NetBSD/sys/arch/sun3/dev/if_le.c

1032 lines
22 KiB
C

/* $NetBSD: if_le.c,v 1.23 1995/10/27 15:53:39 gwr Exp $ */
/*
* LANCE Ethernet driver
*
* Copyright (c) 1995 Gordon W. Ross
* Copyright (c) 1994 Charles Hannum.
*
* Copyright (C) 1993, Paul Richards. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided
* that the above copyright and these terms are retained. Under no
* circumstances is the author responsible for the proper functioning
* of this software, nor does the author assume any responsibility
* for damages incurred with its use.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/autoconf.h>
#include <machine/cpu.h>
/*
* XXX - Be warned: Most Sun3/50 and many Sun3/60 machines have
* the LANCE Rev. C bug, which we MUST avoid or suffer likely
* NFS file corruption and worse! That said, if you are SURE
* your LANCE is OK, you can remove this work-around using:
* options LANCE_REVC_BUG=0
* in your kernel config file.
*/
#ifndef LANCE_REVC_BUG
#define LANCE_REVC_BUG 1
#endif
/* #define LEDEBUG 1 */
#include "if_lereg.h"
#include "if_le.h"
#include "if_le_subr.h"
#define RMD_BITS "\20\20own\17err\16fram\15oflo\14crc\13rbuf\12stp\11enp"
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
/*
* The lance has only 24 address lines. When it accesses memory,
* the high address lines are hard-wired to 0xFF, so we must:
* (1) put what we want the LANCE to see above 0xFF000000, and
* (2) mask our CPU addresses down to 24 bits for the LANCE.
*/
#define LANCE_ADDR(sc,x) ((u_int)(x) & 0xFFffff)
#ifdef PACKETSTATS
long lexpacketsizes[LEMTU+1];
long lerpacketsizes[LEMTU+1];
#endif
/* autoconfiguration driver */
void le_attach(struct device *, struct device *, void *);
struct cfdriver lecd = {
NULL, "le", le_md_match, le_attach,
DV_IFNET, sizeof(struct le_softc),
};
int leioctl __P((struct ifnet *, u_long, caddr_t));
void lestart __P((struct ifnet *));
void lewatchdog __P((/* short */));
static inline void lewrcsr __P((/* struct le_softc *, u_short, u_short */));
static inline u_short lerdcsr __P((/* struct le_softc *, u_short */));
void leinit __P((struct le_softc *));
void lememinit __P((struct le_softc *));
void lereset __P((struct le_softc *));
void lestop __P((struct le_softc *));
void letint __P((struct le_softc *));
void lerint __P((struct le_softc *));
void leread __P((struct le_softc *, u_char *, int));
struct mbuf *leget __P((u_char *, int, struct ifnet *));
void lesetladrf __P((struct arpcom *, u_long *));
#ifdef LEDEBUG
void recv_print __P((struct le_softc *, int));
void xmit_print __P((struct le_softc *, int));
#endif
/*
* Inline routines to read and write the LANCE registers.
*/
static inline void
lewrcsr(sc, regnum, value)
struct le_softc *sc;
u_short regnum;
u_short value;
{
volatile struct le_regs *regs = sc->sc_regs;
regs->lereg_addr = regnum;
regs->lereg_data = value;
}
static inline u_short
lerdcsr(sc, regnum)
struct le_softc *sc;
u_short regnum;
{
volatile struct le_regs *regs = sc->sc_regs;
u_short value;
regs->lereg_addr = regnum;
value = regs->lereg_data;
return (value);
}
/*
* The probe is done in if_le_subr.c:if_md_match()
*/
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets. We get the ethernet address here.
*/
void
le_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct le_softc *sc = (void *)self;
struct confargs *ca = aux;
struct ifnet *ifp = &sc->sc_if;
int pri;
u_int a;
le_md_attach(parent, self, aux);
printf(" hwaddr %s\n", ether_sprintf(sc->sc_enaddr));
/*
* Initialize and attach S/W interface
*/
ifp->if_unit = sc->sc_dev.dv_unit;
ifp->if_name = lecd.cd_name;
ifp->if_start = lestart;
ifp->if_ioctl = leioctl;
ifp->if_watchdog = lewatchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS;
#if LANCE_REVC_BUG == 0
/* The work-around precludes multicast... */
ifp->if_flags |= IFF_MULTICAST;
#endif
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
}
void
lereset(sc)
struct le_softc *sc;
{
leinit(sc);
}
void
lewatchdog(unit)
short unit;
{
struct le_softc *sc = lecd.cd_devs[unit];
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_if.if_oerrors;
lereset(sc);
}
/* LANCE initialization block set up. */
void
lememinit(sc)
register struct le_softc *sc;
{
struct ifnet *ifp = &sc->sc_if;
int i;
void *mem;
u_long a;
/*
* At this point we assume that the memory allocated to the Lance is
* quadword aligned. If it isn't then the initialisation is going
* fail later on.
*/
mem = sc->sc_mem;
sc->sc_init = mem;
#if NBPFILTER > 0
if (ifp->if_flags & IFF_PROMISC)
sc->sc_init->mode = LE_NORMAL | LE_PROM;
else
#endif
sc->sc_init->mode = LE_NORMAL;
/* Set the Ethernet address (have to byte-swap) */
for (i = 0; i < 6; i += 2) {
sc->sc_init->padr[i] = sc->sc_enaddr[i+1];
sc->sc_init->padr[i+1] = sc->sc_enaddr[i];
}
lesetladrf(&sc->sc_ac, sc->sc_init->ladrf);
mem += sizeof(struct init_block);
sc->sc_rd = mem;
a = LANCE_ADDR(sc, mem);
sc->sc_init->rdra = a;
sc->sc_init->rlen = ((a >> 16) & 0xff) | (RLEN << 13);
mem += NRBUF * sizeof(struct mds);
sc->sc_td = mem;
a = LANCE_ADDR(sc, mem);
sc->sc_init->tdra = a;
sc->sc_init->tlen = ((a >> 16) & 0xff) | (TLEN << 13);
mem += NTBUF * sizeof(struct mds);
/*
* Set up receive ring descriptors.
*/
sc->sc_rbuf = mem;
for (i = 0; i < NRBUF; i++) {
a = LANCE_ADDR(sc, mem);
sc->sc_rd[i].addr = a;
sc->sc_rd[i].flags = ((a >> 16) & 0xff) | LE_OWN;
sc->sc_rd[i].bcnt = -BUFSIZE;
sc->sc_rd[i].mcnt = 0;
mem += BUFSIZE;
}
/*
* Set up transmit ring descriptors.
*/
sc->sc_tbuf = mem;
for (i = 0; i < NTBUF; i++) {
a = LANCE_ADDR(sc, mem);
sc->sc_td[i].addr = a;
sc->sc_td[i].flags= ((a >> 16) & 0xff);
sc->sc_td[i].bcnt = 0xf000;
sc->sc_td[i].mcnt = 0;
mem += BUFSIZE;
}
#ifdef DIAGNOSTIC
if (mem > (sc->sc_mem + MEMSIZE))
panic("lememinit: used 0x%x\n", mem - sc->sc_mem);
#endif
}
void
lestop(sc)
struct le_softc *sc;
{
lewrcsr(sc, 0, LE_STOP);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
void
leinit(sc)
register struct le_softc *sc;
{
struct ifnet *ifp = &sc->sc_if;
int s;
register int timo;
u_long a;
s = splimp();
/* Don't want to get in a weird state. */
lewrcsr(sc, 0, LE_STOP);
delay(100);
sc->sc_last_rd = sc->sc_last_td = sc->sc_no_td = 0;
/* Set up LANCE init block. */
lememinit(sc);
/* Set byte swapping etc. */
lewrcsr(sc, 3, LE_CONF3);
/* Give LANCE the physical address of its init block. */
a = LANCE_ADDR(sc, sc->sc_init);
lewrcsr(sc, 1, a);
lewrcsr(sc, 2, (a >> 16) & 0xff);
/* Try to initialize the LANCE. */
delay(100);
lewrcsr(sc, 0, LE_INIT);
/* Wait for initialization to finish. */
for (timo = 1000; timo; timo--)
if (lerdcsr(sc, 0) & LE_IDON)
break;
if (lerdcsr(sc, 0) & LE_IDON) {
/* Start the LANCE. */
lewrcsr(sc, 0, LE_INEA | LE_STRT | LE_IDON);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
lestart(ifp);
} else
printf("%s: card failed to initialize\n", sc->sc_dev.dv_xname);
(void) splx(s);
}
/*
* Controller interrupt.
*/
int
leintr(vsc)
void *vsc;
{
register struct le_softc *sc = vsc;
register u_short isr;
isr = lerdcsr(sc, 0);
#ifdef LEDEBUG
if (sc->sc_debug)
printf("%s: leintr entering with isr=%04x\n",
sc->sc_dev.dv_xname, isr);
#endif
if ((isr & LE_INTR) == 0)
return 0;
do {
lewrcsr(sc, 0,
isr & (LE_INEA | LE_BABL | LE_MISS | LE_MERR |
LE_RINT | LE_TINT | LE_IDON));
if (isr & (LE_BABL | LE_CERR | LE_MISS | LE_MERR)) {
if (isr & LE_BABL) {
printf("%s: babble\n", sc->sc_dev.dv_xname);
sc->sc_if.if_oerrors++;
}
#if 0
if (isr & LE_CERR) {
printf("%s: collision error\n", sc->sc_dev.dv_xname);
sc->sc_if.if_collisions++;
}
#endif
if (isr & LE_MISS) {
#if 0
printf("%s: missed packet\n", sc->sc_dev.dv_xname);
#endif
sc->sc_if.if_ierrors++;
}
if (isr & LE_MERR) {
printf("%s: memory error\n", sc->sc_dev.dv_xname);
lereset(sc);
goto out;
}
}
if ((isr & LE_RXON) == 0) {
printf("%s: receiver disabled\n", sc->sc_dev.dv_xname);
sc->sc_if.if_ierrors++;
lereset(sc);
goto out;
}
if ((isr & LE_TXON) == 0) {
printf("%s: transmitter disabled\n", sc->sc_dev.dv_xname);
sc->sc_if.if_oerrors++;
lereset(sc);
goto out;
}
if (isr & LE_RINT) {
/* Reset watchdog timer. */
sc->sc_if.if_timer = 0;
lerint(sc);
}
if (isr & LE_TINT) {
/* Reset watchdog timer. */
sc->sc_if.if_timer = 0;
letint(sc);
}
isr = lerdcsr(sc, 0);
} while ((isr & LE_INTR) != 0);
#ifdef LEDEBUG
if (sc->sc_debug)
printf("%s: leintr returning with isr=%04x\n",
sc->sc_dev.dv_xname, isr);
#endif
out:
return 1;
}
#define NEXTTDS \
if (++tmd == NTBUF) tmd=0, cdm=sc->sc_td; else ++cdm
/*
* Setup output on interface.
* Get another datagram to send off of the interface queue, and map it to the
* interface before starting the output.
* Called only at splimp or interrupt level.
*/
void
lestart(ifp)
struct ifnet *ifp;
{
register struct le_softc *sc = lecd.cd_devs[ifp->if_unit];
register int tmd;
volatile struct mds *cdm;
struct mbuf *m0, *m;
u_char *buffer;
int len;
if ((sc->sc_if.if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
IFF_RUNNING)
return;
tmd = sc->sc_last_td;
cdm = &sc->sc_td[tmd];
for (;;) {
if (sc->sc_no_td >= NTBUF) {
sc->sc_if.if_flags |= IFF_OACTIVE;
#ifdef LEDEBUG
if (sc->sc_debug)
printf("no_td = %d, last_td = %d\n", sc->sc_no_td,
sc->sc_last_td);
#endif
break;
}
#ifdef LEDEBUG
if (cdm->flags & LE_OWN) {
sc->sc_if.if_flags |= IFF_OACTIVE;
printf("missing buffer, no_td = %d, last_td = %d\n",
sc->sc_no_td, sc->sc_last_td);
}
#endif
IF_DEQUEUE(&sc->sc_if.if_snd, m);
if (!m)
break;
++sc->sc_no_td;
/*
* Copy the mbuf chain into the transmit buffer.
*/
buffer = sc->sc_tbuf + (BUFSIZE * sc->sc_last_td);
len = 0;
for (m0 = m; m; m = m->m_next) {
bcopy(mtod(m, caddr_t), buffer, m->m_len);
buffer += m->m_len;
len += m->m_len;
}
#ifdef LEDEBUG
if (len > ETHER_MAX_LEN)
printf("packet length %d\n", len);
#endif
#if NBPFILTER > 0
if (sc->sc_if.if_bpf)
bpf_mtap(sc->sc_if.if_bpf, m0);
#endif
m_freem(m0);
len = max(len, ETHER_MIN_LEN);
/*
* Init transmit registers, and set transmit start flag.
*/
cdm->bcnt = -len;
cdm->mcnt = 0;
cdm->flags |= LE_OWN | LE_STP | LE_ENP;
#ifdef LEDEBUG
if (sc->sc_debug)
xmit_print(sc, sc->sc_last_td);
#endif
lewrcsr(sc, 0, LE_INEA | LE_TDMD);
NEXTTDS;
}
sc->sc_last_td = tmd;
}
void
letint(sc)
struct le_softc *sc;
{
register int tmd = (sc->sc_last_td - sc->sc_no_td + NTBUF) % NTBUF;
volatile struct mds *cdm;
cdm = &sc->sc_td[tmd];
if (cdm->flags & LE_OWN) {
/* Race condition with loop below. */
#ifdef LEDEBUG
if (sc->sc_debug)
printf("%s: extra tint\n", sc->sc_dev.dv_xname);
#endif
return;
}
sc->sc_if.if_flags &= ~IFF_OACTIVE;
do {
if (sc->sc_no_td <= 0)
break;
#ifdef LEDEBUG
if (sc->sc_debug)
printf("trans cdm = %x\n", cdm);
#endif
sc->sc_if.if_opackets++;
--sc->sc_no_td;
if (cdm->mcnt & (LE_TBUFF | LE_UFLO | LE_LCOL | LE_LCAR | LE_RTRY)) {
if (cdm->mcnt & LE_TBUFF)
printf("%s: transmit buffer error\n", sc->sc_dev.dv_xname);
if ((cdm->mcnt & (LE_TBUFF | LE_UFLO)) == LE_UFLO)
printf("%s: underflow\n", sc->sc_dev.dv_xname);
if (cdm->mcnt & LE_UFLO) {
lereset(sc);
return;
}
#if 0
if (cdm->mcnt & LE_LCOL) {
printf("%s: late collision\n", sc->sc_dev.dv_xname);
sc->sc_if.if_collisions++;
}
if (cdm->mcnt & LE_LCAR)
printf("%s: lost carrier\n", sc->sc_dev.dv_xname);
if (cdm->mcnt & LE_RTRY) {
printf("%s: excessive collisions, tdr %d\n",
sc->sc_dev.dv_xname, cdm->flags & 0x1ff);
sc->sc_if.if_collisions += 16;
}
#endif
} else if (cdm->flags & LE_ONE)
sc->sc_if.if_collisions++;
else if (cdm->flags & LE_MORE)
/* Real number is unknown. */
sc->sc_if.if_collisions += 2;
NEXTTDS;
} while ((cdm->flags & LE_OWN) == 0);
lestart(&sc->sc_if);
}
#define NEXTRDS \
if (++rmd == NRBUF) rmd=0, cdm=sc->sc_rd; else ++cdm
/* only called from one place, so may as well integrate */
void
lerint(sc)
struct le_softc *sc;
{
register int rmd = sc->sc_last_rd;
volatile struct mds *cdm;
cdm = &sc->sc_rd[rmd];
if (cdm->flags & LE_OWN) {
/* Race condition with loop below. */
#ifdef LEDEBUG
if (sc->sc_debug)
printf("%s: extra rint\n", sc->sc_dev.dv_xname);
#endif
return;
}
/* Process all buffers with valid data. */
do {
if (cdm->flags & LE_ERR) {
#ifdef LEDEBUG
/*
* XXX - These happen a LOT on the Sun3/50 so
* it is really NOT appropriate to print them.
*/
printf("%s: error, cdm->flags=%b\n",
sc->sc_dev.dv_xname, cdm->flags, RMD_BITS);
#endif
sc->sc_if.if_ierrors++;
} else if (cdm->flags & (LE_STP | LE_ENP) != (LE_STP | LE_ENP)) {
do {
cdm->mcnt = 0;
cdm->flags |= LE_OWN;
NEXTRDS;
} while ((cdm->flags & (LE_OWN | LE_ERR | LE_STP | LE_ENP)) == 0);
sc->sc_last_rd = rmd;
printf("%s: chained buffer\n", sc->sc_dev.dv_xname);
if ((cdm->flags & (LE_OWN | LE_ERR | LE_STP | LE_ENP)) != LE_ENP) {
lereset(sc);
return;
}
} else {
#ifdef LEDEBUG
if (sc->sc_debug)
recv_print(sc, sc->sc_last_rd);
#endif
leread(sc, sc->sc_rbuf + (BUFSIZE * rmd),
(int)cdm->mcnt);
}
cdm->bcnt = -BUFSIZE;
cdm->mcnt = 0;
cdm->flags |= LE_OWN;
NEXTRDS;
#ifdef LEDEBUG
if (sc->sc_debug)
printf("sc->sc_last_rd = %x, cdm = %x\n",
sc->sc_last_rd, cdm);
#endif
} while ((cdm->flags & LE_OWN) == 0);
sc->sc_last_rd = rmd;
}
/*
* Pass a packet to the higher levels.
*/
void
leread(sc, buf, len)
register struct le_softc *sc;
u_char *buf;
int len;
{
struct ifnet *ifp;
struct mbuf *m;
struct ether_header *eh;
ifp = &sc->sc_if;
if ((len < ETHERMIN) || (len > ETHER_MAX_LEN)) {
log(LOG_ERR, "%s: invalid packet size %d; dropping\n",
sc->sc_dev.dv_xname, len);
ifp->if_ierrors++;
return;
}
/* Pull packet off interface. */
m = leget(buf, len, ifp);
if (m == 0) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
/* We assume that the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf) {
/* Note that BPF may see garbage! (if LANCE_REVC_BUG) */
bpf_mtap(ifp->if_bpf, m);
}
#endif /* NBPFILTER */
#if LANCE_REVC_BUG
/*
* Check for unreported packet errors. Rev C of the LANCE chip
* has a bug which can cause "random" bytes to be prepended to
* the start of the packet. The work-around is to make sure that
* the Ethernet destination address in the packet matches our
* address (or the broadcast address). Must ALWAYS check!
*/
if (bcmp(eh->ether_dhost, sc->sc_enaddr, 6) &&
bcmp(eh->ether_dhost, etherbroadcastaddr, 6))
{
/* Not for us. */
m_freem(m);
return;
}
#else /* LANCE_REVC_BUG */
#if NBPFILTER > 0
if (ifp->if_bpf) {
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, sc->sc_enaddr, 6) != 0)
{
m_freem(m);
return;
}
}
#endif /* NBPFILTER */
#endif /* LANCE_REVC_BUG */
/* Pass the packet up, with the ether header sort-of removed. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
/*
* Supporting routines
*/
/*
* Pull data off an interface.
* Len is length of data, with local net header stripped.
* We copy the data into mbufs. When full cluster sized units are present
* we copy into clusters.
*/
struct mbuf *
leget(buf, totlen, ifp)
u_char *buf;
int totlen;
struct ifnet *ifp;
{
struct mbuf *top, **mp, *m;
int len;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return 0;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
len = MHLEN;
top = 0;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return 0;
}
len = MLEN;
}
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
bcopy((caddr_t)buf, mtod(m, caddr_t), len);
buf += len;
totlen -= len;
*mp = m;
mp = &m->m_next;
}
return top;
}
/*
* Process an ioctl request.
*/
int
leioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct le_softc *sc = lecd.cd_devs[ifp->if_unit];
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splimp();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
leinit(sc);
arp_ifinit(&sc->sc_ac, ifa);
break;
#endif
#ifdef NS
/* XXX - This code is probably wrong. */
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->sc_enaddr);
else
bcopy(ina->x_host.c_host,
sc->sc_enaddr,
sizeof(sc->sc_enaddr));
/* Set new address. */
leinit(sc);
break;
}
#endif
default:
leinit(sc);
break;
}
break;
case SIOCSIFFLAGS:
/*
* If interface is marked down and it is running, then stop it
*/
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
lestop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
leinit(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
/*lestop(sc);*/
leinit(sc);
}
#ifdef LEDEBUG
if (ifp->if_flags & IFF_DEBUG)
sc->sc_debug = 1;
else
sc->sc_debug = 0;
#endif
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ac):
ether_delmulti(ifr, &sc->sc_ac);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
leinit(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
(void) splx(s);
return error;
}
#ifdef LEDEBUG
void
recv_print(sc, no)
struct le_softc *sc;
int no;
{
struct mds *rmd;
int i, printed = 0;
u_short len;
rmd = &sc->sc_rd[no];
len = rmd->mcnt;
printf("%s: receive buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
len);
printf("%s: status %x\n", sc->sc_dev.dv_xname, lerdcsr(sc, 0));
for (i = 0; i < len; i++) {
if (!printed) {
printed = 1;
printf("%s: data: ", sc->sc_dev.dv_xname);
}
printf("%x ", *(sc->sc_rbuf + (BUFSIZE*no) + i));
}
if (printed)
printf("\n");
}
void
xmit_print(sc, no)
struct le_softc *sc;
int no;
{
struct mds *rmd;
int i, printed=0;
u_short len;
rmd = &sc->sc_td[no];
len = -rmd->bcnt;
printf("%s: transmit buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
len);
printf("%s: status %x\n", sc->sc_dev.dv_xname, lerdcsr(sc, 0));
printf("%s: addr %x, flags %x, bcnt %x, mcnt %x\n",
sc->sc_dev.dv_xname, rmd->addr, rmd->flags, rmd->bcnt, rmd->mcnt);
for (i = 0; i < len; i++) {
if (!printed) {
printed = 1;
printf("%s: data: ", sc->sc_dev.dv_xname);
}
printf("%x ", *(sc->sc_tbuf + (BUFSIZE*no) + i));
}
if (printed)
printf("\n");
}
#endif /* LEDEBUG */
/*
* Set up the logical address filter.
*/
void
lesetladrf(ac, af)
struct arpcom *ac;
u_long *af;
{
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
af[0] = af[1] = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if ((crc & 0x01) ^ (c & 0x01)) {
crc >>= 1;
crc ^= 0x6db88320 | 0x80000000;
} else
crc >>= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 0);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
}