NetBSD/sys/dev/isa/aic6360.c
1995-07-24 07:16:44 +00:00

2518 lines
62 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: aic6360.c,v 1.32 1995/07/24 07:17:04 cgd Exp $ */
/*
* Copyright (c) 1994, 1995 Charles Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Copyright (c) 1994 Jarle Greipsland
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Acknowledgements: Many of the algorithms used in this driver are
* inspired by the work of Julian Elischer (julian@tfs.com) and
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
*/
/* TODO list:
* 1) Get the DMA stuff working.
* 2) Get the iov/uio stuff working. Is this a good thing ???
* 3) Get the synch stuff working.
* 4) Rewrite it to use malloc for the acb structs instead of static alloc.?
*/
/*
* A few customizable items:
*/
/* Use doubleword transfers to/from SCSI chip. Note: This requires
* motherboard support. Basicly, some motherboard chipsets are able to
* split a 32 bit I/O operation into two 16 bit I/O operations,
* transparently to the processor. This speeds up some things, notably long
* data transfers.
*/
#define AIC_USE_DWORDS 0
/* Synchronous data transfers? */
#define AIC_USE_SYNCHRONOUS 1
#define AIC_SYNC_REQ_ACK_OFS 8
/* Wide data transfers? */
#define AIC_USE_WIDE 0
#define AIC_MAX_WIDTH 0
/* Max attempts made to transmit a message */
#define AIC_MSG_MAX_ATTEMPT 3 /* Not used now XXX */
/* Use DMA (else we do programmed I/O using string instructions) (not yet!)*/
#define AIC_USE_EISA_DMA 0
#define AIC_USE_ISA_DMA 0
/* How to behave on the (E)ISA bus when/if DMAing (on<<4) + off in us */
#define EISA_BRST_TIM ((15<<4) + 1) /* 15us on, 1us off */
/* Some spin loop parameters (essentially how long to wait some places)
* The problem(?) is that sometimes we expect either to be able to transmit a
* byte or to get a new one from the SCSI bus pretty soon. In order to avoid
* returning from the interrupt just to get yanked back for the next byte we
* may spin in the interrupt routine waiting for this byte to come. How long?
* This is really (SCSI) device and processor dependent. Tuneable, I guess.
*/
#define AIC_MSGIN_SPIN 1 /* Will spinwait upto ?ms for a new msg byte */
#define AIC_MSGOUT_SPIN 1
/* Include debug functions? At the end of this file there are a bunch of
* functions that will print out various information regarding queued SCSI
* commands, driver state and chip contents. You can call them from the
* kernel debugger. If you set AIC_DEBUG to 0 they are not included (the
* kernel uses less memory) but you lose the debugging facilities.
*/
#define AIC_DEBUG 1
/* End of customizable parameters */
#if AIC_USE_EISA_DMA || AIC_USE_ISA_DMA
#error "I said not yet! Start paying attention... grumble"
#endif
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <machine/pio.h>
#include <scsi/scsi_all.h>
#include <scsi/scsi_message.h>
#include <scsi/scsiconf.h>
#include <dev/isa/isavar.h>
/* Definitions, most of them has turned out to be unneccesary, but here they
* are anyway.
*/
/* AIC6360 definitions */
#define IOBASE sc->sc_iobase
#define SCSISEQ (IOBASE + 0x00) /* SCSI sequence control */
#define SXFRCTL0 (IOBASE + 0x01) /* SCSI transfer control 0 */
#define SXFRCTL1 (IOBASE + 0x02) /* SCSI transfer control 1 */
#define SCSISIG (IOBASE + 0x03) /* SCSI signal in/out */
#define SCSIRATE (IOBASE + 0x04) /* SCSI rate control */
#define SCSIID (IOBASE + 0x05) /* SCSI ID */
#define SELID (IOBASE + 0x05) /* Selection/Reselection ID */
#define SCSIDAT (IOBASE + 0x06) /* SCSI Latched Data */
#define SCSIBUS (IOBASE + 0x07) /* SCSI Data Bus*/
#define STCNT0 (IOBASE + 0x08) /* SCSI transfer count */
#define STCNT1 (IOBASE + 0x09)
#define STCNT2 (IOBASE + 0x0a)
#define CLRSINT0 (IOBASE + 0x0b) /* Clear SCSI interrupts 0 */
#define SSTAT0 (IOBASE + 0x0b) /* SCSI interrupt status 0 */
#define CLRSINT1 (IOBASE + 0x0c) /* Clear SCSI interrupts 1 */
#define SSTAT1 (IOBASE + 0x0c) /* SCSI status 1 */
#define SSTAT2 (IOBASE + 0x0d) /* SCSI status 2 */
#define SCSITEST (IOBASE + 0x0e) /* SCSI test control */
#define SSTAT3 (IOBASE + 0x0e) /* SCSI status 3 */
#define CLRSERR (IOBASE + 0x0f) /* Clear SCSI errors */
#define SSTAT4 (IOBASE + 0x0f) /* SCSI status 4 */
#define SIMODE0 (IOBASE + 0x10) /* SCSI interrupt mode 0 */
#define SIMODE1 (IOBASE + 0x11) /* SCSI interrupt mode 1 */
#define DMACNTRL0 (IOBASE + 0x12) /* DMA control 0 */
#define DMACNTRL1 (IOBASE + 0x13) /* DMA control 1 */
#define DMASTAT (IOBASE + 0x14) /* DMA status */
#define FIFOSTAT (IOBASE + 0x15) /* FIFO status */
#define DMADATA (IOBASE + 0x16) /* DMA data */
#define DMADATAL (IOBASE + 0x16) /* DMA data low byte */
#define DMADATAH (IOBASE + 0x17) /* DMA data high byte */
#define BRSTCNTRL (IOBASE + 0x18) /* Burst Control */
#define DMADATALONG (IOBASE + 0x18)
#define PORTA (IOBASE + 0x1a) /* Port A */
#define PORTB (IOBASE + 0x1b) /* Port B */
#define REV (IOBASE + 0x1c) /* Revision (001 for 6360) */
#define STACK (IOBASE + 0x1d) /* Stack */
#define TEST (IOBASE + 0x1e) /* Test register */
#define ID (IOBASE + 0x1f) /* ID register */
#define IDSTRING "(C)1991ADAPTECAIC6360 "
/* What all the bits do */
/* SCSISEQ */
#define TEMODEO 0x80
#define ENSELO 0x40
#define ENSELI 0x20
#define ENRESELI 0x10
#define ENAUTOATNO 0x08
#define ENAUTOATNI 0x04
#define ENAUTOATNP 0x02
#define SCSIRSTO 0x01
/* SXFRCTL0 */
#define SCSIEN 0x80
#define DMAEN 0x40
#define CHEN 0x20
#define CLRSTCNT 0x10
#define SPIOEN 0x08
#define CLRCH 0x02
/* SXFRCTL1 */
#define BITBUCKET 0x80
#define SWRAPEN 0x40
#define ENSPCHK 0x20
#define STIMESEL1 0x10
#define STIMESEL0 0x08
#define STIMO_256ms 0x00
#define STIMO_128ms 0x08
#define STIMO_64ms 0x10
#define STIMO_32ms 0x18
#define ENSTIMER 0x04
#define BYTEALIGN 0x02
/* SCSISIG (in) */
#define CDI 0x80
#define IOI 0x40
#define MSGI 0x20
#define ATNI 0x10
#define SELI 0x08
#define BSYI 0x04
#define REQI 0x02
#define ACKI 0x01
/* Important! The 3 most significant bits of this register, in initiator mode,
* represents the "expected" SCSI bus phase and can be used to trigger phase
* mismatch and phase change interrupts. But more important: If there is a
* phase mismatch the chip will not transfer any data! This is actually a nice
* feature as it gives us a bit more control over what is happening when we are
* bursting data (in) through the FIFOs and the phase suddenly changes from
* DATA IN to STATUS or MESSAGE IN. The transfer will stop and wait for the
* proper phase to be set in this register instead of dumping the bits into the
* FIFOs.
*/
/* SCSISIG (out) */
#define CDO 0x80
#define IOO 0x40
#define MSGO 0x20
#define ATNO 0x10
#define SELO 0x08
#define BSYO 0x04
#define REQO 0x02
#define ACKO 0x01
/* Information transfer phases */
#define PH_DATAOUT (0)
#define PH_DATAIN (IOI)
#define PH_CMD (CDI)
#define PH_STAT (CDI | IOI)
#define PH_MSGOUT (MSGI | CDI)
#define PH_MSGIN (MSGI | CDI | IOI)
#define PH_MASK (MSGI | CDI | IOI)
#define PH_INVALID 0xff
/* SCSIRATE */
#define SXFR2 0x40
#define SXFR1 0x20
#define SXFR0 0x10
#define SOFS3 0x08
#define SOFS2 0x04
#define SOFS1 0x02
#define SOFS0 0x01
/* SCSI ID */
#define OID2 0x40
#define OID1 0x20
#define OID0 0x10
#define OID_S 4 /* shift value */
#define TID2 0x04
#define TID1 0x02
#define TID0 0x01
#define SCSI_ID_MASK 0x7
/* SCSI selection/reselection ID (both target *and* initiator) */
#define SELID7 0x80
#define SELID6 0x40
#define SELID5 0x20
#define SELID4 0x10
#define SELID3 0x08
#define SELID2 0x04
#define SELID1 0x02
#define SELID0 0x01
/* CLRSINT0 Clears what? (interrupt and/or status bit) */
#define SETSDONE 0x80
#define CLRSELDO 0x40 /* I */
#define CLRSELDI 0x20 /* I+ */
#define CLRSELINGO 0x10 /* I */
#define CLRSWRAP 0x08 /* I+S */
#define CLRSDONE 0x04 /* I+S */
#define CLRSPIORDY 0x02 /* I */
#define CLRDMADONE 0x01 /* I */
/* SSTAT0 Howto clear */
#define TARGET 0x80
#define SELDO 0x40 /* Selfclearing */
#define SELDI 0x20 /* Selfclearing when CLRSELDI is set */
#define SELINGO 0x10 /* Selfclearing */
#define SWRAP 0x08 /* CLRSWAP */
#define SDONE 0x04 /* Not used in initiator mode */
#define SPIORDY 0x02 /* Selfclearing (op on SCSIDAT) */
#define DMADONE 0x01 /* Selfclearing (all FIFOs empty & T/C */
/* CLRSINT1 Clears what? */
#define CLRSELTIMO 0x80 /* I+S */
#define CLRATNO 0x40
#define CLRSCSIRSTI 0x20 /* I+S */
#define CLRBUSFREE 0x08 /* I+S */
#define CLRSCSIPERR 0x04 /* I+S */
#define CLRPHASECHG 0x02 /* I+S */
#define CLRREQINIT 0x01 /* I+S */
/* SSTAT1 How to clear? When set?*/
#define SELTO 0x80 /* C select out timeout */
#define ATNTARG 0x40 /* Not used in initiator mode */
#define SCSIRSTI 0x20 /* C RST asserted */
#define PHASEMIS 0x10 /* Selfclearing */
#define BUSFREE 0x08 /* C bus free condition */
#define SCSIPERR 0x04 /* C parity error on inbound data */
#define PHASECHG 0x02 /* C phase in SCSISIG doesn't match */
#define REQINIT 0x01 /* C or ACK asserting edge of REQ */
/* SSTAT2 */
#define SOFFSET 0x20
#define SEMPTY 0x10
#define SFULL 0x08
#define SFCNT2 0x04
#define SFCNT1 0x02
#define SFCNT0 0x01
/* SCSITEST */
#define SCTESTU 0x08
#define SCTESTD 0x04
#define STCTEST 0x01
/* SSTAT3 */
#define SCSICNT3 0x80
#define SCSICNT2 0x40
#define SCSICNT1 0x20
#define SCSICNT0 0x10
#define OFFCNT3 0x08
#define OFFCNT2 0x04
#define OFFCNT1 0x02
#define OFFCNT0 0x01
/* CLRSERR */
#define CLRSYNCERR 0x04
#define CLRFWERR 0x02
#define CLRFRERR 0x01
/* SSTAT4 */
#define SYNCERR 0x04
#define FWERR 0x02
#define FRERR 0x01
/* SIMODE0 */
#define ENSELDO 0x40
#define ENSELDI 0x20
#define ENSELINGO 0x10
#define ENSWRAP 0x08
#define ENSDONE 0x04
#define ENSPIORDY 0x02
#define ENDMADONE 0x01
/* SIMODE1 */
#define ENSELTIMO 0x80
#define ENATNTARG 0x40
#define ENSCSIRST 0x20
#define ENPHASEMIS 0x10
#define ENBUSFREE 0x08
#define ENSCSIPERR 0x04
#define ENPHASECHG 0x02
#define ENREQINIT 0x01
/* DMACNTRL0 */
#define ENDMA 0x80
#define B8MODE 0x40
#define DMA 0x20
#define DWORDPIO 0x10
#define WRITE 0x08
#define INTEN 0x04
#define RSTFIFO 0x02
#define SWINT 0x01
/* DMACNTRL1 */
#define PWRDWN 0x80
#define ENSTK32 0x40
#define STK4 0x10
#define STK3 0x08
#define STK2 0x04
#define STK1 0x02
#define STK0 0x01
/* DMASTAT */
#define ATDONE 0x80
#define WORDRDY 0x40
#define INTSTAT 0x20
#define DFIFOFULL 0x10
#define DFIFOEMP 0x08
#define DFIFOHF 0x04
#define DWORDRDY 0x02
/* BRSTCNTRL */
#define BON3 0x80
#define BON2 0x40
#define BON1 0x20
#define BON0 0x10
#define BOFF3 0x08
#define BOFF2 0x04
#define BOFF1 0x02
#define BOFF0 0x01
/* TEST */
#define BOFFTMR 0x40
#define BONTMR 0x20
#define STCNTH 0x10
#define STCNTM 0x08
#define STCNTL 0x04
#define SCSIBLK 0x02
#define DMABLK 0x01
#ifdef DDB
int Debugger();
#else DDB
#define Debugger() panic("should call debugger here (aic6360.c)")
#endif DDB
typedef u_long physaddr;
typedef u_long physlen;
struct aic_dma_seg {
physaddr seg_addr;
physlen seg_len;
};
#define AIC_NSEG 16
/*
* ACB. Holds additional information for each SCSI command Comments: We
* need a separate scsi command block because we may need to overwrite it
* with a request sense command. Basicly, we refrain from fiddling with
* the scsi_xfer struct (except do the expected updating of return values).
* We'll generally update: xs->{flags,resid,error,sense,status} and
* occasionally xs->retries.
*/
struct aic_acb {
struct scsi_generic scsi_cmd;
int scsi_cmd_length;
u_char *data_addr; /* Saved data pointer */
int data_length; /* Residue */
u_char target_stat; /* SCSI status byte */
/* struct aic_dma_seg dma[AIC_NSEG]; /* Physical addresses+len */
TAILQ_ENTRY(aic_acb) chain;
struct scsi_xfer *xs; /* SCSI xfer ctrl block from above */
int flags;
#define ACB_FREE 0
#define ACB_ACTIVE 1
#define ACB_CHKSENSE 2
#define ACB_ABORTED 3
};
/*
* Some info about each (possible) target on the SCSI bus. This should
* probably have been a "per target+lunit" structure, but we'll leave it at
* this for now.
*/
struct aic_tinfo {
int cmds; /* #commands processed */
int dconns; /* #disconnects */
int touts; /* #timeouts */
int perrs; /* #parity errors */
int senses; /* #request sense commands sent */
ushort lubusy; /* What local units/subr. are busy? */
u_char flags;
#define DO_SYNC 0x01 /* (Re)Negotiate synchronous options */
#define DO_WIDE 0x02 /* (Re)Negotiate wide options */
u_char period; /* Period suggestion */
u_char offset; /* Offset suggestion */
u_char width; /* Width suggestion */
} tinfo_t;
struct aic_softc {
struct device sc_dev;
struct isadev sc_id;
void *sc_ih;
int sc_iobase;
int sc_irq, sc_drq;
struct scsi_link sc_link; /* prototype for subdevs */
TAILQ_HEAD(, aic_acb) free_list, ready_list, nexus_list;
struct aic_acb *sc_nexus; /* current command */
struct aic_acb sc_acb[8];
struct aic_tinfo sc_tinfo[8];
/* Data about the current nexus (updated for every cmd switch) */
u_char *sc_dp; /* Current data pointer */
size_t sc_dleft; /* Data bytes left to transfer */
u_char *sc_cp; /* Current command pointer */
size_t sc_cleft; /* Command bytes left to transfer */
/* Adapter state */
u_char sc_phase; /* Current bus phase */
u_char sc_prevphase; /* Previous bus phase */
u_char sc_state; /* State applicable to the adapter */
#define AIC_IDLE 0x01
#define AIC_SELECTING 0x02 /* SCSI command is arbiting */
#define AIC_RESELECTED 0x04 /* Has been reselected */
#define AIC_CONNECTED 0x08 /* Actively using the SCSI bus */
#define AIC_DISCONNECT 0x10 /* MSG_DISCONNECT received */
#define AIC_CMDCOMPLETE 0x20 /* MSG_CMDCOMPLETE received */
#define AIC_CLEANING 0x40
u_char sc_flags;
#define AIC_DROP_MSGIN 0x01 /* Discard all msgs (parity err detected) */
#define AIC_ABORTING 0x02 /* Bailing out */
#define AIC_DOINGDMA 0x04 /* The FIFO data path is active! */
u_char sc_selid; /* Reselection ID */
/* Message stuff */
u_char sc_msgpriq; /* Messages we want to send */
u_char sc_msgoutq; /* Messages sent during last MESSAGE OUT */
u_char sc_lastmsg; /* Message last transmitted */
u_char sc_currmsg; /* Message currently ready to transmit */
#define SEND_DEV_RESET 0x01
#define SEND_PARITY_ERROR 0x02
#define SEND_ABORT 0x04
#define SEND_REJECT 0x08
#define SEND_INIT_DET_ERR 0x10
#define SEND_IDENTIFY 0x20
#define SEND_SDTR 0x40
#define SEND_WDTR 0x80
#define AIC_MAX_MSG_LEN 8
u_char sc_omess[AIC_MAX_MSG_LEN];
u_char *sc_omp; /* Outgoing message pointer */
u_char sc_imess[AIC_MAX_MSG_LEN];
u_char *sc_imp; /* Incoming message pointer */
/* Hardware stuff */
int sc_initiator; /* Our scsi id */
int sc_freq; /* Clock frequency in MHz */
int sc_minsync; /* Minimum sync period / 4 */
int sc_maxsync; /* Maximum sync period / 4 */
};
#if AIC_DEBUG
#define AIC_SHOWACBS 0x01
#define AIC_SHOWINTS 0x02
#define AIC_SHOWCMDS 0x04
#define AIC_SHOWMISC 0x08
#define AIC_SHOWTRACE 0x10
#define AIC_SHOWSTART 0x20
#define AIC_DOBREAK 0x40
int aic_debug = 0x00; /* AIC_SHOWSTART|AIC_SHOWMISC|AIC_SHOWTRACE; /**/
#define AIC_PRINT(b, s) do {if ((aic_debug & (b)) != 0) printf s;} while (0)
#define AIC_BREAK() do {if ((aic_debug & AIC_DOBREAK) != 0) Debugger();} while (0)
#define AIC_ASSERT(x) do {if (x) {} else {printf("%s at line %d: assertion failed\n", sc->sc_dev.dv_xname, __LINE__); Debugger();}} while (0)
#else
#define AIC_PRINT(b, s)
#define AIC_BREAK()
#define AIC_ASSERT(x)
#endif
#define AIC_ACBS(s) AIC_PRINT(AIC_SHOWACBS, s)
#define AIC_INTS(s) AIC_PRINT(AIC_SHOWINTS, s)
#define AIC_CMDS(s) AIC_PRINT(AIC_SHOWCMDS, s)
#define AIC_MISC(s) AIC_PRINT(AIC_SHOWMISC, s)
#define AIC_TRACE(s) AIC_PRINT(AIC_SHOWTRACE, s)
#define AIC_START(s) AIC_PRINT(AIC_SHOWSTART, s)
int aicprobe __P((struct device *, void *, void *));
void aicattach __P((struct device *, struct device *, void *));
u_int aic_minphys __P((struct buf *));
int aicintr __P((void *));
void aic_init __P((struct aic_softc *));
void aic_done __P((struct aic_softc *, struct aic_acb *));
void aic_dequeue __P((struct aic_softc *, struct aic_acb *));
int aic_scsi_cmd __P((struct scsi_xfer *));
int aic_poll __P((struct aic_softc *, struct scsi_xfer *, int));
void aic_select __P((struct aic_softc *, struct aic_acb *));
void aic_timeout __P((void *));
int aic_find __P((struct aic_softc *));
void aic_sched __P((struct aic_softc *));
void aic_scsi_reset __P((struct aic_softc *));
void aic_reset __P((struct aic_softc *));
#if AIC_DEBUG
void aic_print_active_acb();
void aic_dump_driver();
void aic_dump6360();
#endif
struct cfdriver aiccd = {
NULL, "aic", aicprobe, aicattach, DV_DULL, sizeof(struct aic_softc)
};
struct scsi_adapter aic_switch = {
aic_scsi_cmd,
aic_minphys,
0,
0,
};
struct scsi_device aic_dev = {
NULL, /* Use default error handler */
NULL, /* have a queue, served by this */
NULL, /* have no async handler */
NULL, /* Use default 'done' routine */
};
/*
* INITIALIZATION ROUTINES (probe, attach ++)
*/
/*
* aicprobe: probe for AIC6360 SCSI-controller
* returns non-zero value if a controller is found.
*/
int
aicprobe(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct aic_softc *sc = match;
struct isa_attach_args *ia = aux;
int i, len, ic;
#ifdef NEWCONFIG
if (ia->ia_iobase == IOBASEUNK)
return 0;
#endif
sc->sc_iobase = ia->ia_iobase;
if (aic_find(sc) != 0)
return 0;
#ifdef NEWCONFIG
if (ia->ia_irq != IRQUNK) {
if (ia->ia_irq != sc->sc_irq) {
printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
sc->sc_dev.dv_xname, ia->ia_irq, sc->sc_irq);
return 0;
}
} else
ia->ia_irq = sc->sc_irq;
if (ia->ia_drq != DRQUNK) {
if (ia->ia_drq != sc->sc_drq) {
printf("%s: drq mismatch; kernel configured %d != board configured %d\n",
sc->sc_dev.dv_xname, ia->ia_drq, sc->sc_drq);
return 0;
}
} else
ia->ia_drq = sc->sc_drq;
#endif
ia->ia_msize = 0;
ia->ia_iosize = 0x20;
return 1;
}
/* Do the real search-for-device.
* Prerequisite: sc->sc_iobase should be set to the proper value
*/
int
aic_find(sc)
struct aic_softc *sc;
{
char chip_id[sizeof(IDSTRING)]; /* For chips that support it */
char *start;
int i;
/* Remove aic6360 from possible powerdown mode */
outb(DMACNTRL0, 0);
/* Thanks to mark@aggregate.com for the new method for detecting
* whether the chip is present or not. Bonus: may also work for
* the AIC-6260!
*/
AIC_TRACE(("aic: probing for aic-chip at port 0x%x\n",
sc->sc_iobase));
/*
* Linux also init's the stack to 1-16 and then clears it,
* 6260's don't appear to have an ID reg - mpg
*/
/* Push the sequence 0,1,..,15 on the stack */
#define STSIZE 16
outb(DMACNTRL1, 0); /* Reset stack pointer */
for (i = 0; i < STSIZE; i++)
outb(STACK, i);
/* See if we can pull out the same sequence */
outb(DMACNTRL1, 0);
for (i = 0; i < STSIZE && inb(STACK) == i; i++)
;
if (i != STSIZE) {
AIC_START(("STACK futzed at %d.\n", i));
return ENXIO;
}
/* See if we can pull the id string out of the ID register,
* now only used for informational purposes.
*/
bzero(chip_id, sizeof(chip_id));
insb(ID, chip_id, sizeof(IDSTRING)-1);
AIC_START(("AIC found at 0x%x ", sc->sc_iobase));
AIC_START(("ID: %s ",chip_id));
AIC_START(("chip revision %d\n",(int)inb(REV)));
sc->sc_initiator = 7;
sc->sc_freq = 20; /* XXXX Assume 20 MHz. */
/*
* These are the bounds of the sync period, based on the frequency of
* the chip's clock input and the size and offset of the sync period
* register.
*
* For a 20Mhz clock, this gives us 25, or 100nS, or 10MB/s, as a
* maximum transfer rate, and 112.5, or 450nS, or 2.22MB/s, as a
* minimum transfer rate.
*/
sc->sc_minsync = (2 * 250) / sc->sc_freq;
sc->sc_maxsync = (9 * 250) / sc->sc_freq;
return 0;
}
int
aicprint()
{
}
/*
* Attach the AIC6360, fill out some high and low level data structures
*/
void
aicattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct isa_attach_args *ia = aux;
struct aic_softc *sc = (void *)self;
AIC_TRACE(("aicattach "));
sc->sc_state = 0;
aic_init(sc); /* Init chip and driver */
/*
* Fill in the prototype scsi_link
*/
sc->sc_link.adapter_softc = sc;
sc->sc_link.adapter_target = sc->sc_initiator;
sc->sc_link.adapter = &aic_switch;
sc->sc_link.device = &aic_dev;
sc->sc_link.openings = 2;
printf("\n");
#ifdef NEWCONFIG
isa_establish(&sc->sc_id, &sc->sc_dev);
#endif
sc->sc_ih = isa_intr_establish(ia->ia_irq, ISA_IST_EDGE, ISA_IPL_BIO,
aicintr, sc);
config_found(self, &sc->sc_link, aicprint);
}
/* Initialize AIC6360 chip itself
* The following conditions should hold:
* aicprobe should have succeeded, i.e. the iobase address in aic_softc must
* be valid.
*/
void
aic_reset(sc)
struct aic_softc *sc;
{
outb(SCSITEST, 0); /* Doc. recommends to clear these two */
outb(TEST, 0); /* registers before operations commence */
/* Reset SCSI-FIFO and abort any transfers */
outb(SXFRCTL0, CHEN|CLRCH|CLRSTCNT);
/* Reset DMA-FIFO */
outb(DMACNTRL0, RSTFIFO);
outb(DMACNTRL1, 0);
outb(SCSISEQ, 0); /* Disable all selection features */
outb(SXFRCTL1, 0);
outb(SIMODE0, 0x00); /* Disable some interrupts */
outb(CLRSINT0, 0x7f); /* Clear a slew of interrupts */
outb(SIMODE1, 0x00); /* Disable some more interrupts */
outb(CLRSINT1, 0xef); /* Clear another slew of interrupts */
outb(SCSIRATE, 0); /* Disable synchronous transfers */
outb(CLRSERR, 0x07); /* Haven't seen ant errors (yet) */
outb(SCSIID, sc->sc_initiator << OID_S); /* Set our SCSI-ID */
outb(BRSTCNTRL, EISA_BRST_TIM);
}
/* Pull the SCSI RST line for 500 us */
void
aic_scsi_reset(sc)
struct aic_softc *sc;
{
outb(SCSISEQ, SCSIRSTO);
delay(500);
outb(SCSISEQ, 0);
delay(50);
}
/*
* Initialize aic SCSI driver.
*/
void
aic_init(sc)
struct aic_softc *sc;
{
struct aic_acb *acb;
int r;
aic_reset(sc);
aic_scsi_reset(sc);
aic_reset(sc);
if (sc->sc_state == 0) {
/* First time through; initialize. */
TAILQ_INIT(&sc->ready_list);
TAILQ_INIT(&sc->nexus_list);
TAILQ_INIT(&sc->free_list);
sc->sc_nexus = NULL;
acb = sc->sc_acb;
bzero(acb, sizeof(sc->sc_acb));
for (r = 0; r < sizeof(sc->sc_acb) / sizeof(*acb); r++) {
TAILQ_INSERT_TAIL(&sc->free_list, acb, chain);
acb++;
}
bzero(&sc->sc_tinfo, sizeof(sc->sc_tinfo));
} else {
/* Cancel any active commands. */
sc->sc_state = AIC_CLEANING;
if ((acb = sc->sc_nexus) != NULL) {
acb->xs->error = XS_DRIVER_STUFFUP;
untimeout(aic_timeout, acb);
aic_done(sc, acb);
}
while (acb = sc->nexus_list.tqh_first) {
acb->xs->error = XS_DRIVER_STUFFUP;
untimeout(aic_timeout, acb);
aic_done(sc, acb);
}
}
sc->sc_prevphase = PH_INVALID;
for (r = 0; r < 8; r++) {
struct aic_tinfo *ti = &sc->sc_tinfo[r];
ti->flags = 0;
#if AIC_USE_SYNCHRONOUS
ti->flags |= DO_SYNC;
ti->period = sc->sc_minsync;
ti->offset = AIC_SYNC_REQ_ACK_OFS;
#else
ti->period = ti->offset = 0;
#endif
#if AIC_USE_WIDE
ti->flags |= DO_WIDE;
ti->width = AIC_MAX_WIDTH;
#else
ti->width = 0;
#endif
}
sc->sc_state = AIC_IDLE;
outb(DMACNTRL0, INTEN);
}
void
aic_free_acb(sc, acb, flags)
struct aic_softc *sc;
struct aic_acb *acb;
int flags;
{
int s;
s = splbio();
acb->flags = ACB_FREE;
TAILQ_INSERT_HEAD(&sc->free_list, acb, chain);
if (acb->chain.tqe_next == 0)
wakeup(&sc->free_list);
splx(s);
}
struct aic_acb *
aic_get_acb(sc, flags)
struct aic_softc *sc;
int flags;
{
int s;
struct aic_acb *acb;
/* Get a aic command block */
s = splbio();
while ((acb = sc->free_list.tqh_first) == NULL &&
(flags & SCSI_NOSLEEP) == 0)
tsleep(&sc->free_list, PRIBIO, "aicacb", 0);
if (acb) {
TAILQ_REMOVE(&sc->free_list, acb, chain);
acb->flags = ACB_ACTIVE;
}
splx(s);
return acb;
}
/*
* DRIVER FUNCTIONS CALLABLE FROM HIGHER LEVEL DRIVERS
*/
/*
* Expected sequence:
* 1) Command inserted into ready list
* 2) Command selected for execution
* 3) Command won arbitration and has selected target device
* 4) Send message out (identify message, eventually also sync.negotiations)
* 5) Send command
* 5a) Receive disconnect message, disconnect.
* 5b) Reselected by target
* 5c) Receive identify message from target.
* 6) Send or receive data
* 7) Receive status
* 8) Receive message (command complete etc.)
* 9) If status == SCSI_CHECK construct a synthetic request sense SCSI cmd.
* Repeat 2-8 (no disconnects please...)
*/
/*
* Start a SCSI-command
* This function is called by the higher level SCSI-driver to queue/run
* SCSI-commands.
*/
int
aic_scsi_cmd(xs)
struct scsi_xfer *xs;
{
struct scsi_link *sc_link = xs->sc_link;
struct aic_softc *sc = sc_link->adapter_softc;
struct aic_acb *acb;
int s, flags;
AIC_TRACE(("aic_scsi_cmd "));
AIC_CMDS(("[0x%x, %d]->%d ", (int)xs->cmd->opcode, xs->cmdlen,
sc_link->target));
flags = xs->flags;
if ((flags & (ITSDONE|INUSE)) != INUSE) {
printf("%s: done or not in use?\n", sc->sc_dev.dv_xname);
xs->flags &= ~ITSDONE;
xs->flags |= INUSE;
}
if ((acb = aic_get_acb(sc, flags)) == NULL) {
xs->error = XS_DRIVER_STUFFUP;
return TRY_AGAIN_LATER;
}
/* Initialize acb */
acb->xs = xs;
bcopy(xs->cmd, &acb->scsi_cmd, xs->cmdlen);
acb->scsi_cmd_length = xs->cmdlen;
acb->data_addr = xs->data;
acb->data_length = xs->datalen;
acb->target_stat = 0;
s = splbio();
TAILQ_INSERT_TAIL(&sc->ready_list, acb, chain);
if (sc->sc_state == AIC_IDLE)
aic_sched(sc);
if ((flags & SCSI_POLL) == 0) { /* Almost done. Wait outside */
timeout(aic_timeout, acb, (xs->timeout * hz) / 1000);
splx(s);
return SUCCESSFULLY_QUEUED;
}
splx(s);
/* Not allowed to use interrupts, use polling instead */
if (aic_poll(sc, xs, xs->timeout)) {
aic_timeout(acb);
if (aic_poll(sc, xs, 2000))
aic_timeout(acb);
}
return COMPLETE;
}
/*
* Adjust transfer size in buffer structure
*/
u_int
aic_minphys(bp)
struct buf *bp;
{
AIC_TRACE(("aic_minphys "));
if (bp->b_bcount > (AIC_NSEG << PGSHIFT))
bp->b_bcount = (AIC_NSEG << PGSHIFT);
return (minphys(bp));
}
/*
* Used when interrupt driven I/O isn't allowed, e.g. during boot.
*/
int
aic_poll(sc, xs, count)
struct aic_softc *sc;
struct scsi_xfer *xs;
int count;
{
AIC_TRACE(("aic_poll "));
while (count) {
/*
* If we had interrupts enabled, would we
* have got an interrupt?
*/
if ((inb(DMASTAT) & INTSTAT) != 0)
aicintr(sc);
if ((xs->flags & ITSDONE) != 0)
return 0;
delay(1000);
count--;
}
return 1;
}
/*
* LOW LEVEL SCSI UTILITIES
*/
#define aic_sched_msgout(m) \
do { \
if (sc->sc_msgpriq == 0) \
outb(SCSISIG, sc->sc_phase|ATNO); \
sc->sc_msgpriq |= (m); \
} while (0)
#if AIC_USE_SYNCHRONOUS
/*
* Set synchronous transfer offset and period.
*/
static inline void
aic_setsync(sc, ti)
struct aic_softc *sc;
struct aic_tinfo *ti;
{
if (ti->offset != 0)
outb(SCSIRATE,
((ti->period * sc->sc_freq) / 250 - 2) << 4 | ti->offset);
else
outb(SCSIRATE, 0);
}
#else
#define aic_setsync(sc, ti)
#endif
/*
* Start a selection. This is used by aic_sched() to select an idle target,
* and by aic_done() to immediately reselect a target to get sense information.
*/
void
aic_select(sc, acb)
struct aic_softc *sc;
struct aic_acb *acb;
{
struct scsi_link *sc_link = acb->xs->sc_link;
int target = sc_link->target;
struct aic_tinfo *ti = &sc->sc_tinfo[target];
outb(SCSIID, sc->sc_initiator << OID_S | target);
aic_setsync(sc, ti);
outb(SXFRCTL1, STIMO_256ms|ENSTIMER);
/* Always enable reselections. */
outb(SIMODE0, ENSELDI|ENSELDO);
outb(SIMODE1, ENSCSIRST|ENSELTIMO);
outb(SCSISEQ, ENRESELI|ENSELO|ENAUTOATNO);
sc->sc_state = AIC_SELECTING;
}
int
aic_reselect(sc, message)
struct aic_softc *sc;
u_char message;
{
u_char selid, target, lun;
struct aic_acb *acb;
struct scsi_link *sc_link;
struct aic_tinfo *ti;
/*
* The SCSI chip made a snapshot of the data bus while the reselection
* was being negotiated. This enables us to determine which target did
* the reselect.
*/
selid = sc->sc_selid & ~(1 << sc->sc_initiator);
if (selid & (selid - 1)) {
printf("%s: reselect with invalid selid %02x; sending DEVICE RESET\n",
sc->sc_dev.dv_xname, selid);
AIC_BREAK();
goto reset;
}
/* Search wait queue for disconnected cmd
* The list should be short, so I haven't bothered with
* any more sophisticated structures than a simple
* singly linked list.
*/
target = ffs(selid) - 1;
lun = message & 0x07;
for (acb = sc->nexus_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next) {
sc_link = acb->xs->sc_link;
if (sc_link->target == target && sc_link->lun == lun)
break;
}
if (acb == NULL) {
printf("%s: reselect from target %d lun %d with no nexus; sending ABORT\n",
sc->sc_dev.dv_xname, target, lun);
AIC_BREAK();
goto abort;
}
/* Make this nexus active again. */
TAILQ_REMOVE(&sc->nexus_list, acb, chain);
sc->sc_state = AIC_CONNECTED;
sc->sc_nexus = acb;
ti = &sc->sc_tinfo[target];
ti->lubusy |= (1 << lun);
aic_setsync(sc, ti);
/* Do an implicit RESTORE POINTERS. */
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsi_cmd;
sc->sc_cleft = acb->scsi_cmd_length;
return (0);
reset:
sc->sc_flags |= AIC_ABORTING;
aic_sched_msgout(SEND_DEV_RESET);
return (1);
abort:
sc->sc_flags |= AIC_ABORTING;
aic_sched_msgout(SEND_ABORT);
return (1);
}
/*
* Schedule a SCSI operation. This has now been pulled out of the interrupt
* handler so that we may call it from aic_scsi_cmd and aic_done. This may
* save us an unecessary interrupt just to get things going. Should only be
* called when state == AIC_IDLE and at bio pl.
*/
void
aic_sched(sc)
register struct aic_softc *sc;
{
struct aic_acb *acb;
struct scsi_link *sc_link;
struct aic_tinfo *ti;
/*
* Find first acb in ready queue that is for a target/lunit pair that
* is not busy.
*/
outb(CLRSINT1, CLRSELTIMO|CLRBUSFREE|CLRSCSIPERR);
for (acb = sc->ready_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next) {
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->target];
if ((ti->lubusy & (1 << sc_link->lun)) == 0) {
AIC_MISC(("selecting %d:%d ",
sc_link->target, sc_link->lun));
TAILQ_REMOVE(&sc->ready_list, acb, chain);
sc->sc_nexus = acb;
aic_select(sc, acb);
return;
} else
AIC_MISC(("%d:%d busy\n",
sc_link->target, sc_link->lun));
}
AIC_MISC(("idle "));
/* Nothing to start; just enable reselections and wait. */
outb(SIMODE0, ENSELDI);
outb(SIMODE1, ENSCSIRST);
outb(SCSISEQ, ENRESELI);
}
/*
* POST PROCESSING OF SCSI_CMD (usually current)
*/
void
aic_done(sc, acb)
struct aic_softc *sc;
struct aic_acb *acb;
{
struct scsi_xfer *xs = acb->xs;
struct scsi_link *sc_link = xs->sc_link;
struct aic_tinfo *ti = &sc->sc_tinfo[sc_link->target];
AIC_TRACE(("aic_done "));
/*
* Now, if we've come here with no error code, i.e. we've kept the
* initial XS_NOERROR, and the status code signals that we should
* check sense, we'll need to set up a request sense cmd block and
* push the command back into the ready queue *before* any other
* commands for this target/lunit, else we lose the sense info.
* We don't support chk sense conditions for the request sense cmd.
*/
if (xs->error == XS_NOERROR) {
if (acb->flags == ACB_ABORTED) {
xs->error = XS_DRIVER_STUFFUP;
} else if (acb->flags == ACB_CHKSENSE) {
xs->error = XS_SENSE;
} else if (acb->target_stat == SCSI_CHECK) {
struct scsi_sense *ss = (void *)&acb->scsi_cmd;
AIC_MISC(("requesting sense "));
/* First, save the return values */
xs->resid = acb->data_length;
xs->status = acb->target_stat;
/* Next, setup a request sense command block */
bzero(ss, sizeof(*ss));
ss->opcode = REQUEST_SENSE;
ss->byte2 = sc_link->lun << 5;
ss->length = sizeof(struct scsi_sense_data);
acb->scsi_cmd_length = sizeof(*ss);
acb->data_addr = (char *)&xs->sense;
acb->data_length = sizeof(struct scsi_sense_data);
acb->flags = ACB_CHKSENSE;
ti->senses++;
ti->lubusy &= ~(1<<sc_link->lun);
if (acb == sc->sc_nexus) {
aic_select(sc, acb);
} else {
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
}
return;
} else {
xs->resid = acb->data_length;
}
}
xs->flags |= ITSDONE;
#if AIC_DEBUG
if ((aic_debug & AIC_SHOWMISC) != 0) {
if (xs->resid != 0)
printf("resid=%d ", xs->resid);
if (xs->error == XS_SENSE)
printf("sense=0x%02x\n", xs->sense.error_code);
else
printf("error=%d\n", xs->error);
}
#endif
/*
* Remove the ACB from whatever queue it's on. We have to do a bit of
* a hack to figure out which queue it's on. Note that it is *not*
* necessary to cdr down the ready queue, but we must cdr down the
* nexus queue and see if it's there, so we can mark the unit as no
* longer busy. This code is sickening, but it works.
*/
if (acb == sc->sc_nexus) {
ti->lubusy &= ~(1 << sc_link->lun);
sc->sc_state = AIC_IDLE;
sc->sc_nexus = NULL;
aic_sched(sc);
} else
aic_dequeue(sc, acb);
aic_free_acb(sc, acb, xs->flags);
ti->cmds++;
scsi_done(xs);
}
void
aic_dequeue(sc, acb)
struct aic_softc *sc;
struct aic_acb *acb;
{
struct scsi_link *sc_link = acb->xs->sc_link;
struct aic_tinfo *ti = &sc->sc_tinfo[sc_link->target];
if (sc->ready_list.tqh_last == &acb->chain.tqe_next) {
TAILQ_REMOVE(&sc->ready_list, acb, chain);
} else {
register struct aic_acb *acb2;
for (acb2 = sc->nexus_list.tqh_first; acb2 != NULL;
acb2 = acb2->chain.tqe_next) {
if (acb2 == acb)
break;
}
if (acb2 != NULL) {
TAILQ_REMOVE(&sc->nexus_list, acb, chain);
ti->lubusy &= ~(1 << sc_link->lun);
} else if (acb->chain.tqe_next) {
TAILQ_REMOVE(&sc->ready_list, acb, chain);
} else {
printf("%s: can't find matching acb\n",
sc->sc_dev.dv_xname);
Debugger();
}
}
}
/*
* INTERRUPT/PROTOCOL ENGINE
*/
#define IS1BYTEMSG(m) (((m) != 0x01 && (m) < 0x20) || (m) >= 0x80)
#define IS2BYTEMSG(m) (((m) & 0xf0) == 0x20)
#define ISEXTMSG(m) ((m) == 0x01)
/*
* Precondition:
* The SCSI bus is already in the MSGI phase and there is a message byte
* on the bus, along with an asserted REQ signal.
*/
int
aic_msgin(sc)
register struct aic_softc *sc;
{
u_char sstat1;
int n;
AIC_TRACE(("aic_msgin "));
if (sc->sc_prevphase == PH_MSGIN) {
/* This is a continuation of the previous message. */
n = sc->sc_imp - sc->sc_imess;
goto nextbyte;
}
/* This is a new MESSAGE IN phase. Clean up our state. */
sc->sc_flags &= ~AIC_DROP_MSGIN;
nextmsg:
n = 0;
sc->sc_imp = &sc->sc_imess[n];
nextbyte:
/*
* Read a whole message, but don't ack the last byte. If we reject the
* message, we have to assert ATN during the message transfer phase
* itself.
*/
for (;;) {
for (;;) {
sstat1 = inb(SSTAT1);
if ((sstat1 & (REQINIT|BUSFREE)) != 0)
break;
/* Wait for REQINIT. XXX Need timeout. */
}
if ((sstat1 & (PHASECHG|BUSFREE)) != 0) {
/*
* Target left MESSAGE IN, probably because it
* a) noticed our ATN signal, or
* b) ran out of messages.
*/
return (1);
}
/* If parity error, just dump everything on the floor. */
if ((sstat1 & SCSIPERR) != 0) {
aic_sched_msgout(SEND_PARITY_ERROR);
sc->sc_flags |= AIC_DROP_MSGIN;
}
/* Gather incoming message bytes if needed. */
if ((sc->sc_flags & AIC_DROP_MSGIN) == 0) {
if (n >= AIC_MAX_MSG_LEN) {
(void) inb(SCSIDAT);
aic_sched_msgout(SEND_REJECT);
sc->sc_flags |= AIC_DROP_MSGIN;
} else {
*sc->sc_imp++ = inb(SCSIDAT);
n++;
/*
* This testing is suboptimal, but most
* messages will be of the one byte variety, so
* it should not affect performance
* significantly.
*/
if (n == 1 && IS1BYTEMSG(sc->sc_imess[0]))
break;
if (n == 2 && IS2BYTEMSG(sc->sc_imess[0]))
break;
if (n >= 3 && ISEXTMSG(sc->sc_imess[0]) &&
n == sc->sc_imess[1] + 2)
break;
}
} else
(void) inb(SCSIDAT);
/*
* If we reach this spot we're either:
* a) in the middle of a multi-byte message, or
* b) dropping bytes.
*/
outb(SXFRCTL0, CHEN|SPIOEN);
/* Ack the last byte read. */
(void) inb(SCSIDAT);
outb(SXFRCTL0, CHEN);
while ((inb(SCSISIG) & ACKI) != 0)
;
}
AIC_MISC(("n=%d imess=0x%02x ", n, sc->sc_imess[0]));
/* We now have a complete message. Parse it. */
switch (sc->sc_state) {
struct aic_acb *acb;
struct scsi_link *sc_link;
struct aic_tinfo *ti;
case AIC_CONNECTED:
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
ti = &sc->sc_tinfo[acb->xs->sc_link->target];
switch (sc->sc_imess[0]) {
case MSG_CMDCOMPLETE:
if (sc->sc_dleft < 0) {
sc_link = acb->xs->sc_link;
printf("%s: %d extra bytes from %d:%d\n",
sc->sc_dev.dv_xname, -sc->sc_dleft,
sc_link->target, sc_link->lun);
acb->data_length = 0;
}
acb->xs->resid = acb->data_length = sc->sc_dleft;
sc->sc_state = AIC_CMDCOMPLETE;
break;
case MSG_PARITY_ERROR:
/* Resend the last message. */
aic_sched_msgout(sc->sc_lastmsg);
break;
case MSG_MESSAGE_REJECT:
AIC_MISC(("message rejected %02x ", sc->sc_lastmsg));
switch (sc->sc_lastmsg) {
#if AIC_USE_SYNCHRONOUS + AIC_USE_WIDE
case SEND_IDENTIFY:
ti->flags &= ~(DO_SYNC|DO_WIDE);
ti->period = ti->offset = 0;
aic_setsync(sc, ti);
ti->width = 0;
break;
#endif
#if AIC_USE_SYNCHRONOUS
case SEND_SDTR:
ti->flags &= ~DO_SYNC;
ti->period = ti->offset = 0;
aic_setsync(sc, ti);
break;
#endif
#if AIC_USE_WIDE
case SEND_WDTR:
ti->flags &= ~DO_WIDE;
ti->width = 0;
break;
#endif
case SEND_INIT_DET_ERR:
sc->sc_flags |= AIC_ABORTING;
aic_sched_msgout(SEND_ABORT);
break;
}
break;
case MSG_NOOP:
break;
case MSG_DISCONNECT:
ti->dconns++;
sc->sc_state = AIC_DISCONNECT;
break;
case MSG_SAVEDATAPOINTER:
acb->data_addr = sc->sc_dp;
acb->data_length = sc->sc_dleft;
break;
case MSG_RESTOREPOINTERS:
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsi_cmd;
sc->sc_cleft = acb->scsi_cmd_length;
break;
case MSG_EXTENDED:
switch (sc->sc_imess[2]) {
#if AIC_USE_SYNCHRONOUS
case MSG_EXT_SDTR:
if (sc->sc_imess[1] != 3)
goto reject;
ti->period = sc->sc_imess[3];
ti->offset = sc->sc_imess[4];
ti->flags &= ~DO_SYNC;
if (ti->offset == 0) {
} else if (ti->period < sc->sc_minsync ||
ti->period > sc->sc_maxsync ||
ti->offset > 8) {
ti->period = ti->offset = 0;
aic_sched_msgout(SEND_SDTR);
} else {
sc_print_addr(acb->xs->sc_link);
printf("sync, offset %d, period %dnsec\n",
ti->offset, ti->period * 4);
}
aic_setsync(sc, ti);
break;
#endif
#if AIC_USE_WIDE
case MSG_EXT_WDTR:
if (sc->sc_imess[1] != 2)
goto reject;
ti->width = sc->sc_imess[3];
ti->flags &= ~DO_WIDE;
if (ti->width == 0) {
} else if (ti->width > AIC_MAX_WIDTH) {
ti->width = 0;
aic_sched_msgout(SEND_WDTR);
} else {
sc_print_addr(acb->xs->sc_link);
printf("wide, width %d\n",
1 << (3 + ti->width));
}
break;
#endif
default:
printf("%s: unrecognized MESSAGE EXTENDED; sending REJECT\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto reject;
}
break;
default:
printf("%s: unrecognized MESSAGE; sending REJECT\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
reject:
aic_sched_msgout(SEND_REJECT);
break;
}
break;
case AIC_RESELECTED:
if (!MSG_ISIDENTIFY(sc->sc_imess[0])) {
printf("%s: reselect without IDENTIFY; sending DEVICE RESET\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto reset;
}
(void) aic_reselect(sc, sc->sc_imess[0]);
break;
default:
printf("%s: unexpected MESSAGE IN; sending DEVICE RESET\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
reset:
sc->sc_flags |= AIC_ABORTING;
aic_sched_msgout(SEND_DEV_RESET);
break;
abort:
sc->sc_flags |= AIC_ABORTING;
aic_sched_msgout(SEND_ABORT);
break;
}
outb(SXFRCTL0, CHEN|SPIOEN);
/* Ack the last message byte. */
(void) inb(SCSIDAT);
outb(SXFRCTL0, CHEN);
while ((inb(SCSISIG) & ACKI) != 0)
;
/* Go get the next message, if any. */
goto nextmsg;
out:
AIC_MISC(("n=%d imess=0x%02x ", n, sc->sc_imess[0]));
return (0);
}
/*
* Send the highest priority, scheduled message.
*/
void
aic_msgout(sc)
register struct aic_softc *sc;
{
struct aic_acb *acb;
struct aic_tinfo *ti;
u_char sstat1;
int n;
AIC_TRACE(("aic_msgout "));
/*
* Set ATN. If we're just sending a trivial 1-byte message, we'll
* clear ATN later on anyway.
*/
outb(SCSISIG, PH_MSGOUT|ATNO);
/* Reset the FIFO. */
outb(DMACNTRL0, RSTFIFO);
/* Enable REQ/ACK protocol. */
outb(SXFRCTL0, CHEN|SPIOEN);
if (sc->sc_prevphase == PH_MSGOUT) {
if (sc->sc_omp == sc->sc_omess) {
/*
* This is a retransmission.
*
* We get here if the target stayed in MESSAGE OUT
* phase. Section 5.1.9.2 of the SCSI 2 spec indicates
* that all of the previously transmitted messages must
* be sent again, in the same order. Therefore, we
* requeue all the previously transmitted messages, and
* start again from the top. Our simple priority
* scheme keeps the messages in the right order.
*/
AIC_MISC(("retransmitting "));
sc->sc_msgpriq |= sc->sc_msgoutq;
} else {
/* This is a continuation of the previous message. */
n = sc->sc_omp - sc->sc_omess;
goto nextbyte;
}
}
/* No messages transmitted so far. */
sc->sc_msgoutq = 0;
sc->sc_lastmsg = 0;
nextmsg:
/* Pick up highest priority message. */
sc->sc_currmsg = sc->sc_msgpriq & -sc->sc_msgpriq;
sc->sc_msgpriq &= ~sc->sc_currmsg;
sc->sc_msgoutq |= sc->sc_currmsg;
/* Build the outgoing message data. */
switch (sc->sc_currmsg) {
case SEND_IDENTIFY:
if (sc->sc_state != AIC_CONNECTED) {
printf("%s: SEND_IDENTIFY while not connected; sending NOOP\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto noop;
}
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc->sc_omess[0] = MSG_IDENTIFY(acb->xs->sc_link->lun, 1);
n = 1;
break;
#if AIC_USE_SYNCHRONOUS
case SEND_SDTR:
if (sc->sc_state != AIC_CONNECTED) {
printf("%s: SEND_SDTR while not connected; sending NOOP\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto noop;
}
AIC_ASSERT(sc->sc_nexus != NULL);
ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->target];
sc->sc_omess[4] = MSG_EXTENDED;
sc->sc_omess[3] = 3;
sc->sc_omess[2] = MSG_EXT_SDTR;
sc->sc_omess[1] = ti->period >> 2;
sc->sc_omess[0] = ti->offset;
n = 5;
break;
#endif
#if AIC_USE_WIDE
case SEND_WDTR:
if (sc->sc_state != AIC_CONNECTED) {
printf("%s: SEND_WDTR while not connected; sending NOOP\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto noop;
}
AIC_ASSERT(sc->sc_nexus != NULL);
ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->target];
sc->sc_omess[3] = MSG_EXTENDED;
sc->sc_omess[2] = 2;
sc->sc_omess[1] = MSG_EXT_WDTR;
sc->sc_omess[0] = ti->width;
n = 4;
break;
#endif
case SEND_DEV_RESET:
sc->sc_omess[0] = MSG_BUS_DEV_RESET;
n = 1;
break;
case SEND_REJECT:
sc->sc_omess[0] = MSG_MESSAGE_REJECT;
n = 1;
break;
case SEND_PARITY_ERROR:
sc->sc_omess[0] = MSG_PARITY_ERROR;
n = 1;
break;
case SEND_INIT_DET_ERR:
sc->sc_omess[0] = MSG_INITIATOR_DET_ERR;
n = 1;
break;
case SEND_ABORT:
sc->sc_omess[0] = MSG_ABORT;
n = 1;
break;
case 0:
#ifdef AIC_PICKY
printf("%s: unexpected MESSAGE OUT; sending NOOP\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
#endif
noop:
sc->sc_omess[0] = MSG_NOOP;
n = 1;
break;
default:
printf("%s: weird MESSAGE OUT; sending NOOP\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto noop;
}
sc->sc_omp = &sc->sc_omess[n];
nextbyte:
/* Send message bytes. */
for (;;) {
for (;;) {
sstat1 = inb(SSTAT1);
if ((sstat1 & (REQINIT|BUSFREE)) != 0)
break;
/* Wait for REQINIT. XXX Need timeout. */
}
if ((sstat1 & (PHASECHG|BUSFREE)) != 0) {
/*
* Target left MESSAGE OUT, possibly to reject
* our message.
*/
goto out;
}
/* Clear ATN before last byte if this is the last message. */
if (n == 1 && sc->sc_msgpriq == 0)
outb(CLRSINT1, CLRATNO);
/* Send message byte. */
outb(SCSIDAT, *--sc->sc_omp);
--n;
/* Keep track of the last message we've sent any bytes of. */
sc->sc_lastmsg = sc->sc_currmsg;
/* Wait for ACK to be negated. XXX Need timeout. */
while ((inb(SCSISIG) & ACKI) != 0)
;
if (n == 0)
break;
}
/* We get here only if the entire message has been transmitted. */
if (sc->sc_msgpriq != 0) {
/* There are more outgoing messages. */
goto nextmsg;
}
/*
* The last message has been transmitted. We need to remember the last
* message transmitted (in case the target switches to MESSAGE IN phase
* and sends a MESSAGE REJECT), and the list of messages transmitted
* this time around (in case the target stays in MESSAGE OUT phase to
* request a retransmit).
*/
out:
/* Disable REQ/ACK protocol. */
outb(SXFRCTL0, CHEN);
}
/* aic_dataout_pio: perform a data transfer using the FIFO datapath in the aic6360
* Precondition: The SCSI bus should be in the DOUT phase, with REQ asserted
* and ACK deasserted (i.e. waiting for a data byte)
* This new revision has been optimized (I tried) to make the common case fast,
* and the rarer cases (as a result) somewhat more comlex
*/
int
aic_dataout_pio(sc, p, n)
register struct aic_softc *sc;
u_char *p;
int n;
{
register u_char dmastat;
int out = 0;
#define DOUTAMOUNT 128 /* Full FIFO */
/* Clear host FIFO and counter. */
outb(DMACNTRL0, RSTFIFO|WRITE);
/* Enable FIFOs. */
outb(SXFRCTL0, SCSIEN|DMAEN|CHEN);
outb(DMACNTRL0, ENDMA|DWORDPIO|WRITE);
/* Turn off ENREQINIT for now. */
outb(SIMODE1, ENSCSIRST|ENSCSIPERR|ENBUSFREE|ENPHASECHG);
/* I have tried to make the main loop as tight as possible. This
* means that some of the code following the loop is a bit more
* complex than otherwise.
*/
while (n > 0) {
int xfer;
for (;;) {
dmastat = inb(DMASTAT);
if ((dmastat & DFIFOEMP) != 0)
break;
if ((dmastat & INTSTAT) != 0)
goto phasechange;
}
xfer = min(DOUTAMOUNT, n);
AIC_MISC(("%d> ", xfer));
n -= xfer;
out += xfer;
#if AIC_USE_DWORDS
if (xfer >= 12) {
outsl(DMADATALONG, p, xfer>>2);
p += xfer & ~3;
xfer &= 3;
}
#else
if (xfer >= 8) {
outsw(DMADATA, p, xfer>>1);
p += xfer & ~1;
xfer &= 1;
}
#endif
if (xfer > 0) {
outb(DMACNTRL0, ENDMA|B8MODE|WRITE);
outsb(DMADATA, p, xfer);
p += xfer;
outb(DMACNTRL0, ENDMA|DWORDPIO|WRITE);
}
}
if (out == 0) {
outb(SXFRCTL1, BITBUCKET);
for (;;) {
if ((inb(DMASTAT) & INTSTAT) != 0)
break;
}
outb(SXFRCTL1, 0);
AIC_MISC(("extra data "));
} else {
/* See the bytes off chip */
for (;;) {
dmastat = inb(DMASTAT);
if ((dmastat & DFIFOEMP) != 0 &&
(inb(SSTAT2) & SEMPTY) != 0)
break;
if ((dmastat & INTSTAT) != 0)
goto phasechange;
}
}
phasechange:
/* Stop the FIFO data path. */
outb(SXFRCTL0, CHEN);
while ((inb(SXFRCTL0) & SCSIEN) != 0)
;
if ((dmastat & INTSTAT) != 0) {
/* Some sort of phase change. */
int amount;
/* Stop transfers, do some accounting */
amount = inb(FIFOSTAT) + inb(SSTAT2) & 15;
if (amount > 0) {
out -= amount;
outb(SXFRCTL0, CHEN|CLRSTCNT|CLRCH);
AIC_MISC(("+%d ", amount));
}
}
/* Turn on ENREQINIT again. */
outb(SIMODE1, ENSCSIRST|ENSCSIPERR|ENBUSFREE|ENREQINIT|ENPHASECHG);
return out;
}
/* aic_datain_pio: perform data transfers using the FIFO datapath in the aic6360
* Precondition: The SCSI bus should be in the DIN phase, with REQ asserted
* and ACK deasserted (i.e. at least one byte is ready).
* For now, uses a pretty dumb algorithm, hangs around until all data has been
* transferred. This, is OK for fast targets, but not so smart for slow
* targets which don't disconnect or for huge transfers.
*/
int
aic_datain_pio(sc, p, n)
register struct aic_softc *sc;
u_char *p;
int n;
{
register u_char dmastat;
int in = 0;
#define DINAMOUNT 128 /* Full FIFO */
/* Clear host FIFO and counter. */
outb(DMACNTRL0, RSTFIFO);
/* Enable FIFOs */
outb(SXFRCTL0, SCSIEN|DMAEN|CHEN);
outb(DMACNTRL0, ENDMA|DWORDPIO);
/* Turn off ENREQINIT for now. */
outb(SIMODE1, ENSCSIRST|ENSCSIPERR|ENBUSFREE|ENPHASECHG);
/* We leave this loop if one or more of the following is true:
* a) phase != PH_DATAIN && FIFOs are empty
* b) SCSIRSTI is set (a reset has occurred) or busfree is detected.
*/
while (n > 0) {
int xfer;
/* Wait for fifo half full or phase mismatch */
for (;;) {
dmastat = inb(DMASTAT);
if ((dmastat & (DFIFOFULL|INTSTAT)) != 0)
break;
}
if ((dmastat & DFIFOFULL) != 0)
xfer = min(DINAMOUNT, n);
else
xfer = min(inb(FIFOSTAT), n);
AIC_MISC((">%d ", xfer));
n -= xfer;
in += xfer;
#if AIC_USE_DWORDS
if (xfer >= 12) {
insl(DMADATALONG, p, xfer>>2);
p += xfer & ~3;
xfer &= 3;
}
#else
if (xfer >= 8) {
insw(DMADATA, p, xfer>>1);
p += xfer & ~1;
xfer &= 1;
}
#endif
if (xfer > 0) {
outb(DMACNTRL0, ENDMA|B8MODE);
insb(DMADATA, p, xfer);
p += xfer;
outb(DMACNTRL0, ENDMA|DWORDPIO);
}
if ((dmastat & INTSTAT) != 0)
goto phasechange;
}
/* Some SCSI-devices are rude enough to transfer more data than what
* was requested, e.g. 2048 bytes from a CD-ROM instead of the
* requested 512. Test for progress, i.e. real transfers. If no real
* transfers have been performed (n is probably already zero) and the
* FIFO is not empty, waste some bytes....
*/
if (in == 0) {
outb(SXFRCTL1, BITBUCKET);
for (;;) {
if ((inb(DMASTAT) & INTSTAT) != 0)
break;
}
outb(SXFRCTL1, 0);
AIC_MISC(("extra data "));
}
phasechange:
/* Stop the FIFO data path. */
outb(SXFRCTL0, CHEN);
while ((inb(SXFRCTL0) & SCSIEN) != 0)
;
/* Turn on ENREQINIT again. */
outb(SIMODE1, ENSCSIRST|ENSCSIPERR|ENBUSFREE|ENREQINIT|ENPHASECHG);
return in;
}
/*
* This is the workhorse routine of the driver.
* Deficiencies (for now):
* 1) always uses programmed I/O
*/
int
aicintr(arg)
void *arg;
{
register struct aic_softc *sc = arg;
u_char sstat0, sstat1;
register struct aic_acb *acb;
register struct scsi_link *sc_link;
struct aic_tinfo *ti;
int n;
/*
* Clear INTEN. We enable it again before returning. This makes the
* interrupt esssentially level-triggered.
*/
outb(DMACNTRL0, 0);
AIC_TRACE(("aicintr "));
loop:
gotintr:
/*
* First check for abnormal conditions, such as reset.
*/
sstat1 = inb(SSTAT1);
AIC_MISC(("sstat1:0x%02x ", sstat1));
if ((sstat1 & SCSIRSTI) != 0) {
printf("%s: SCSI bus reset\n", sc->sc_dev.dv_xname);
goto reset;
}
/*
* Check for less serious errors.
*/
if ((sstat1 & SCSIPERR) != 0) {
printf("%s: SCSI bus parity error\n", sc->sc_dev.dv_xname);
outb(CLRSINT1, CLRSCSIPERR);
if (sc->sc_prevphase == PH_MSGIN) {
aic_sched_msgout(SEND_PARITY_ERROR);
sc->sc_flags |= AIC_DROP_MSGIN;
} else
aic_sched_msgout(SEND_INIT_DET_ERR);
}
/*
* If we're not already busy doing something test for the following
* conditions:
* 1) We have been reselected by something
* 2) We have selected something successfully
* 3) Our selection process has timed out
* 4) This is really a bus free interrupt just to get a new command
* going?
* 5) Spurious interrupt?
*/
switch (sc->sc_state) {
case AIC_IDLE:
case AIC_SELECTING:
sstat0 = inb(SSTAT0);
AIC_MISC(("sstat0:0x%02x ", sstat0));
if ((sstat0 & TARGET) != 0) {
/*
* We don't currently support target mode.
*/
printf("%s: target mode selected; going to bus free\n",
sc->sc_dev.dv_xname);
outb(SCSISIG, 0);
sc->sc_state = AIC_IDLE;
aic_sched(sc);
goto out;
} else if ((sstat0 & SELDI) != 0) {
AIC_MISC(("reselected "));
/*
* If we're trying to select a target ourselves,
* push our command back into the ready list.
*/
if (sc->sc_state == AIC_SELECTING) {
AIC_MISC(("backoff selector "));
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc->sc_nexus = NULL;
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
}
/* Save reselection ID. */
sc->sc_selid = inb(SELID);
sc->sc_state = AIC_RESELECTED;
} else if ((sstat0 & SELDO) != 0) {
AIC_MISC(("selected "));
/* We have selected a target. Things to do:
* a) Determine what message(s) to send.
* b) Verify that we're still selecting the target.
* c) Mark device as busy.
*/
if (sc->sc_state != AIC_SELECTING) {
printf("%s: selection out while idle; resetting\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto reset;
}
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->target];
if ((acb->xs->flags & SCSI_RESET) == 0) {
sc->sc_msgpriq = SEND_IDENTIFY;
if (acb->flags != ACB_ABORTED) {
#if AIC_USE_SYNCHRONOUS
if ((ti->flags & DO_SYNC) != 0)
sc->sc_msgpriq |= SEND_SDTR;
#endif
#if AIC_USE_WIDE
if ((ti->flags & DO_WIDE) != 0)
sc->sc_msgpriq |= SEND_WDTR;
#endif
} else {
sc->sc_flags |= AIC_ABORTING;
sc->sc_msgpriq |= SEND_ABORT;
}
} else
sc->sc_msgpriq = SEND_DEV_RESET;
ti->lubusy |= (1 << sc_link->lun);
/* Do an implicit RESTORE POINTERS. */
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsi_cmd;
sc->sc_cleft = acb->scsi_cmd_length;
sc->sc_state = AIC_CONNECTED;
} else if ((sstat1 & SELTO) != 0) {
AIC_MISC(("selection timeout "));
if (sc->sc_state != AIC_SELECTING) {
printf("%s: selection timeout while idle; resetting\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
goto reset;
}
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
outb(SXFRCTL1, 0);
outb(SCSISEQ, ENRESELI);
outb(CLRSINT1, CLRSELTIMO);
acb->xs->error = XS_SELTIMEOUT;
untimeout(aic_timeout, acb);
delay(250);
aic_done(sc, acb);
goto out;
} else {
#ifdef AIC_PICKY
if (sc->sc_state != AIC_IDLE) {
printf("%s: BUS FREE while not idle; state=%d\n",
sc->sc_dev.dv_xname, sc->sc_state);
AIC_BREAK();
goto out;
}
#endif
aic_sched(sc);
goto out;
}
/*
* Turn off selection stuff, and prepare to catch bus free
* interrupts, parity errors, and phase changes.
*/
outb(SXFRCTL1, 0);
outb(SCSISEQ, ENAUTOATNP);
outb(CLRSINT0, CLRSELDI|CLRSELDO);
outb(CLRSINT1, CLRBUSFREE|CLRPHASECHG);
outb(SIMODE0, 0);
outb(SIMODE1, ENSCSIRST|ENSCSIPERR|ENBUSFREE|ENREQINIT|ENPHASECHG);
sc->sc_flags = 0;
sc->sc_prevphase = PH_INVALID;
goto dophase;
}
outb(CLRSINT1, CLRPHASECHG);
if ((sstat1 & BUSFREE) != 0) {
/* We've gone to BUS FREE phase. */
outb(CLRSINT1, CLRBUSFREE);
switch (sc->sc_state) {
case AIC_RESELECTED:
sc->sc_state = AIC_IDLE;
aic_sched(sc);
break;
case AIC_CONNECTED:
if ((sc->sc_flags & AIC_ABORTING) == 0) {
printf("%s: unexpected BUS FREE; aborting\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
}
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
acb->xs->error = XS_DRIVER_STUFFUP;
goto finish;
case AIC_DISCONNECT:
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc->sc_state = AIC_IDLE;
sc->sc_nexus = NULL;
TAILQ_INSERT_HEAD(&sc->nexus_list, acb, chain);
aic_sched(sc);
break;
case AIC_CMDCOMPLETE:
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
finish:
untimeout(aic_timeout, acb);
aic_done(sc, acb);
break;
}
goto out;
}
dophase:
if ((sstat1 & REQINIT) == 0) {
/* Wait for REQINIT. */
goto out;
}
sc->sc_phase = inb(SCSISIG) & PH_MASK;
outb(SCSISIG, sc->sc_phase);
switch (sc->sc_phase) {
case PH_MSGOUT:
/* If aborting, always handle MESSAGE OUT. */
if ((sc->sc_state & AIC_CONNECTED) == 0 &&
(sc->sc_flags & AIC_ABORTING) == 0)
break;
aic_msgout(sc);
sc->sc_prevphase = PH_MSGOUT;
goto loop;
case PH_MSGIN:
if ((sc->sc_state & (AIC_CONNECTED|AIC_RESELECTED)) == 0)
break;
if (aic_msgin(sc)) {
sc->sc_prevphase = PH_MSGIN;
goto gotintr;
}
sc->sc_prevphase = PH_MSGIN;
goto loop;
case PH_CMD:
if ((sc->sc_state & AIC_CONNECTED) == 0)
break;
#if AIC_DEBUG
if ((aic_debug & AIC_SHOWMISC) != 0) {
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
printf("cmd=0x%02x+%d ",
acb->scsi_cmd.opcode, acb->scsi_cmd_length-1);
}
#endif
n = aic_dataout_pio(sc, sc->sc_cp, sc->sc_cleft);
sc->sc_cp += n;
sc->sc_cleft -= n;
sc->sc_prevphase = PH_CMD;
goto loop;
case PH_DATAOUT:
if ((sc->sc_state & AIC_CONNECTED) == 0)
break;
AIC_MISC(("dataout dleft=%d ", sc->sc_dleft));
n = aic_dataout_pio(sc, sc->sc_dp, sc->sc_dleft);
sc->sc_dp += n;
sc->sc_dleft -= n;
sc->sc_prevphase = PH_DATAOUT;
goto loop;
case PH_DATAIN:
if ((sc->sc_state & AIC_CONNECTED) == 0)
break;
AIC_MISC(("datain "));
n = aic_datain_pio(sc, sc->sc_dp, sc->sc_dleft);
sc->sc_dp += n;
sc->sc_dleft -= n;
sc->sc_prevphase = PH_DATAIN;
goto loop;
case PH_STAT:
if ((sc->sc_state & AIC_CONNECTED) == 0)
break;
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
/* XXXX Don't clear FIFO. Wait for byte to come in. */
outb(SXFRCTL0, CHEN|SPIOEN);
outb(DMACNTRL0, RSTFIFO);
acb->target_stat = inb(SCSIDAT);
outb(SXFRCTL0, CHEN);
outb(DMACNTRL0, RSTFIFO);
while ((inb(SXFRCTL0) & SCSIEN) != 0)
;
AIC_MISC(("target_stat=0x%02x ", acb->target_stat));
sc->sc_prevphase = PH_STAT;
goto loop;
}
printf("%s: unexpected bus phase; resetting\n", sc->sc_dev.dv_xname);
AIC_BREAK();
reset:
aic_init(sc);
return 1;
out:
outb(DMACNTRL0, INTEN);
return 1;
}
void
aic_abort(sc, acb)
struct aic_softc *sc;
struct aic_acb *acb;
{
if (sc->sc_nexus == acb) {
if (sc->sc_state == AIC_CONNECTED) {
sc->sc_flags |= AIC_ABORTING;
aic_sched_msgout(SEND_ABORT);
}
} else {
aic_dequeue(sc, acb);
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
if (sc->sc_state == AIC_IDLE)
aic_sched(sc);
}
}
void
aic_timeout(arg)
void *arg;
{
struct aic_acb *acb = arg;
struct scsi_xfer *xs = acb->xs;
struct scsi_link *sc_link = xs->sc_link;
struct aic_softc *sc = sc_link->adapter_softc;
int s;
sc_print_addr(sc_link);
printf("timed out");
s = splbio();
if (acb->flags == ACB_ABORTED) {
/* abort timed out */
printf(" AGAIN\n");
acb->xs->retries = 0;
aic_done(sc, acb);
} else {
/* abort the operation that has timed out */
printf("\n");
acb->xs->error = XS_TIMEOUT;
acb->flags = ACB_ABORTED;
aic_abort(sc, acb);
/* 2 secs for the abort */
if ((xs->flags & SCSI_POLL) == 0)
timeout(aic_timeout, acb, 2 * hz);
}
splx(s);
}
#ifdef AIC_DEBUG
/*
* The following functions are mostly used for debugging purposes, either
* directly called from the driver or from the kernel debugger.
*/
void
aic_show_scsi_cmd(acb)
struct aic_acb *acb;
{
u_char *b = (u_char *)&acb->scsi_cmd;
struct scsi_link *sc_link = acb->xs->sc_link;
int i;
sc_print_addr(sc_link);
if ((acb->xs->flags & SCSI_RESET) == 0) {
for (i = 0; i < acb->scsi_cmd_length; i++) {
if (i)
printf(",");
printf("%x", b[i]);
}
printf("\n");
} else
printf("RESET\n");
}
void
aic_print_acb(acb)
struct aic_acb *acb;
{
printf("acb@%x xs=%x flags=%x", acb, acb->xs, acb->flags);
printf(" dp=%x dleft=%d target_stat=%x\n",
(long)acb->data_addr, acb->data_length, acb->target_stat);
aic_show_scsi_cmd(acb);
}
void
aic_print_active_acb()
{
struct aic_acb *acb;
struct aic_softc *sc = aiccd.cd_devs[0];
printf("ready list:\n");
for (acb = sc->ready_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next)
aic_print_acb(acb);
printf("nexus:\n");
if (sc->sc_nexus != NULL)
aic_print_acb(sc->sc_nexus);
printf("nexus list:\n");
for (acb = sc->nexus_list.tqh_first; acb != NULL;
acb = acb->chain.tqe_next)
aic_print_acb(acb);
}
void
aic_dump6360(sc)
struct aic_softc *sc;
{
printf("aic6360: SCSISEQ=%x SXFRCTL0=%x SXFRCTL1=%x SCSISIG=%x\n",
inb(SCSISEQ), inb(SXFRCTL0), inb(SXFRCTL1), inb(SCSISIG));
printf(" SSTAT0=%x SSTAT1=%x SSTAT2=%x SSTAT3=%x SSTAT4=%x\n",
inb(SSTAT0), inb(SSTAT1), inb(SSTAT2), inb(SSTAT3), inb(SSTAT4));
printf(" SIMODE0=%x SIMODE1=%x DMACNTRL0=%x DMACNTRL1=%x DMASTAT=%x\n",
inb(SIMODE0), inb(SIMODE1), inb(DMACNTRL0), inb(DMACNTRL1),
inb(DMASTAT));
printf(" FIFOSTAT=%d SCSIBUS=0x%x\n",
inb(FIFOSTAT), inb(SCSIBUS));
}
void
aic_dump_driver(sc)
struct aic_softc *sc;
{
struct aic_tinfo *ti;
int i;
printf("nexus=%x prevphase=%x\n", sc->sc_nexus, sc->sc_prevphase);
printf("state=%x msgin=%x msgpriq=%x msgoutq=%x lastmsg=%x currmsg=%x\n",
sc->sc_state, sc->sc_imess[0],
sc->sc_msgpriq, sc->sc_msgoutq, sc->sc_lastmsg, sc->sc_currmsg);
for (i = 0; i < 7; i++) {
ti = &sc->sc_tinfo[i];
printf("tinfo%d: %d cmds %d disconnects %d timeouts",
i, ti->cmds, ti->dconns, ti->touts);
printf(" %d senses flags=%x\n", ti->senses, ti->flags);
}
}
#endif