask);
printf("\tUncorrectable Error Severity Register=0x%x\n",
data->UncorrectableSeverity);
printf("\tCorrectable Error Mask Register=0x%x\n",
data->CorrectableMask);
printf("\tAdvanced Capabilities Register=0x%x\n",
data->AdvancedCapabilities);
}
static void
acpi_print_hest_notify(ACPI_HEST_NOTIFY *notify)
{
printf("\tHW Error Notification={\n");
printf("\t\tType={ ");
switch (notify->Type) {
case ACPI_HEST_NOTIFY_POLLED:
printf("POLLED");
break;
case ACPI_HEST_NOTIFY_EXTERNAL:
printf("EXTERN");
break;
case ACPI_HEST_NOTIFY_LOCAL:
printf("LOCAL");
break;
case ACPI_HEST_NOTIFY_SCI:
printf("SCI");
break;
case ACPI_HEST_NOTIFY_NMI:
printf("NMI");
break;
case ACPI_HEST_NOTIFY_RESERVED:
printf("RESERVED");
break;
default:
printf(" %d (reserved)", notify->Type);
break;
}
printf(" }\n");
printf("\t\tLength=%d\n", notify->Length);
printf("\t\tConfig Write Enable={\n");
if (notify->ConfigWriteEnable & ACPI_HEST_TYPE)
printf("TYPE");
if (notify->ConfigWriteEnable & ACPI_HEST_POLL_INTERVAL)
printf("POLL INTERVAL");
if (notify->ConfigWriteEnable & ACPI_HEST_POLL_THRESHOLD_VALUE)
printf("THRESHOLD VALUE");
if (notify->ConfigWriteEnable & ACPI_HEST_POLL_THRESHOLD_WINDOW)
printf("THRESHOLD WINDOW");
if (notify->ConfigWriteEnable & ACPI_HEST_ERR_THRESHOLD_VALUE)
printf("THRESHOLD VALUE");
if (notify->ConfigWriteEnable & ACPI_HEST_ERR_THRESHOLD_WINDOW)
printf("THRESHOLD WINDOW");
printf("}\n");
printf("\t\tPoll Interval=%d msec\n", notify->PollInterval);
printf("\t\tInterrupt Vector=%d\n", notify->Vector);
printf("\t\tSwitch To Polling Threshold Value=%d\n",
notify->PollingThresholdValue);
printf("\t\tSwitch To Polling Threshold Window=%d msec\n",
notify->PollingThresholdWindow);
printf("\t\tError Threshold Value=%d\n",
notify->ErrorThresholdValue);
printf("\t\tError Threshold Window=%d msec\n",
notify->ErrorThresholdWindow);
printf("\t}\n");
}
#ifdef notyet
static void
acpi_print_hest_generic_status(ACPI_HEST_GENERIC_STATUS *data)
{
uint32_t i, pos, entries;
ACPI_HEST_GENERIC_DATA *gen;
entries = data->BlockStatus & ACPI_HEST_ERROR_ENTRY_COUNT;
printf("\tGeneric Error Status={\n");
printf("\t\tBlock Status={ ");
if (data->BlockStatus & ACPI_HEST_UNCORRECTABLE)
printf("UNCORRECTABLE");
if (data->BlockStatus & ACPI_HEST_CORRECTABLE)
printf("CORRECTABLE");
if (data->BlockStatus & ACPI_HEST_MULTIPLE_UNCORRECTABLE)
printf("MULTIPLE UNCORRECTABLE");
if (data->BlockStatus & ACPI_HEST_MULTIPLE_CORRECTABLE)
printf("MULTIPLE CORRECTABLE");
printf(" }\n");
printf("\t\tEntry Count=%d\n", entries);
printf("\t\tRaw Data Offset=%d\n", data->RawDataOffset);
printf("\t\tRaw Data Length=%d\n", data->RawDataLength);
printf("\t\tData Length=%d\n", data->DataLength);
printf("\t");
acpi_print_hest_errorseverity(data->ErrorSeverity);
printf("\t}\n");
pos = sizeof(ACPI_HEST_GENERIC_STATUS);
for (i = 0; i < entries; i++) {
gen = (ACPI_HEST_GENERIC_DATA *)((char *)data + pos);
acpi_print_hest_generic_data(gen);
pos += sizeof(ACPI_HEST_GENERIC_DATA);
}
}
#endif
#ifdef notyet
static void
acpi_print_hest_generic_data(ACPI_HEST_GENERIC_DATA *data)
{
printf("\tGeneric Error Data={\n");
printf("\t\tSectionType=");
acpi_print_string((char *)data->SectionType, sizeof(data->SectionType));
printf("\n\t");
acpi_print_hest_errorseverity(data->ErrorSeverity);
printf("\t\tRevision=0x%x\n", data->Revision);
printf("\t\tValidation Bits=0x%x\n", data->ValidationBits);
printf("\t\tFlags=0x%x\n", data->Flags);
printf("\t\tData Length=%d\n", data->ErrorDataLength);
printf("\t\tField Replication Unit Id=");
acpi_print_string((char *)data->FruId, sizeof(data->FruId));
printf("\n");
printf("\t\tField Replication Unit=");
acpi_print_string((char *)data->FruText, sizeof(data->FruText));
printf("\n");
printf("\t}\n");
}
#endif
static void
acpi_print_whea(ACPI_WHEA_HEADER *whea,
void (*print_action)(ACPI_WHEA_HEADER *),
void (*print_ins)(ACPI_WHEA_HEADER *),
void (*print_flags)(ACPI_WHEA_HEADER *))
{
printf("\n");
print_action(whea);
print_ins(whea);
if (print_flags)
print_flags(whea);
printf("\tRegisterRegion=");
acpi_print_gas(&whea->RegisterRegion);
printf("\n");
printf("\tMASK=0x%08"PRIx64"\n", whea->Mask);
}
static void
acpi_print_hest_ia32_check(ACPI_HEST_IA_MACHINE_CHECK *data)
{
uint32_t i, pos;
ACPI_HEST_IA_ERROR_BANK *bank;
acpi_print_hest_header(&data->Header);
printf("\tFlags={ ");
if (data->Flags & ACPI_HEST_FIRMWARE_FIRST)
printf("FIRMWARE_FIRST");
printf(" }\n");
printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO");
printf("\tNumber of Record to pre-allocate=%d\n",
data->RecordsToPreallocate);
printf("\tMax Sections per Record=%d\n",
data->MaxSectionsPerRecord);
printf("\tGlobal Capability Init Data=0x%"PRIx64"\n",
data->GlobalCapabilityData);
printf("\tGlobal Control Init Data=0x%"PRIx64"\n",
data->GlobalControlData);
printf("\tNumber of Hardware Error Reporting Banks=%d\n",
data->NumHardwareBanks);
pos = sizeof(ACPI_HEST_IA_MACHINE_CHECK);
for (i = 0; i < data->NumHardwareBanks; i++) {
bank = (ACPI_HEST_IA_ERROR_BANK *)((char *)data + pos);
acpi_print_hest_errorbank(bank);
pos += sizeof(ACPI_HEST_IA_ERROR_BANK);
}
}
static void
acpi_print_hest_ia32_correctedcheck(ACPI_HEST_IA_CORRECTED *data)
{
uint32_t i, pos;
ACPI_HEST_IA_ERROR_BANK *bank;
acpi_print_hest_header(&data->Header);
printf("\tFlags={ ");
if (data->Flags & ACPI_HEST_FIRMWARE_FIRST)
printf("FIRMWARE_FIRST");
printf(" }\n");
printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO");
printf("\tNumber of Record to pre-allocate=%d\n",
data->RecordsToPreallocate);
printf("\tMax Sections per Record=%d\n",
data->MaxSectionsPerRecord);
acpi_print_hest_notify(&data->Notify);
printf("\tNumber of Hardware Error Reporting Banks=%d\n",
data->NumHardwareBanks);
pos = sizeof(ACPI_HEST_IA_MACHINE_CHECK);
for (i = 0; i < data->NumHardwareBanks; i++) {
bank = (ACPI_HEST_IA_ERROR_BANK *)((char *)data + pos);
acpi_print_hest_errorbank(bank);
pos += sizeof(ACPI_HEST_IA_ERROR_BANK);
}
}
static void
acpi_print_hest_ia32_nmi(ACPI_HEST_IA_NMI *data)
{
acpi_print_hest_header(&data->Header);
printf("\tNumber of Record to pre-allocate=%d\n",
data->RecordsToPreallocate);
printf("\tMax Sections per Record=%d\n",
data->MaxSectionsPerRecord);
printf("\tMax Raw Data Length=%d\n",
data->MaxRawDataLength);
}
static void
acpi_print_hest_aer_root(ACPI_HEST_AER_ROOT *data)
{
acpi_print_hest_header(&data->Header);
acpi_print_hest_aer_common(&data->Aer);
printf("Root Error Command Register=0x%x\n", data->RootErrorCommand);
}
static void
acpi_print_hest_aer_endpoint(ACPI_HEST_AER *data)
{
acpi_print_hest_header(&data->Header);
acpi_print_hest_aer_common(&data->Aer);
}
static void
acpi_print_hest_aer_bridge(ACPI_HEST_AER_BRIDGE *data)
{
acpi_print_hest_header(&data->Header);
acpi_print_hest_aer_common(&data->Aer);
printf("\tSecondary Uncorrectable Error Mask Register=0x%x\n",
data->UncorrectableMask2);
printf("\tSecondary Uncorrectable Error Severity Register=0x%x\n",
data->UncorrectableSeverity2);
printf("\tSecondory Advanced Capabilities Register=0x%x\n",
data->AdvancedCapabilities2);
}
static void
acpi_print_hest_generic(ACPI_HEST_GENERIC *data)
{
acpi_print_hest_header(&data->Header);
if (data->RelatedSourceId != 0xffff)
printf("\tReleated SourceId=%d\n", data->RelatedSourceId);
printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO");
printf("\tNumber of Records to pre-allocate=%d\n",
data->RecordsToPreallocate);
printf("\tMax Sections per Record=%d\n",
data->MaxSectionsPerRecord);
printf("\tMax Raw Data Length=%d\n", data->MaxRawDataLength);
printf("\tError Status Address=");
acpi_print_gas(&data->ErrorStatusAddress);
acpi_print_hest_notify(&data->Notify);
printf("\tError Block Length=%d\n", data->ErrorBlockLength);
}
static void
acpi_handle_hest(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_HEST *hest;
ACPI_HEST_HEADER *subhest;
uint32_t i, pos;
void *subtable;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
hest = (ACPI_TABLE_HEST *)sdp;
printf("\tError Source Count=%d\n", hest->ErrorSourceCount);
pos = sizeof(ACPI_TABLE_HEST);
for (i = 0; i < hest->ErrorSourceCount; i++) {
subhest = (ACPI_HEST_HEADER *)((char *)hest + pos);
subtable = (void *)((char *)subhest + sizeof(ACPI_HEST_HEADER));
printf("\n");
printf("\tType={ ");
switch (subhest->Type) {
case ACPI_HEST_TYPE_IA32_CHECK:
acpi_print_hest_ia32_check(subtable);
pos += sizeof(ACPI_HEST_IA_MACHINE_CHECK);
break;
case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK:
acpi_print_hest_ia32_correctedcheck(subtable);
pos += sizeof(ACPI_HEST_IA_CORRECTED);
break;
case ACPI_HEST_TYPE_IA32_NMI:
acpi_print_hest_ia32_nmi(subtable);
pos += sizeof(ACPI_HEST_IA_NMI);
break;
case ACPI_HEST_TYPE_NOT_USED3:
case ACPI_HEST_TYPE_NOT_USED4:
case ACPI_HEST_TYPE_NOT_USED5:
pos += sizeof(ACPI_HEST_HEADER);
break;
case ACPI_HEST_TYPE_AER_ROOT_PORT:
acpi_print_hest_aer_root(subtable);
pos += sizeof(ACPI_HEST_AER_ROOT);
break;
case ACPI_HEST_TYPE_AER_ENDPOINT:
acpi_print_hest_aer_endpoint(subtable);
pos += sizeof(ACPI_HEST_AER_ROOT);
break;
case ACPI_HEST_TYPE_AER_BRIDGE:
acpi_print_hest_aer_bridge(subtable);
pos += sizeof(ACPI_HEST_AER_BRIDGE);
break;
case ACPI_HEST_TYPE_GENERIC_ERROR:
acpi_print_hest_generic(subtable);
pos += sizeof(ACPI_HEST_GENERIC);
break;
case ACPI_HEST_TYPE_RESERVED:
default:
pos += sizeof(ACPI_HEST_HEADER);
break;
}
}
printf(END_COMMENT);
}
/* The FADT revision indicates whether we use the DSDT or X_DSDT addresses. */
static int
acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt)
{
int fadt_revision;
/* Set the FADT revision separately from the RSDP version. */
if (addr_size == 8) {
fadt_revision = 2;
/*
* A few systems (e.g., IBM T23) have an RSDP that claims
* revision 2 but the 64 bit addresses are invalid. If
* revision 2 and the 32 bit address is non-zero but the
* 32 and 64 bit versions don't match, prefer the 32 bit
* version for all subsequent tables.
*/
if (fadt->Facs != 0 &&
(fadt->XFacs & 0xffffffff) != fadt->Facs)
fadt_revision = 1;
} else
fadt_revision = 1;
return (fadt_revision);
}
static void
acpi_handle_fadt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_HEADER *dsdp;
ACPI_TABLE_FACS *facs;
ACPI_TABLE_FADT *fadt;
int fadt_revision;
fadt = (ACPI_TABLE_FADT *)sdp;
acpi_print_fadt(sdp);
fadt_revision = acpi_get_fadt_revision(fadt);
if (fadt_revision == 1)
facs = (ACPI_TABLE_FACS *)acpi_map_sdt(fadt->Facs);
else
facs = (ACPI_TABLE_FACS *)acpi_map_sdt(fadt->XFacs);
if (memcmp(facs->Signature, ACPI_SIG_FACS, 4) != 0 || facs->Length < 64)
errx(EXIT_FAILURE, "FACS is corrupt");
acpi_print_facs(facs);
if (fadt_revision == 1)
dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt);
else
dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt);
if (acpi_checksum(dsdp, dsdp->Length))
errx(EXIT_FAILURE, "DSDT is corrupt");
acpi_print_dsdt(dsdp);
}
static void
acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_SUBTABLE_HEADER *))
{
ACPI_SUBTABLE_HEADER *subtable;
char *end;
subtable = first;
end = (char *)table + table->Length;
while ((char *)subtable < end) {
printf("\n");
action(subtable);
subtable = (ACPI_SUBTABLE_HEADER *)((char *)subtable +
subtable->Length);
}
}
static void
acpi_print_cpu(u_char cpu_id)
{
printf("\tACPI CPU=");
if (cpu_id == 0xff)
printf("ALL\n");
else
printf("%d\n", (u_int)cpu_id);
}
static void
acpi_print_cpu_uid(uint32_t uid, char *uid_string)
{
printf("\tUID=%d", uid);
if (uid_string != NULL)
printf(" (%s)", uid_string);
printf("\n");
}
static void
acpi_print_local_apic(uint32_t apic_id, uint32_t flags)
{
printf("\tFlags={");
if (flags & ACPI_MADT_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
printf("}\n");
printf("\tAPIC ID=%d\n", apic_id);
}
static void
acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr)
{
printf("\tAPIC ID=%d\n", apic_id);
printf("\tINT BASE=%d\n", int_base);
printf("\tADDR=0x%016jx\n", (uintmax_t)apic_addr);
}
static void
acpi_print_mps_flags(uint16_t flags)
{
printf("\tFlags={Polarity=");
switch (flags & ACPI_MADT_POLARITY_MASK) {
case ACPI_MADT_POLARITY_CONFORMS:
printf("conforming");
break;
case ACPI_MADT_POLARITY_ACTIVE_HIGH:
printf("active-hi");
break;
case ACPI_MADT_POLARITY_ACTIVE_LOW:
printf("active-lo");
break;
default:
printf("0x%x", flags & ACPI_MADT_POLARITY_MASK);
break;
}
printf(", Trigger=");
switch (flags & ACPI_MADT_TRIGGER_MASK) {
case ACPI_MADT_TRIGGER_CONFORMS:
printf("conforming");
break;
case ACPI_MADT_TRIGGER_EDGE:
printf("edge");
break;
case ACPI_MADT_TRIGGER_LEVEL:
printf("level");
break;
default:
printf("0x%x", (flags & ACPI_MADT_TRIGGER_MASK) >> 2);
}
printf("}\n");
}
static void
acpi_print_intr(uint32_t intr, uint16_t mps_flags)
{
printf("\tINTR=%d\n", intr);
acpi_print_mps_flags(mps_flags);
}
static void
acpi_print_local_nmi(u_int lint, uint16_t mps_flags)
{
printf("\tLINT Pin=%d\n", lint);
acpi_print_mps_flags(mps_flags);
}
const char *apic_types[] = { "Local APIC", "IO APIC", "INT Override", "NMI",
"Local APIC NMI", "Local APIC Override",
"IO SAPIC", "Local SAPIC", "Platform Interrupt",
"Local X2APIC", "Local X2APIC NMI" };
const char *platform_int_types[] = { "0 (unknown)", "PMI", "INIT",
"Corrected Platform Error" };
static void
acpi_print_madt(ACPI_SUBTABLE_HEADER *mp)
{
ACPI_MADT_LOCAL_APIC *lapic;
ACPI_MADT_IO_APIC *ioapic;
ACPI_MADT_INTERRUPT_OVERRIDE *over;
ACPI_MADT_NMI_SOURCE *nmi;
ACPI_MADT_LOCAL_APIC_NMI *lapic_nmi;
ACPI_MADT_LOCAL_APIC_OVERRIDE *lapic_over;
ACPI_MADT_IO_SAPIC *iosapic;
ACPI_MADT_LOCAL_SAPIC *lsapic;
ACPI_MADT_INTERRUPT_SOURCE *isrc;
ACPI_MADT_LOCAL_X2APIC *x2apic;
ACPI_MADT_LOCAL_X2APIC_NMI *x2apic_nmi;
if (mp->Type < sizeof(apic_types) / sizeof(apic_types[0]))
printf("\tType=%s\n", apic_types[mp->Type]);
else
printf("\tType=%d (unknown)\n", mp->Type);
switch (mp->Type) {
case ACPI_MADT_TYPE_LOCAL_APIC:
lapic = (ACPI_MADT_LOCAL_APIC *)mp;
acpi_print_cpu(lapic->ProcessorId);
acpi_print_local_apic(lapic->Id, lapic->LapicFlags);
break;
case ACPI_MADT_TYPE_IO_APIC:
ioapic = (ACPI_MADT_IO_APIC *)mp;
acpi_print_io_apic(ioapic->Id, ioapic->GlobalIrqBase,
ioapic->Address);
break;
case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
over = (ACPI_MADT_INTERRUPT_OVERRIDE *)mp;
printf("\tBUS=%d\n", (u_int)over->Bus);
printf("\tIRQ=%d\n", (u_int)over->SourceIrq);
acpi_print_intr(over->GlobalIrq, over->IntiFlags);
break;
case ACPI_MADT_TYPE_NMI_SOURCE:
nmi = (ACPI_MADT_NMI_SOURCE *)mp;
acpi_print_intr(nmi->GlobalIrq, nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
lapic_nmi = (ACPI_MADT_LOCAL_APIC_NMI *)mp;
acpi_print_cpu(lapic_nmi->ProcessorId);
acpi_print_local_nmi(lapic_nmi->Lint, lapic_nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
lapic_over = (ACPI_MADT_LOCAL_APIC_OVERRIDE *)mp;
printf("\tLocal APIC ADDR=0x%016jx\n",
(uintmax_t)lapic_over->Address);
break;
case ACPI_MADT_TYPE_IO_SAPIC:
iosapic = (ACPI_MADT_IO_SAPIC *)mp;
acpi_print_io_apic(iosapic->Id, iosapic->GlobalIrqBase,
iosapic->Address);
break;
case ACPI_MADT_TYPE_LOCAL_SAPIC:
lsapic = (ACPI_MADT_LOCAL_SAPIC *)mp;
acpi_print_cpu(lsapic->ProcessorId);
acpi_print_local_apic(lsapic->Id, lsapic->LapicFlags);
printf("\tAPIC EID=%d\n", (u_int)lsapic->Eid);
if (mp->Length > offsetof(ACPI_MADT_LOCAL_SAPIC, Uid))
acpi_print_cpu_uid(lsapic->Uid, lsapic->UidString);
break;
case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
isrc = (ACPI_MADT_INTERRUPT_SOURCE *)mp;
if (isrc->Type < sizeof(platform_int_types) /
sizeof(platform_int_types[0]))
printf("\tType=%s\n", platform_int_types[isrc->Type]);
else
printf("\tType=%d (unknown)\n", isrc->Type);
printf("\tAPIC ID=%d\n", (u_int)isrc->Id);
printf("\tAPIC EID=%d\n", (u_int)isrc->Eid);
printf("\tSAPIC Vector=%d\n", (u_int)isrc->IoSapicVector);
acpi_print_intr(isrc->GlobalIrq, isrc->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC:
x2apic = (ACPI_MADT_LOCAL_X2APIC *)mp;
acpi_print_cpu_uid(x2apic->Uid, NULL);
acpi_print_local_apic(x2apic->LocalApicId, x2apic->LapicFlags);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
x2apic_nmi = (ACPI_MADT_LOCAL_X2APIC_NMI *)mp;
acpi_print_cpu_uid(x2apic_nmi->Uid, NULL);
acpi_print_local_nmi(x2apic_nmi->Lint, x2apic_nmi->IntiFlags);
break;
}
}
#ifdef notyet
static void
acpi_print_bert_region(ACPI_BERT_REGION *region)
{
uint32_t i, pos, entries;
ACPI_HEST_GENERIC_DATA *data;
printf("\n");
printf("\tBlockStatus={ ");
if (region->BlockStatus & ACPI_BERT_UNCORRECTABLE)
printf("Uncorrectable");
if (region->BlockStatus & ACPI_BERT_CORRECTABLE)
printf("Correctable");
if (region->BlockStatus & ACPI_BERT_MULTIPLE_UNCORRECTABLE)
printf("Multiple Uncorrectable");
if (region->BlockStatus & ACPI_BERT_MULTIPLE_CORRECTABLE)
printf("Multiple Correctable");
entries = region->BlockStatus & ACPI_BERT_ERROR_ENTRY_COUNT;
printf(", Error Entry Count=%d", entries);
printf("}\n");
printf("\tRaw Data Offset=0x%x\n", region->RawDataOffset);
printf("\tRaw Data Length=0x%x\n", region->RawDataLength);
printf("\tData Length=0x%x\n", region->DataLength);
acpi_print_hest_errorseverity(region->ErrorSeverity);
pos = sizeof(ACPI_BERT_REGION);
for (i = 0; i < entries; i++) {
data = (ACPI_HEST_GENERIC_DATA *)((char *)region + pos);
acpi_print_hest_generic_data(data);
pos += sizeof(ACPI_HEST_GENERIC_DATA);
}
}
#endif
static void
acpi_handle_bert(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_BERT *bert;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
bert = (ACPI_TABLE_BERT *)sdp;
printf("\tLength of Boot Error Region=%d bytes\n", bert->RegionLength);
printf("\tPhysical Address of Region=0x%"PRIx64"\n", bert->Address);
printf(END_COMMENT);
}
static void
acpi_handle_boot(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_BOOT *boot;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
boot = (ACPI_TABLE_BOOT *)sdp;
printf("\tCMOS Index=0x%02x\n", boot->CmosIndex);
printf(END_COMMENT);
}
static void
acpi_handle_cpep(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_CPEP *cpep;
ACPI_CPEP_POLLING *poll;
uint32_t cpep_pos;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
cpep = (ACPI_TABLE_CPEP *)sdp;
cpep_pos = sizeof(ACPI_TABLE_CPEP);
while (cpep_pos < sdp->Length) {
poll = (ACPI_CPEP_POLLING *)((char *)cpep + cpep_pos);
acpi_print_cpu(poll->Id);
printf("\tACPI CPU EId=%d\n", poll->Eid);
printf("\tPoll Interval=%d msec\n", poll->Interval);
cpep_pos += sizeof(ACPI_CPEP_POLLING);
}
printf(END_COMMENT);
}
static void
acpi_handle_dbgp(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_DBGP *dbgp;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
dbgp = (ACPI_TABLE_DBGP *)sdp;
printf("\tType={");
switch (dbgp->Type) {
case 0:
printf("full 16550");
break;
case 1:
printf("subset of 16550");
break;
}
printf("}\n");
printf("DebugPort=");
acpi_print_gas(&dbgp->DebugPort);
printf(END_COMMENT);
}
static void
acpi_print_einj_action(ACPI_WHEA_HEADER *whea)
{
printf("\tACTION={");
switch (whea->Action) {
case ACPI_EINJ_BEGIN_OPERATION:
printf("Begin Operation");
break;
case ACPI_EINJ_GET_TRIGGER_TABLE:
printf("Get Trigger Table");
break;
case ACPI_EINJ_SET_ERROR_TYPE:
printf("Set Error Type");
break;
case ACPI_EINJ_GET_ERROR_TYPE:
printf("Get Error Type");
break;
case ACPI_EINJ_END_OPERATION:
printf("End Operation");
break;
case ACPI_EINJ_EXECUTE_OPERATION:
printf("Execute Operation");
break;
case ACPI_EINJ_CHECK_BUSY_STATUS:
printf("Check Busy Status");
break;
case ACPI_EINJ_GET_COMMAND_STATUS:
printf("Get Command Status");
break;
case ACPI_EINJ_ACTION_RESERVED:
printf("Preserved");
break;
case ACPI_EINJ_TRIGGER_ERROR:
printf("Trigger Error");
break;
default:
printf("%d", whea->Action);
break;
}
printf("}\n");
}
static void
acpi_print_einj_instruction(ACPI_WHEA_HEADER *whea)
{
uint32_t ins = whea->Instruction;
printf("\tINSTRUCTION={");
switch (ins) {
case ACPI_EINJ_READ_REGISTER:
printf("Read Register");
break;
case ACPI_EINJ_READ_REGISTER_VALUE:
printf("Read Register Value");
break;
case ACPI_EINJ_WRITE_REGISTER:
printf("Write Register");
break;
case ACPI_EINJ_WRITE_REGISTER_VALUE:
printf("Write Register Value");
break;
case ACPI_EINJ_NOOP:
printf("Noop");
break;
case ACPI_EINJ_INSTRUCTION_RESERVED:
printf("Reserved");
break;
default:
printf("%d", ins);
break;
}
printf("}\n");
}
static void
acpi_print_einj_flags(ACPI_WHEA_HEADER *whea)
{
uint32_t flags = whea->Flags;
printf("\tFLAGS={ ");
if (flags & ACPI_EINJ_PRESERVE)
printf("PRESERVED");
printf("}\n");
}
static void
acpi_handle_einj(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_EINJ *einj;
ACPI_EINJ_ENTRY *einj_entry;
uint32_t einj_pos;
u_int i;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
einj = (ACPI_TABLE_EINJ *)sdp;
printf("\tHeader Length=%d\n", einj->HeaderLength);
printf("\tFlags=0x%x\n", einj->Flags);
printf("\tEntries=%d\n", einj->Entries);
einj_pos = sizeof(ACPI_TABLE_EINJ);
for (i = 0; i < einj->Entries; i++) {
einj_entry = (ACPI_EINJ_ENTRY *)((char *)einj + einj_pos);
acpi_print_whea(&einj_entry->WheaHeader,
acpi_print_einj_action, acpi_print_einj_instruction,
acpi_print_einj_flags);
einj_pos += sizeof(ACPI_EINJ_ENTRY);
}
printf(END_COMMENT);
}
static void
acpi_print_erst_action(ACPI_WHEA_HEADER *whea)
{
printf("\tACTION={");
switch (whea->Action) {
case ACPI_ERST_BEGIN_WRITE:
printf("Begin Write");
break;
case ACPI_ERST_BEGIN_READ:
printf("Begin Read");
break;
case ACPI_ERST_BEGIN_CLEAR:
printf("Begin Clear");
break;
case ACPI_ERST_END:
printf("End");
break;
case ACPI_ERST_SET_RECORD_OFFSET:
printf("Set Record Offset");
break;
case ACPI_ERST_EXECUTE_OPERATION:
printf("Execute Operation");
break;
case ACPI_ERST_CHECK_BUSY_STATUS:
printf("Check Busy Status");
break;
case ACPI_ERST_GET_COMMAND_STATUS:
printf("Get Command Status");
break;
case ACPI_ERST_GET_RECORD_ID:
printf("Get Record ID");
break;
case ACPI_ERST_SET_RECORD_ID:
printf("Set Record ID");
break;
case ACPI_ERST_GET_RECORD_COUNT:
printf("Get Record Count");
break;
case ACPI_ERST_BEGIN_DUMMY_WRIITE:
printf("Begin Dummy Write");
break;
case ACPI_ERST_NOT_USED:
printf("Unused");
break;
case ACPI_ERST_GET_ERROR_RANGE:
printf("Get Error Range");
break;
case ACPI_ERST_GET_ERROR_LENGTH:
printf("Get Error Length");
break;
case ACPI_ERST_GET_ERROR_ATTRIBUTES:
printf("Get Error Attributes");
break;
case ACPI_ERST_ACTION_RESERVED:
printf("Reserved");
break;
default:
printf("%d", whea->Action);
break;
}
printf("}\n");
}
static void
acpi_print_erst_instruction(ACPI_WHEA_HEADER *whea)
{
printf("\tINSTRUCTION={");
switch (whea->Instruction) {
case ACPI_ERST_READ_REGISTER:
printf("Read Register");
break;
case ACPI_ERST_READ_REGISTER_VALUE:
printf("Read Register Value");
break;
case ACPI_ERST_WRITE_REGISTER:
printf("Write Register");
break;
case ACPI_ERST_WRITE_REGISTER_VALUE:
printf("Write Register Value");
break;
case ACPI_ERST_NOOP:
printf("Noop");
break;
case ACPI_ERST_LOAD_VAR1:
printf("Load Var1");
break;
case ACPI_ERST_LOAD_VAR2:
printf("Load Var2");
break;
case ACPI_ERST_STORE_VAR1:
printf("Store Var1");
break;
case ACPI_ERST_ADD:
printf("Add");
break;
case ACPI_ERST_SUBTRACT:
printf("Subtract");
break;
case ACPI_ERST_ADD_VALUE:
printf("Add Value");
break;
case ACPI_ERST_SUBTRACT_VALUE:
printf("Subtract Value");
break;
case ACPI_ERST_STALL:
printf("Stall");
break;
case ACPI_ERST_STALL_WHILE_TRUE:
printf("Stall While True");
break;
case ACPI_ERST_SKIP_NEXT_IF_TRUE:
printf("Skip Next If True");
break;
case ACPI_ERST_GOTO:
printf("Goto");
break;
case ACPI_ERST_SET_SRC_ADDRESS_BASE:
printf("Set Src Address Base");
break;
case ACPI_ERST_SET_DST_ADDRESS_BASE:
printf("Set Dst Address Base");
break;
case ACPI_ERST_MOVE_DATA:
printf("Move Data");
break;
case ACPI_ERST_INSTRUCTION_RESERVED:
printf("Reserved");
break;
default:
printf("%d (reserved)", whea->Instruction);
break;
}
printf("}\n");
}
static void
acpi_print_erst_flags(ACPI_WHEA_HEADER *whea)
{
uint32_t flags = whea->Flags;
printf("\tFLAGS={ ");
if (flags & ACPI_ERST_PRESERVE)
printf("PRESERVED");
printf("}\n");
}
static void
acpi_handle_erst(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_ERST *erst;
ACPI_ERST_ENTRY *erst_entry;
uint32_t erst_pos;
u_int i;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
erst = (ACPI_TABLE_ERST *)sdp;
printf("\tHeader Length=%d\n", erst->HeaderLength);
printf("\tEntries=%d\n", erst->Entries);
erst_pos = sizeof(ACPI_TABLE_ERST);
for (i = 0; i < erst->Entries; i++) {
erst_entry = (ACPI_ERST_ENTRY *)((char *)erst + erst_pos);
acpi_print_whea(&erst_entry->WheaHeader,
acpi_print_erst_action, acpi_print_erst_instruction,
acpi_print_erst_flags);
erst_pos += sizeof(ACPI_ERST_ENTRY);
}
printf(END_COMMENT);
}
static void
acpi_handle_madt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_MADT *madt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
madt = (ACPI_TABLE_MADT *)sdp;
printf("\tLocal APIC ADDR=0x%08x\n", madt->Address);
printf("\tFlags={");
if (madt->Flags & ACPI_MADT_PCAT_COMPAT)
printf("PC-AT");
printf("}\n");
acpi_walk_subtables(sdp, (madt + 1), acpi_print_madt);
printf(END_COMMENT);
}
static void
acpi_handle_hpet(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_HPET *hpet;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
hpet = (ACPI_TABLE_HPET *)sdp;
printf("\tHPET Number=%d\n", hpet->Sequence);
printf("\tADDR=");
acpi_print_gas(&hpet->Address);
printf("\tHW Rev=0x%x\n", hpet->Id & ACPI_HPET_ID_HARDWARE_REV_ID);
printf("\tComparators=%d\n", (hpet->Id & ACPI_HPET_ID_COMPARATORS) >>
8);
printf("\tCounter Size=%d\n", hpet->Id & ACPI_HPET_ID_COUNT_SIZE_CAP ?
1 : 0);
printf("\tLegacy IRQ routing capable={");
if (hpet->Id & ACPI_HPET_ID_LEGACY_CAPABLE)
printf("TRUE}\n");
else
printf("FALSE}\n");
printf("\tPCI Vendor ID=0x%04x\n", hpet->Id >> 16);
printf("\tMinimal Tick=%d\n", hpet->MinimumTick);
printf(END_COMMENT);
}
static void
acpi_handle_msct(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_MSCT *msct;
ACPI_MSCT_PROXIMITY *msctentry;
uint32_t pos;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
msct = (ACPI_TABLE_MSCT *)sdp;
printf("\tProximity Offset=0x%x\n", msct->ProximityOffset);
printf("\tMax Proximity Domains=%d\n", msct->MaxProximityDomains);
printf("\tMax Clock Domains=%d\n", msct->MaxClockDomains);
printf("\tMax Physical Address=0x%"PRIx64"\n", msct->MaxAddress);
pos = msct->ProximityOffset;
while (pos < msct->Header.Length) {
msctentry = (ACPI_MSCT_PROXIMITY *)((char *)msct + pos);
pos += msctentry->Length;
printf("\n");
printf("\tRevision=%d\n", msctentry->Revision);
printf("\tLength=%d\n", msctentry->Length);
printf("\tRange Start=%d\n", msctentry->RangeStart);
printf("\tRange End=%d\n", msctentry->RangeEnd);
printf("\tProcessor Capacity=%d\n",
msctentry->ProcessorCapacity);
printf("\tMemory Capacity=0x%"PRIx64" byte\n",
msctentry->MemoryCapacity);
}
printf(END_COMMENT);
}
static void
acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_ECDT *ecdt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
ecdt = (ACPI_TABLE_ECDT *)sdp;
printf("\tEC_CONTROL=");
acpi_print_gas(&ecdt->Control);
printf("\n\tEC_DATA=");
acpi_print_gas(&ecdt->Data);
printf("\n\tUID=%#x, ", ecdt->Uid);
printf("GPE_BIT=%#x\n", ecdt->Gpe);
printf("\tEC_ID=%s\n", ecdt->Id);
printf(END_COMMENT);
}
static void
acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_MCFG *mcfg;
ACPI_MCFG_ALLOCATION *alloc;
u_int i, entries;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
mcfg = (ACPI_TABLE_MCFG *)sdp;
entries = (sdp->Length - sizeof(ACPI_TABLE_MCFG)) /
sizeof(ACPI_MCFG_ALLOCATION);
alloc = (ACPI_MCFG_ALLOCATION *)(mcfg + 1);
for (i = 0; i < entries; i++, alloc++) {
printf("\n");
printf("\tBase Address=0x%016jx\n", alloc->Address);
printf("\tSegment Group=0x%04x\n", alloc->PciSegment);
printf("\tStart Bus=%d\n", alloc->StartBusNumber);
printf("\tEnd Bus=%d\n", alloc->EndBusNumber);
}
printf(END_COMMENT);
}
static void
acpi_handle_sbst(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SBST *sbst;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
sbst = (ACPI_TABLE_SBST *)sdp;
printf("\tWarning Level=%d mWh\n", sbst->WarningLevel);
printf("\tLow Level=%d mWh\n", sbst->LowLevel);
printf("\tCritical Level=%d mWh\n", sbst->CriticalLevel);
printf(END_COMMENT);
}
static void
acpi_handle_slit(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SLIT *slit;
u_int idx;
uint64_t cnt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
slit = (ACPI_TABLE_SLIT *)sdp;
cnt = slit->LocalityCount * slit->LocalityCount;
printf("\tLocalityCount=%"PRIu64"\n", slit->LocalityCount);
printf("\tEntry=\n\t");
for (idx = 0; idx < cnt; idx++) {
printf("%u ", slit->Entry[idx]);
if ((idx % slit->LocalityCount) == (slit->LocalityCount - 1)) {
printf("\n");
if (idx < cnt - 1)
printf("\t");
}
}
printf(END_COMMENT);
}
static void
acpi_handle_spcr(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SPCR *spcr;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
spcr = (ACPI_TABLE_SPCR *)sdp;
printf("\tSerial Port=");
acpi_print_gas(&spcr->SerialPort);
printf("\n\tInterrupt Type={");
if (spcr->InterruptType & 0x1) {
printf("\n\t\tdual-8259 IRQ=");
switch (spcr->PcInterrupt) {
case 2 ... 7:
case 9 ... 12:
case 14 ... 15:
printf("%d", spcr->PcInterrupt);
break;
default:
printf("%d (invalid entry)", spcr->PcInterrupt);
break;
}
}
if (spcr->InterruptType & 0x2) {
printf("\n\t\tIO APIC={ GSI=%d }", spcr->Interrupt);
}
if (spcr->InterruptType & 0x4) {
printf("\n\t\tIO SAPIC={ GSI=%d }", spcr->Interrupt);
}
printf("\n\t}\n");
printf("\tBaud Rate=");
switch (spcr->BaudRate) {
case 3:
printf("9600");
break;
case 4:
printf("19200");
break;
case 6:
printf("57600");
break;
case 7:
printf("115200");
break;
default:
printf("unknown speed index %d", spcr->BaudRate);
break;
}
printf("\n\tParity={");
switch (spcr->Parity) {
case 0:
printf("OFF");
break;
default:
printf("ON");
break;
}
printf("}\n");
printf("\tStop Bits={");
switch (spcr->StopBits) {
case 1:
printf("ON");
break;
default:
printf("OFF");
break;
}
printf("}\n");
printf("\tFlow Control={");
if (spcr->FlowControl & 0x1)
printf("DCD, ");
if (spcr->FlowControl & 0x2)
printf("RTS/CTS hardware, ");
if (spcr->FlowControl & 0x4)
printf("XON/XOFF software");
printf("}\n");
printf("\tTerminal=");
switch (spcr->TerminalType) {
case 0:
printf("VT100");
break;
case 1:
printf("VT100+");
break;
case 2:
printf("VT-UTF8");
break;
case 3:
printf("ANSI");
break;
default:
printf("unknown type %d", spcr->TerminalType);
break;
}
printf("\n");
acpi_print_pci(spcr->PciVendorId, spcr->PciDeviceId,
spcr->PciSegment, spcr->PciBus, spcr->PciDevice, spcr->PciFunction);
printf("\tPCI Flags={");
if (spcr->PciFlags & ACPI_SPCR_DO_NOT_DISABLE)
printf("DONOT_DISABLE");
printf("}\n");
printf(END_COMMENT);
}
static void
acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain,
uint32_t flags, uint32_t clockdomain)
{
printf("\tFlags={");
if (flags & ACPI_SRAT_CPU_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
printf("}\n");
printf("\tAPIC ID=%d\n", apic_id);
printf("\tProximity Domain=%d\n", proximity_domain);
printf("\tClock Domain=%d\n", clockdomain);
}
static void
acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp)
{
printf("\tFlags={");
if (mp->Flags & ACPI_SRAT_MEM_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
if (mp->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE)
printf(",HOT_PLUGGABLE");
if (mp->Flags & ACPI_SRAT_MEM_NON_VOLATILE)
printf(",NON_VOLATILE");
printf("}\n");
printf("\tBase Address=0x%016jx\n", (uintmax_t)mp->BaseAddress);
printf("\tLength=0x%016jx\n", (uintmax_t)mp->Length);
printf("\tProximity Domain=%d\n", mp->ProximityDomain);
}
const char *srat_types[] = { "CPU", "Memory", "X2APIC" };
static void
acpi_print_srat(ACPI_SUBTABLE_HEADER *srat)
{
ACPI_SRAT_CPU_AFFINITY *cpu;
ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
if (srat->Type < sizeof(srat_types) / sizeof(srat_types[0]))
printf("\tType=%s\n", srat_types[srat->Type]);
else
printf("\tType=%d (unknown)\n", srat->Type);
switch (srat->Type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
cpu = (ACPI_SRAT_CPU_AFFINITY *)srat;
acpi_print_srat_cpu(cpu->ApicId,
cpu->ProximityDomainHi[2] << 24 |
cpu->ProximityDomainHi[1] << 16 |
cpu->ProximityDomainHi[0] << 0 |
cpu->ProximityDomainLo,
cpu->Flags, cpu->ClockDomain);
break;
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
acpi_print_srat_memory((ACPI_SRAT_MEM_AFFINITY *)srat);
break;
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)srat;
acpi_print_srat_cpu(x2apic->ApicId, x2apic->ProximityDomain,
x2apic->Flags, x2apic->ClockDomain);
break;
}
}
static void
acpi_handle_srat(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SRAT *srat;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
srat = (ACPI_TABLE_SRAT *)sdp;
printf("\tTable Revision=%d\n", srat->TableRevision);
acpi_walk_subtables(sdp, (srat + 1), acpi_print_srat);
printf(END_COMMENT);
}
static void
acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_TCPA *tcpa;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
tcpa = (ACPI_TABLE_TCPA *)sdp;
printf("\tMaximum Length of Event Log Area=%d\n", tcpa->MaxLogLength);
printf("\tPhysical Address of Log Area=0x%08"PRIx64"\n",
tcpa->LogAddress);
printf(END_COMMENT);
}
static void
acpi_handle_waet(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_WAET *waet;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
waet = (ACPI_TABLE_WAET *)sdp;
printf("\tRTC Timer={");
if (waet->Flags & ACPI_WAET_RTC_NO_ACK)
printf("No ACK required");
else
printf("default behaviour");
printf("}\n");
printf("\t ACPI PM Timer={");
if (waet->Flags & ACPI_WAET_TIMER_ONE_READ)
printf("One Read sufficient");
else
printf("default behaviour");
printf("}\n");
printf(END_COMMENT);
}
static void
acpi_print_wdat_action(ACPI_WHEA_HEADER *whea)
{
printf("\tACTION={");
switch (whea->Action) {
case ACPI_WDAT_RESET:
printf("RESET");
break;
case ACPI_WDAT_GET_CURRENT_COUNTDOWN:
printf("GET_CURRENT_COUNTDOWN");
break;
case ACPI_WDAT_GET_COUNTDOWN:
printf("GET_COUNTDOWN");
break;
case ACPI_WDAT_SET_COUNTDOWN:
printf("SET_COUNTDOWN");
break;
case ACPI_WDAT_GET_RUNNING_STATE:
printf("GET_RUNNING_STATE");
break;
case ACPI_WDAT_SET_RUNNING_STATE:
printf("SET_RUNNING_STATE");
break;
case ACPI_WDAT_GET_STOPPED_STATE:
printf("GET_STOPPED_STATE");
break;
case ACPI_WDAT_SET_STOPPED_STATE:
printf("SET_STOPPED_STATE");
break;
case ACPI_WDAT_GET_REBOOT:
printf("GET_REBOOT");
break;
case ACPI_WDAT_SET_REBOOT:
printf("SET_REBOOT");
break;
case ACPI_WDAT_GET_SHUTDOWN:
printf("GET_SHUTDOWN");
break;
case ACPI_WDAT_SET_SHUTDOWN:
printf("SET_SHUTDOWN");
break;
case ACPI_WDAT_GET_STATUS:
printf("GET_STATUS");
break;
case ACPI_WDAT_SET_STATUS:
printf("SET_STATUS");
break;
case ACPI_WDAT_ACTION_RESERVED:
printf("ACTION_RESERVED");
break;
default:
printf("%d", whea->Action);
break;
}
printf("}\n");
}
static void
acpi_print_wdat_instruction(ACPI_WHEA_HEADER *whea)
{
uint32_t ins;
ins = whea->Instruction & ~ACPI_WDAT_PRESERVE_REGISTER;
printf("\tINSTRUCTION={");
switch (ins) {
case ACPI_WDAT_READ_VALUE:
printf("READ_VALUE");
break;
case ACPI_WDAT_READ_COUNTDOWN:
printf("READ_COUNTDOWN");
break;
case ACPI_WDAT_WRITE_VALUE:
printf("WRITE_VALUE");
break;
case ACPI_WDAT_WRITE_COUNTDOWN:
printf("WRITE_COUNTDOWN");
break;
case ACPI_WDAT_INSTRUCTION_RESERVED:
printf("INSTRUCTION_RESERVED");
break;
default:
printf("%d", ins);
break;
}
if (whea->Instruction & ACPI_WDAT_PRESERVE_REGISTER)
printf(", Preserve Register ");
printf("}\n");
}
static void
acpi_handle_wdat(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_WDAT *wdat;
ACPI_WHEA_HEADER *whea;
char *wdat_pos;
u_int i;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
wdat = (ACPI_TABLE_WDAT *)sdp;
printf("\tHeader Length=%d\n", wdat->HeaderLength);
acpi_print_pci_sbfd(wdat->PciSegment, wdat->PciBus, wdat->PciDevice,
wdat->PciFunction);
printf("\n\tTimer Counter Period=%d msec\n", wdat->TimerPeriod);
printf("\tTimer Maximum Counter Value=%d\n", wdat->MaxCount);
printf("\tTimer Minimum Counter Value=%d\n", wdat->MinCount);
printf("\tFlags={");
if (wdat->Flags & ACPI_WDAT_ENABLED)
printf("ENABLED");
if (wdat->Flags & ACPI_WDAT_STOPPED)
printf(", STOPPED");
printf("}\n");
wdat_pos = ((char *)wdat + sizeof(ACPI_TABLE_HEADER)
+ wdat->HeaderLength);
for (i = 0; i < wdat->Entries; i++) {
whea = (ACPI_WHEA_HEADER *)wdat_pos;
acpi_print_whea(whea,
acpi_print_wdat_action, acpi_print_wdat_instruction,
NULL);
wdat_pos += sizeof(ACPI_WDAT_ENTRY);
}
printf(END_COMMENT);
}
static void
acpi_handle_wdrt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_WDRT *wdrt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
wdrt = (ACPI_TABLE_WDRT *)sdp;
printf("\tControl Register=");
acpi_print_gas(&wdrt->ControlRegister);
printf("\tCount Register=");
acpi_print_gas(&wdrt->CountRegister);
acpi_print_pci(wdrt->PciVendorId, wdrt->PciDeviceId,
wdrt->PciSegment, wdrt->PciBus, wdrt->PciDevice, wdrt->PciFunction);
/* Value must be >= 511 and < 65535 */
printf("\tMaxCount=%d", wdrt->MaxCount);
if (wdrt->MaxCount < 511)
printf(" (Out of Range. Valid range: 511 <= maxcount < 65535)");
printf("\n");
printf("\tUnit={");
switch (wdrt->Units) {
case 0:
printf("1 seconds/count");
break;
case 1:
printf("100 milliseconds/count");
break;
case 2:
printf("10 milliseconds/count");
break;
default:
printf("%d", wdrt->Units);
break;
}
printf("}\n");
printf(END_COMMENT);
}
static void
acpi_print_sdt(ACPI_TABLE_HEADER *sdp)
{
printf(" ");
acpi_print_string(sdp->Signature, ACPI_NAME_SIZE);
printf(": Length=%d, Revision=%d, Checksum=%d",
sdp->Length, sdp->Revision, sdp->Checksum);
if (acpi_checksum(sdp, sdp->Length))
printf(" (Incorrect)");
printf(",\n\tOEMID=");
acpi_print_string(sdp->OemId, ACPI_OEM_ID_SIZE);
printf(", OEM Table ID=");
acpi_print_string(sdp->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
printf(", OEM Revision=0x%x,\n", sdp->OemRevision);
printf("\tCreator ID=");
acpi_print_string(sdp->AslCompilerId, ACPI_NAME_SIZE);
printf(", Creator Revision=0x%x\n", sdp->AslCompilerRevision);
}
static void
acpi_dump_bytes(ACPI_TABLE_HEADER *sdp)
{
unsigned int i;
uint8_t *p;
p = (uint8_t *)sdp;
printf("\n\tData={");
for (i = 0; i < sdp->Length; i++) {
if (cflag) {
if (i % 64 == 0)
printf("\n\t ");
else if (i % 16 == 0)
printf(" ");
printf("%c", (p[i] >= ' ' && p[i] <= '~') ? p[i] : '.');
} else {
if (i % 16 == 0)
printf("\n\t\t");
else if (i % 8 == 0)
printf(" ");
printf(" %02x", p[i]);
}
}
printf("\n\t}\n");
}
static void
acpi_print_rsdt(ACPI_TABLE_HEADER *rsdp)
{
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
int i, entries;
u_long addr;
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
printf(BEGIN_COMMENT);
acpi_print_sdt(rsdp);
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
printf("\tEntries={ ");
for (i = 0; i < entries; i++) {
if (i > 0)
printf(", ");
switch (addr_size) {
case 4:
addr = le32toh(rsdt->TableOffsetEntry[i]);
break;
case 8:
addr = le64toh(xsdt->TableOffsetEntry[i]);
break;
default:
addr = 0;
}
assert(addr != 0);
printf("0x%08lx", addr);
}
printf(" }\n");
printf(END_COMMENT);
}
static const char *acpi_pm_profiles[] = {
"Unspecified", "Desktop", "Mobile", "Workstation",
"Enterprise Server", "SOHO Server", "Appliance PC"
};
static void
acpi_print_fadt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_FADT *fadt;
const char *pm;
char sep;
fadt = (ACPI_TABLE_FADT *)sdp;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
printf(" \tFACS=0x%x, DSDT=0x%x\n", fadt->Facs,
fadt->Dsdt);
printf("\tINT_MODEL=%s\n", fadt->Model ? "APIC" : "PIC");
if (fadt->PreferredProfile >= sizeof(acpi_pm_profiles) / sizeof(char *))
pm = "Reserved";
else
pm = acpi_pm_profiles[fadt->PreferredProfile];
printf("\tPreferred_PM_Profile=%s (%d)\n", pm, fadt->PreferredProfile);
printf("\tSCI_INT=%d\n", fadt->SciInterrupt);
printf("\tSMI_CMD=0x%x, ", fadt->SmiCommand);
printf("ACPI_ENABLE=0x%x, ", fadt->AcpiEnable);
printf("ACPI_DISABLE=0x%x, ", fadt->AcpiDisable);
printf("S4BIOS_REQ=0x%x\n", fadt->S4BiosRequest);
printf("\tPSTATE_CNT=0x%x\n", fadt->PstateControl);
printf("\tPM1a_EVT_BLK=0x%x-0x%x\n",
fadt->Pm1aEventBlock,
fadt->Pm1aEventBlock + fadt->Pm1EventLength - 1);
if (fadt->Pm1bEventBlock != 0)
printf("\tPM1b_EVT_BLK=0x%x-0x%x\n",
fadt->Pm1bEventBlock,
fadt->Pm1bEventBlock + fadt->Pm1EventLength - 1);
printf("\tPM1a_CNT_BLK=0x%x-0x%x\n",
fadt->Pm1aControlBlock,
fadt->Pm1aControlBlock + fadt->Pm1ControlLength - 1);
if (fadt->Pm1bControlBlock != 0)
printf("\tPM1b_CNT_BLK=0x%x-0x%x\n",
fadt->Pm1bControlBlock,
fadt->Pm1bControlBlock + fadt->Pm1ControlLength - 1);
if (fadt->Pm2ControlBlock != 0)
printf("\tPM2_CNT_BLK=0x%x-0x%x\n",
fadt->Pm2ControlBlock,
fadt->Pm2ControlBlock + fadt->Pm2ControlLength - 1);
printf("\tPM_TMR_BLK=0x%x-0x%x\n",
fadt->PmTimerBlock,
fadt->PmTimerBlock + fadt->PmTimerLength - 1);
if (fadt->Gpe0Block != 0)
printf("\tGPE0_BLK=0x%x-0x%x\n",
fadt->Gpe0Block,
fadt->Gpe0Block + fadt->Gpe0BlockLength - 1);
if (fadt->Gpe1Block != 0)
printf("\tGPE1_BLK=0x%x-0x%x, GPE1_BASE=%d\n",
fadt->Gpe1Block,
fadt->Gpe1Block + fadt->Gpe1BlockLength - 1,
fadt->Gpe1Base);
if (fadt->CstControl != 0)
printf("\tCST_CNT=0x%x\n", fadt->CstControl);
printf("\tP_LVL2_LAT=%d us, P_LVL3_LAT=%d us\n",
fadt->C2Latency, fadt->C3Latency);
printf("\tFLUSH_SIZE=%d, FLUSH_STRIDE=%d\n",
fadt->FlushSize, fadt->FlushStride);
printf("\tDUTY_OFFSET=%d, DUTY_WIDTH=%d\n",
fadt->DutyOffset, fadt->DutyWidth);
printf("\tDAY_ALRM=%d, MON_ALRM=%d, CENTURY=%d\n",
fadt->DayAlarm, fadt->MonthAlarm, fadt->Century);
#define PRINTFLAG(var, flag) do { \
if ((var) & ACPI_FADT_## flag) { \
printf("%c%s", sep, #flag); sep = ','; \
} \
} while (0)
printf("\tIAPC_BOOT_ARCH=");
sep = '{';
PRINTFLAG(fadt->BootFlags, LEGACY_DEVICES);
PRINTFLAG(fadt->BootFlags, 8042);
PRINTFLAG(fadt->BootFlags, NO_VGA);
PRINTFLAG(fadt->BootFlags, NO_MSI);
PRINTFLAG(fadt->BootFlags, NO_ASPM);
if (fadt->BootFlags != 0)
printf("}");
printf("\n");
printf("\tFlags=");
sep = '{';
PRINTFLAG(fadt->Flags, WBINVD);
PRINTFLAG(fadt->Flags, WBINVD_FLUSH);
PRINTFLAG(fadt->Flags, C1_SUPPORTED);
PRINTFLAG(fadt->Flags, C2_MP_SUPPORTED);
PRINTFLAG(fadt->Flags, POWER_BUTTON);
PRINTFLAG(fadt->Flags, SLEEP_BUTTON);
PRINTFLAG(fadt->Flags, FIXED_RTC);
PRINTFLAG(fadt->Flags, S4_RTC_WAKE);
PRINTFLAG(fadt->Flags, 32BIT_TIMER);
PRINTFLAG(fadt->Flags, DOCKING_SUPPORTED);
PRINTFLAG(fadt->Flags, RESET_REGISTER);
PRINTFLAG(fadt->Flags, SEALED_CASE);
PRINTFLAG(fadt->Flags, HEADLESS);
PRINTFLAG(fadt->Flags, SLEEP_TYPE);
PRINTFLAG(fadt->Flags, PCI_EXPRESS_WAKE);
PRINTFLAG(fadt->Flags, PLATFORM_CLOCK);
PRINTFLAG(fadt->Flags, S4_RTC_VALID);
PRINTFLAG(fadt->Flags, REMOTE_POWER_ON);
PRINTFLAG(fadt->Flags, APIC_CLUSTER);
PRINTFLAG(fadt->Flags, APIC_PHYSICAL);
if (fadt->Flags != 0)
printf("}\n");
#undef PRINTFLAG
if (fadt->Flags & ACPI_FADT_RESET_REGISTER) {
printf("\tRESET_REG=");
acpi_print_gas(&fadt->ResetRegister);
printf(", RESET_VALUE=%#x\n", fadt->ResetValue);
}
if (acpi_get_fadt_revision(fadt) > 1) {
printf("\tX_FACS=0x%08lx, ", (u_long)fadt->XFacs);
printf("X_DSDT=0x%08lx\n", (u_long)fadt->XDsdt);
printf("\tX_PM1a_EVT_BLK=");
acpi_print_gas(&fadt->XPm1aEventBlock);
if (fadt->XPm1bEventBlock.Address != 0) {
printf("\n\tX_PM1b_EVT_BLK=");
acpi_print_gas(&fadt->XPm1bEventBlock);
}
printf("\n\tX_PM1a_CNT_BLK=");
acpi_print_gas(&fadt->XPm1aControlBlock);
if (fadt->XPm1bControlBlock.Address != 0) {
printf("\n\tX_PM1b_CNT_BLK=");
acpi_print_gas(&fadt->XPm1bControlBlock);
}
if (fadt->XPm2ControlBlock.Address != 0) {
printf("\n\tX_PM2_CNT_BLK=");
acpi_print_gas(&fadt->XPm2ControlBlock);
}
printf("\n\tX_PM_TMR_BLK=");
acpi_print_gas(&fadt->XPmTimerBlock);
if (fadt->XGpe0Block.Address != 0) {
printf("\n\tX_GPE0_BLK=");
acpi_print_gas(&fadt->XGpe0Block);
}
if (fadt->XGpe1Block.Address != 0) {
printf("\n\tX_GPE1_BLK=");
acpi_print_gas(&fadt->XGpe1Block);
}
printf("\n");
}
printf(END_COMMENT);
}
static void
acpi_print_facs(ACPI_TABLE_FACS *facs)
{
printf(BEGIN_COMMENT);
printf(" FACS:\tLength=%u, ", facs->Length);
printf("HwSig=0x%08x, ", facs->HardwareSignature);
printf("Firm_Wake_Vec=0x%08x\n", facs->FirmwareWakingVector);
printf("\tGlobal_Lock=");
if (facs->GlobalLock != 0) {
if (facs->GlobalLock & ACPI_GLOCK_PENDING)
printf("PENDING,");
if (facs->GlobalLock & ACPI_GLOCK_OWNED)
printf("OWNED");
}
printf("\n");
printf("\tFlags=");
if (facs->Flags & ACPI_FACS_S4_BIOS_PRESENT)
printf("S4BIOS");
printf("\n");
if (facs->XFirmwareWakingVector != 0) {
printf("\tX_Firm_Wake_Vec=%08lx\n",
(u_long)facs->XFirmwareWakingVector);
}
printf("\tVersion=%u\n", facs->Version);
printf(END_COMMENT);
}
static void
acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp)
{
printf(BEGIN_COMMENT);
acpi_print_sdt(dsdp);
printf(END_COMMENT);
}
int
acpi_checksum(void *p, size_t length)
{
uint8_t *bp;
uint8_t sum;
bp = p;
sum = 0;
while (length--)
sum += *bp++;
return (sum);
}
static ACPI_TABLE_HEADER *
acpi_map_sdt(vm_offset_t pa)
{
ACPI_TABLE_HEADER *sp;
sp = acpi_map_physical(pa, sizeof(ACPI_TABLE_HEADER));
sp = acpi_map_physical(pa, sp->Length);
return (sp);
}
static void
acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp)
{
printf(BEGIN_COMMENT);
printf(" RSD PTR: OEM=");
acpi_print_string(rp->OemId, ACPI_OEM_ID_SIZE);
printf(", ACPI_Rev=%s (%d)\n", rp->Revision < 2 ? "1.0x" : "2.0x",
rp->Revision);
if (rp->Revision < 2) {
printf("\tRSDT=0x%08x, cksum=%u\n", rp->RsdtPhysicalAddress,
rp->Checksum);
} else {
printf("\tXSDT=0x%08lx, length=%u, cksum=%u\n",
(u_long)rp->XsdtPhysicalAddress, rp->Length,
rp->ExtendedChecksum);
}
printf(END_COMMENT);
}
static void
acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp)
{
ACPI_TABLE_HEADER *sdp;
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
vm_offset_t addr;
int entries, i;
acpi_print_rsdt(rsdp);
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
for (i = 0; i < entries; i++) {
switch (addr_size) {
case 4:
addr = le32toh(rsdt->TableOffsetEntry[i]);
break;
case 8:
addr = le64toh(xsdt->TableOffsetEntry[i]);
break;
default:
assert((addr = 0));
}
sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
if (acpi_checksum(sdp, sdp->Length)) {
warnx("RSDT entry %d (sig %.4s) is corrupt", i,
sdp->Signature);
if (sflag)
continue;
}
if (!memcmp(sdp->Signature, ACPI_SIG_FADT, 4))
acpi_handle_fadt(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_BERT, 4))
acpi_handle_bert(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_BOOT, 4))
acpi_handle_boot(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_CPEP, 4))
acpi_handle_cpep(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_DBGP, 4))
acpi_handle_dbgp(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_EINJ, 4))
acpi_handle_einj(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_ERST, 4))
acpi_handle_erst(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_MADT, 4))
acpi_handle_madt(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_MSCT, 4))
acpi_handle_msct(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_HEST, 4))
acpi_handle_hest(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_HPET, 4))
acpi_handle_hpet(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_ECDT, 4))
acpi_handle_ecdt(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_MCFG, 4))
acpi_handle_mcfg(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_SBST, 4))
acpi_handle_sbst(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_SLIT, 4))
acpi_handle_slit(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_SPCR, 4))
acpi_handle_spcr(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_SRAT, 4))
acpi_handle_srat(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_TCPA, 4))
acpi_handle_tcpa(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_WAET, 4))
acpi_handle_waet(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_WDAT, 4))
acpi_handle_wdat(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_WDRT, 4))
acpi_handle_wdrt(sdp);
else {
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
acpi_dump_bytes(sdp);
printf(END_COMMENT);
}
}
}
ACPI_TABLE_HEADER *
sdt_load_devmem(void)
{
ACPI_TABLE_RSDP *rp;
ACPI_TABLE_HEADER *rsdp;
rp = acpi_find_rsd_ptr();
if (!rp)
errx(EXIT_FAILURE, "Can't find ACPI information");
if (tflag)
acpi_print_rsd_ptr(rp);
if (rp->Revision < 2) {
rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->RsdtPhysicalAddress);
if (memcmp(rsdp->Signature, "RSDT", 4) != 0 ||
acpi_checksum(rsdp, rsdp->Length) != 0)
errx(EXIT_FAILURE, "RSDT is corrupted");
addr_size = sizeof(uint32_t);
} else {
rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->XsdtPhysicalAddress);
if (memcmp(rsdp->Signature, "XSDT", 4) != 0 ||
acpi_checksum(rsdp, rsdp->Length) != 0)
errx(EXIT_FAILURE, "XSDT is corrupted");
addr_size = sizeof(uint64_t);
}
return (rsdp);
}
/* Write the DSDT to a file, concatenating any SSDTs (if present). */
static int
write_dsdt(int fd, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdt)
{
ACPI_TABLE_HEADER sdt;
ACPI_TABLE_HEADER *ssdt;
uint8_t sum;
/* Create a new checksum to account for the DSDT and any SSDTs. */
sdt = *dsdt;
if (rsdt != NULL) {
sdt.Checksum = 0;
sum = acpi_checksum(dsdt + 1, dsdt->Length -
sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, NULL);
while (ssdt != NULL) {
sdt.Length += ssdt->Length - sizeof(ACPI_TABLE_HEADER);
sum += acpi_checksum(ssdt + 1,
ssdt->Length - sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, ssdt);
}
sum += acpi_checksum(&sdt, sizeof(ACPI_TABLE_HEADER));
sdt.Checksum -= sum;
}
/* Write out the DSDT header and body. */
write(fd, &sdt, sizeof(ACPI_TABLE_HEADER));
write(fd, dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER));
/* Write out any SSDTs (if present.) */
if (rsdt != NULL) {
ssdt = sdt_from_rsdt(rsdt, "SSDT", NULL);
while (ssdt != NULL) {
write(fd, ssdt + 1, ssdt->Length -
sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, "SSDT", ssdt);
}
}
return (0);
}
void
dsdt_save_file(char *outfile, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp)
{
int fd;
mode_t mode;
assert(outfile != NULL);
mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
fd = open(outfile, O_WRONLY | O_CREAT | O_TRUNC, mode);
if (fd == -1) {
perror("dsdt_save_file");
return;
}
write_dsdt(fd, rsdt, dsdp);
close(fd);
}
void
aml_disassemble(ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp)
{
char buf[MAXPATHLEN], tmpstr[MAXPATHLEN];
const char *tmpdir;
char *tmpext;
FILE *fp;
size_t len;
int fd;
if (rsdt == NULL)
errx(EXIT_FAILURE, "aml_disassemble: invalid rsdt");
if (dsdp == NULL)
errx(EXIT_FAILURE, "aml_disassemble: invalid dsdp");
tmpdir = getenv("TMPDIR");
if (tmpdir == NULL)
tmpdir = _PATH_TMP;
strlcpy(tmpstr, tmpdir, sizeof(tmpstr));
if (realpath(tmpstr, buf) == NULL) {
perror("realpath tmp file");
return;
}
strlcpy(tmpstr, buf, sizeof(tmpstr));
strlcat(tmpstr, "/acpidump.", sizeof(tmpstr));
len = strlen(tmpstr);
tmpext = tmpstr + len;
strlcpy(tmpext, "XXXXXX", sizeof(tmpstr) - len);
fd = mkstemp(tmpstr);
if (fd < 0) {
perror("iasl tmp file");
return;
}
write_dsdt(fd, rsdt, dsdp);
close(fd);
/* Run iasl -d on the temp file */
if (fork() == 0) {
close(STDOUT_FILENO);
if (vflag == 0)
close(STDERR_FILENO);
execl("/usr/bin/iasl", "iasl", "-d", tmpstr, NULL);
err(EXIT_FAILURE, "exec");
}
wait(NULL);
unlink(tmpstr);
/* Dump iasl's output to stdout */
strlcpy(tmpext, "dsl", sizeof(tmpstr) - len);
fp = fopen(tmpstr, "r");
unlink(tmpstr);
if (fp == NULL) {
perror("iasl tmp file (read)");
return;
}
while ((len = fread(buf, 1, sizeof(buf), fp)) > 0)
fwrite(buf, 1, len, stdout);
fclose(fp);
}
void
sdt_print_all(ACPI_TABLE_HEADER *rsdp)
{
acpi_handle_rsdt(rsdp);
}
/* Fetch a table matching the given signature via the RSDT. */
ACPI_TABLE_HEADER *
sdt_from_rsdt(ACPI_TABLE_HEADER *rsdp, const char *sig, ACPI_TABLE_HEADER *last)
{
ACPI_TABLE_HEADER *sdt;
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
vm_offset_t addr;
int entries, i;
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
for (i = 0; i < entries; i++) {
switch (addr_size) {
case 4:
addr = le32toh(rsdt->TableOffsetEntry[i]);
break;
case 8:
addr = le64toh(xsdt->TableOffsetEntry[i]);
break;
default:
assert((addr = 0));
}
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
if (last != NULL) {
if (sdt == last)
last = NULL;
continue;
}
if (memcmp(sdt->Signature, sig, strlen(sig)))
continue;
if (acpi_checksum(sdt, sdt->Length))
errx(EXIT_FAILURE, "RSDT entry %d is corrupt", i);
return (sdt);
}
return (NULL);
}
ACPI_TABLE_HEADER *
dsdt_from_fadt(ACPI_TABLE_FADT *fadt)
{
ACPI_TABLE_HEADER *sdt;
/* Use the DSDT address if it is version 1, otherwise use XDSDT. */
if (acpi_get_fadt_revision(fadt) == 1)
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt);
else
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt);
if (acpi_checksum(sdt, sdt->Length))
errx(EXIT_FAILURE, "DSDT is corrupt\n");
return (sdt);
}