980 lines
32 KiB
C
980 lines
32 KiB
C
/* $NetBSD: rf_paritylogging.c,v 1.24 2005/12/11 12:23:37 christos Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: William V. Courtright II
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
|
|
/*
|
|
parity logging configuration, dag selection, and mapping is implemented here
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.24 2005/12/11 12:23:37 christos Exp $");
|
|
|
|
#include "rf_archs.h"
|
|
|
|
#if RF_INCLUDE_PARITYLOGGING > 0
|
|
|
|
#include <dev/raidframe/raidframevar.h>
|
|
|
|
#include "rf_raid.h"
|
|
#include "rf_dag.h"
|
|
#include "rf_dagutils.h"
|
|
#include "rf_dagfuncs.h"
|
|
#include "rf_dagffrd.h"
|
|
#include "rf_dagffwr.h"
|
|
#include "rf_dagdegrd.h"
|
|
#include "rf_dagdegwr.h"
|
|
#include "rf_paritylog.h"
|
|
#include "rf_paritylogDiskMgr.h"
|
|
#include "rf_paritylogging.h"
|
|
#include "rf_parityloggingdags.h"
|
|
#include "rf_general.h"
|
|
#include "rf_map.h"
|
|
#include "rf_utils.h"
|
|
#include "rf_shutdown.h"
|
|
|
|
typedef struct RF_ParityLoggingConfigInfo_s {
|
|
RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
|
|
* IdentifyStripe */
|
|
} RF_ParityLoggingConfigInfo_t;
|
|
|
|
static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
|
|
static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
|
|
static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
|
|
static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
|
|
static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
|
|
static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
|
|
static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
|
|
|
|
int
|
|
rf_ConfigureParityLogging(
|
|
RF_ShutdownList_t ** listp,
|
|
RF_Raid_t * raidPtr,
|
|
RF_Config_t * cfgPtr)
|
|
{
|
|
int i, j, startdisk, rc;
|
|
RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
|
|
RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_ParityLoggingConfigInfo_t *info;
|
|
RF_ParityLog_t *l = NULL, *next;
|
|
caddr_t lHeapPtr;
|
|
|
|
if (rf_numParityRegions <= 0)
|
|
return(EINVAL);
|
|
|
|
/*
|
|
* We create multiple entries on the shutdown list here, since
|
|
* this configuration routine is fairly complicated in and of
|
|
* itself, and this makes backing out of a failed configuration
|
|
* much simpler.
|
|
*/
|
|
|
|
raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
|
|
|
|
/* create a parity logging configuration structure */
|
|
RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
|
|
(RF_ParityLoggingConfigInfo_t *),
|
|
raidPtr->cleanupList);
|
|
if (info == NULL)
|
|
return (ENOMEM);
|
|
layoutPtr->layoutSpecificInfo = (void *) info;
|
|
|
|
/* the stripe identifier must identify the disks in each stripe, IN
|
|
* THE ORDER THAT THEY APPEAR IN THE STRIPE. */
|
|
info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
|
|
(raidPtr->numCol),
|
|
raidPtr->cleanupList);
|
|
if (info->stripeIdentifier == NULL)
|
|
return (ENOMEM);
|
|
|
|
startdisk = 0;
|
|
for (i = 0; i < (raidPtr->numCol); i++) {
|
|
for (j = 0; j < (raidPtr->numCol); j++) {
|
|
info->stripeIdentifier[i][j] = (startdisk + j) %
|
|
(raidPtr->numCol - 1);
|
|
}
|
|
if ((--startdisk) < 0)
|
|
startdisk = raidPtr->numCol - 1 - 1;
|
|
}
|
|
|
|
/* fill in the remaining layout parameters */
|
|
layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
|
|
layoutPtr->numParityCol = 1;
|
|
layoutPtr->numParityLogCol = 1;
|
|
layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
|
|
layoutPtr->numParityLogCol;
|
|
layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
|
|
layoutPtr->sectorsPerStripeUnit;
|
|
layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
|
|
raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
|
|
layoutPtr->sectorsPerStripeUnit;
|
|
|
|
raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
|
|
layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
|
|
|
|
/* configure parity log parameters
|
|
*
|
|
* parameter comment/constraints
|
|
* -------------------------------------------
|
|
* numParityRegions* all regions (except possibly last)
|
|
* of equal size
|
|
* totalInCoreLogCapacity* amount of memory in bytes available
|
|
* for in-core logs (default 1 MB)
|
|
* numSectorsPerLog# capacity of an in-core log in sectors
|
|
* (1 * disk track)
|
|
* numParityLogs total number of in-core logs,
|
|
* should be at least numParityRegions
|
|
* regionLogCapacity size of a region log (except possibly
|
|
* last one) in sectors
|
|
* totalLogCapacity total amount of log space in sectors
|
|
*
|
|
* where '*' denotes a user settable parameter.
|
|
* Note that logs are fixed to be the size of a disk track,
|
|
* value #defined in rf_paritylog.h
|
|
*
|
|
*/
|
|
|
|
totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
|
|
raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
|
|
if (rf_parityLogDebug)
|
|
printf("bytes per sector %d\n", raidPtr->bytesPerSector);
|
|
|
|
/* reduce fragmentation within a disk region by adjusting the number
|
|
* of regions in an attempt to allow an integral number of logs to fit
|
|
* into a disk region */
|
|
fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
|
|
if (fragmentation > 0)
|
|
for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
|
|
if (((totalLogCapacity / (rf_numParityRegions + i)) %
|
|
raidPtr->numSectorsPerLog) < fragmentation) {
|
|
rf_numParityRegions++;
|
|
raidPtr->regionLogCapacity = totalLogCapacity /
|
|
rf_numParityRegions;
|
|
fragmentation = raidPtr->regionLogCapacity %
|
|
raidPtr->numSectorsPerLog;
|
|
}
|
|
if (((totalLogCapacity / (rf_numParityRegions - i)) %
|
|
raidPtr->numSectorsPerLog) < fragmentation) {
|
|
rf_numParityRegions--;
|
|
raidPtr->regionLogCapacity = totalLogCapacity /
|
|
rf_numParityRegions;
|
|
fragmentation = raidPtr->regionLogCapacity %
|
|
raidPtr->numSectorsPerLog;
|
|
}
|
|
}
|
|
/* ensure integral number of regions per log */
|
|
raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
|
|
raidPtr->numSectorsPerLog) *
|
|
raidPtr->numSectorsPerLog;
|
|
|
|
raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
|
|
(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
|
|
/* to avoid deadlock, must ensure that enough logs exist for each
|
|
* region to have one simultaneously */
|
|
if (raidPtr->numParityLogs < rf_numParityRegions)
|
|
raidPtr->numParityLogs = rf_numParityRegions;
|
|
|
|
/* create region information structs */
|
|
printf("Allocating %d bytes for in-core parity region info\n",
|
|
(int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
|
|
RF_Malloc(raidPtr->regionInfo,
|
|
(rf_numParityRegions * sizeof(RF_RegionInfo_t)),
|
|
(RF_RegionInfo_t *));
|
|
if (raidPtr->regionInfo == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* last region may not be full capacity */
|
|
lastRegionCapacity = raidPtr->regionLogCapacity;
|
|
while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
|
|
lastRegionCapacity > totalLogCapacity)
|
|
lastRegionCapacity = lastRegionCapacity -
|
|
raidPtr->numSectorsPerLog;
|
|
|
|
raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
|
|
rf_numParityRegions;
|
|
maxRegionParityRange = raidPtr->regionParityRange;
|
|
|
|
/* i can't remember why this line is in the code -wvcii 6/30/95 */
|
|
/* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
|
|
regionParityRange++; */
|
|
|
|
/* build pool of unused parity logs */
|
|
printf("Allocating %d bytes for %d parity logs\n",
|
|
raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
|
|
raidPtr->bytesPerSector,
|
|
raidPtr->numParityLogs);
|
|
RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
|
|
raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
|
|
(caddr_t));
|
|
if (raidPtr->parityLogBufferHeap == NULL)
|
|
return (ENOMEM);
|
|
lHeapPtr = raidPtr->parityLogBufferHeap;
|
|
rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
|
|
if (rc) {
|
|
rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
|
|
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
|
|
raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 0; i < raidPtr->numParityLogs; i++) {
|
|
if (i == 0) {
|
|
RF_Malloc(raidPtr->parityLogPool.parityLogs,
|
|
sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
|
|
if (raidPtr->parityLogPool.parityLogs == NULL) {
|
|
RF_Free(raidPtr->parityLogBufferHeap,
|
|
raidPtr->numParityLogs *
|
|
raidPtr->numSectorsPerLog *
|
|
raidPtr->bytesPerSector);
|
|
return (ENOMEM);
|
|
}
|
|
l = raidPtr->parityLogPool.parityLogs;
|
|
} else {
|
|
RF_Malloc(l->next, sizeof(RF_ParityLog_t),
|
|
(RF_ParityLog_t *));
|
|
if (l->next == NULL) {
|
|
RF_Free(raidPtr->parityLogBufferHeap,
|
|
raidPtr->numParityLogs *
|
|
raidPtr->numSectorsPerLog *
|
|
raidPtr->bytesPerSector);
|
|
for (l = raidPtr->parityLogPool.parityLogs;
|
|
l;
|
|
l = next) {
|
|
next = l->next;
|
|
if (l->records)
|
|
RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
|
|
RF_Free(l, sizeof(RF_ParityLog_t));
|
|
}
|
|
return (ENOMEM);
|
|
}
|
|
l = l->next;
|
|
}
|
|
l->bufPtr = lHeapPtr;
|
|
lHeapPtr += raidPtr->numSectorsPerLog *
|
|
raidPtr->bytesPerSector;
|
|
RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
|
|
sizeof(RF_ParityLogRecord_t)),
|
|
(RF_ParityLogRecord_t *));
|
|
if (l->records == NULL) {
|
|
RF_Free(raidPtr->parityLogBufferHeap,
|
|
raidPtr->numParityLogs *
|
|
raidPtr->numSectorsPerLog *
|
|
raidPtr->bytesPerSector);
|
|
for (l = raidPtr->parityLogPool.parityLogs;
|
|
l;
|
|
l = next) {
|
|
next = l->next;
|
|
if (l->records)
|
|
RF_Free(l->records,
|
|
(raidPtr->numSectorsPerLog *
|
|
sizeof(RF_ParityLogRecord_t)));
|
|
RF_Free(l, sizeof(RF_ParityLog_t));
|
|
}
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
|
|
/* build pool of region buffers */
|
|
rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
|
|
if (rc) {
|
|
rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
|
|
return (ENOMEM);
|
|
}
|
|
raidPtr->regionBufferPool.cond = 0;
|
|
raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
|
|
raidPtr->bytesPerSector;
|
|
printf("regionBufferPool.bufferSize %d\n",
|
|
raidPtr->regionBufferPool.bufferSize);
|
|
|
|
/* for now, only one region at a time may be reintegrated */
|
|
raidPtr->regionBufferPool.totalBuffers = 1;
|
|
|
|
raidPtr->regionBufferPool.availableBuffers =
|
|
raidPtr->regionBufferPool.totalBuffers;
|
|
raidPtr->regionBufferPool.availBuffersIndex = 0;
|
|
raidPtr->regionBufferPool.emptyBuffersIndex = 0;
|
|
printf("Allocating %d bytes for regionBufferPool\n",
|
|
(int) (raidPtr->regionBufferPool.totalBuffers *
|
|
sizeof(caddr_t)));
|
|
RF_Malloc(raidPtr->regionBufferPool.buffers,
|
|
raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
|
|
(caddr_t *));
|
|
if (raidPtr->regionBufferPool.buffers == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
|
|
printf("Allocating %d bytes for regionBufferPool#%d\n",
|
|
(int) (raidPtr->regionBufferPool.bufferSize *
|
|
sizeof(char)), i);
|
|
RF_Malloc(raidPtr->regionBufferPool.buffers[i],
|
|
raidPtr->regionBufferPool.bufferSize * sizeof(char),
|
|
(caddr_t));
|
|
if (raidPtr->regionBufferPool.buffers[i] == NULL) {
|
|
for (j = 0; j < i; j++) {
|
|
RF_Free(raidPtr->regionBufferPool.buffers[i],
|
|
raidPtr->regionBufferPool.bufferSize *
|
|
sizeof(char));
|
|
}
|
|
RF_Free(raidPtr->regionBufferPool.buffers,
|
|
raidPtr->regionBufferPool.totalBuffers *
|
|
sizeof(caddr_t));
|
|
return (ENOMEM);
|
|
}
|
|
printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
|
|
(long) raidPtr->regionBufferPool.buffers[i]);
|
|
}
|
|
rf_ShutdownCreate(listp,
|
|
rf_ShutdownParityLoggingRegionBufferPool,
|
|
raidPtr);
|
|
/* build pool of parity buffers */
|
|
parityBufferCapacity = maxRegionParityRange;
|
|
rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
|
|
if (rc) {
|
|
rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
|
|
return (rc);
|
|
}
|
|
raidPtr->parityBufferPool.cond = 0;
|
|
raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
|
|
raidPtr->bytesPerSector;
|
|
printf("parityBufferPool.bufferSize %d\n",
|
|
raidPtr->parityBufferPool.bufferSize);
|
|
|
|
/* for now, only one region at a time may be reintegrated */
|
|
raidPtr->parityBufferPool.totalBuffers = 1;
|
|
|
|
raidPtr->parityBufferPool.availableBuffers =
|
|
raidPtr->parityBufferPool.totalBuffers;
|
|
raidPtr->parityBufferPool.availBuffersIndex = 0;
|
|
raidPtr->parityBufferPool.emptyBuffersIndex = 0;
|
|
printf("Allocating %d bytes for parityBufferPool of %d units\n",
|
|
(int) (raidPtr->parityBufferPool.totalBuffers *
|
|
sizeof(caddr_t)),
|
|
raidPtr->parityBufferPool.totalBuffers );
|
|
RF_Malloc(raidPtr->parityBufferPool.buffers,
|
|
raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
|
|
(caddr_t *));
|
|
if (raidPtr->parityBufferPool.buffers == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
|
|
printf("Allocating %d bytes for parityBufferPool#%d\n",
|
|
(int) (raidPtr->parityBufferPool.bufferSize *
|
|
sizeof(char)),i);
|
|
RF_Malloc(raidPtr->parityBufferPool.buffers[i],
|
|
raidPtr->parityBufferPool.bufferSize * sizeof(char),
|
|
(caddr_t));
|
|
if (raidPtr->parityBufferPool.buffers == NULL) {
|
|
for (j = 0; j < i; j++) {
|
|
RF_Free(raidPtr->parityBufferPool.buffers[i],
|
|
raidPtr->regionBufferPool.bufferSize *
|
|
sizeof(char));
|
|
}
|
|
RF_Free(raidPtr->parityBufferPool.buffers,
|
|
raidPtr->regionBufferPool.totalBuffers *
|
|
sizeof(caddr_t));
|
|
return (ENOMEM);
|
|
}
|
|
printf("parityBufferPool.buffers[%d] = %lx\n", i,
|
|
(long) raidPtr->parityBufferPool.buffers[i]);
|
|
}
|
|
rf_ShutdownCreate(listp,
|
|
rf_ShutdownParityLoggingParityBufferPool,
|
|
raidPtr);
|
|
/* initialize parityLogDiskQueue */
|
|
rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
|
|
raidPtr->parityLogDiskQueue.cond = 0;
|
|
raidPtr->parityLogDiskQueue.flushQueue = NULL;
|
|
raidPtr->parityLogDiskQueue.reintQueue = NULL;
|
|
raidPtr->parityLogDiskQueue.bufHead = NULL;
|
|
raidPtr->parityLogDiskQueue.bufTail = NULL;
|
|
raidPtr->parityLogDiskQueue.reintHead = NULL;
|
|
raidPtr->parityLogDiskQueue.reintTail = NULL;
|
|
raidPtr->parityLogDiskQueue.logBlockHead = NULL;
|
|
raidPtr->parityLogDiskQueue.logBlockTail = NULL;
|
|
raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
|
|
raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
|
|
raidPtr->parityLogDiskQueue.freeDataList = NULL;
|
|
raidPtr->parityLogDiskQueue.freeCommonList = NULL;
|
|
|
|
rf_ShutdownCreate(listp,
|
|
rf_ShutdownParityLoggingDiskQueue,
|
|
raidPtr);
|
|
for (i = 0; i < rf_numParityRegions; i++) {
|
|
rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
|
|
if (rc) {
|
|
rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
|
|
for (j = 0; j < i; j++)
|
|
FreeRegionInfo(raidPtr, j);
|
|
RF_Free(raidPtr->regionInfo,
|
|
(rf_numParityRegions *
|
|
sizeof(RF_RegionInfo_t)));
|
|
return (ENOMEM);
|
|
}
|
|
rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
|
|
if (rc) {
|
|
rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
|
|
for (j = 0; j < i; j++)
|
|
FreeRegionInfo(raidPtr, j);
|
|
RF_Free(raidPtr->regionInfo,
|
|
(rf_numParityRegions *
|
|
sizeof(RF_RegionInfo_t)));
|
|
return (ENOMEM);
|
|
}
|
|
raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
|
|
raidPtr->regionInfo[i].regionStartAddr =
|
|
raidPtr->regionLogCapacity * i;
|
|
raidPtr->regionInfo[i].parityStartAddr =
|
|
raidPtr->regionParityRange * i;
|
|
if (i < rf_numParityRegions - 1) {
|
|
raidPtr->regionInfo[i].capacity =
|
|
raidPtr->regionLogCapacity;
|
|
raidPtr->regionInfo[i].numSectorsParity =
|
|
raidPtr->regionParityRange;
|
|
} else {
|
|
raidPtr->regionInfo[i].capacity =
|
|
lastRegionCapacity;
|
|
raidPtr->regionInfo[i].numSectorsParity =
|
|
raidPtr->sectorsPerDisk -
|
|
raidPtr->regionParityRange * i;
|
|
if (raidPtr->regionInfo[i].numSectorsParity >
|
|
maxRegionParityRange)
|
|
maxRegionParityRange =
|
|
raidPtr->regionInfo[i].numSectorsParity;
|
|
}
|
|
raidPtr->regionInfo[i].diskCount = 0;
|
|
RF_ASSERT(raidPtr->regionInfo[i].capacity +
|
|
raidPtr->regionInfo[i].regionStartAddr <=
|
|
totalLogCapacity);
|
|
RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
|
|
raidPtr->regionInfo[i].numSectorsParity <=
|
|
raidPtr->sectorsPerDisk);
|
|
printf("Allocating %d bytes for region %d\n",
|
|
(int) (raidPtr->regionInfo[i].capacity *
|
|
sizeof(RF_DiskMap_t)), i);
|
|
RF_Malloc(raidPtr->regionInfo[i].diskMap,
|
|
(raidPtr->regionInfo[i].capacity *
|
|
sizeof(RF_DiskMap_t)),
|
|
(RF_DiskMap_t *));
|
|
if (raidPtr->regionInfo[i].diskMap == NULL) {
|
|
for (j = 0; j < i; j++)
|
|
FreeRegionInfo(raidPtr, j);
|
|
RF_Free(raidPtr->regionInfo,
|
|
(rf_numParityRegions *
|
|
sizeof(RF_RegionInfo_t)));
|
|
return (ENOMEM);
|
|
}
|
|
raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
|
|
raidPtr->regionInfo[i].coreLog = NULL;
|
|
}
|
|
rf_ShutdownCreate(listp,
|
|
rf_ShutdownParityLoggingRegionInfo,
|
|
raidPtr);
|
|
RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
|
|
raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
|
|
rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
|
|
rf_ParityLoggingDiskManager, raidPtr,"rf_log");
|
|
if (rc) {
|
|
raidPtr->parityLogDiskQueue.threadState = 0;
|
|
RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
|
|
__FILE__, __LINE__, rc);
|
|
return (ENOMEM);
|
|
}
|
|
/* wait for thread to start */
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
|
|
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
|
|
raidPtr->parityLogDiskQueue.mutex);
|
|
}
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
|
|
rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
|
|
if (rf_parityLogDebug) {
|
|
printf(" size of disk log in sectors: %d\n",
|
|
(int) totalLogCapacity);
|
|
printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
|
|
printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
|
|
printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
|
|
printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
|
|
printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
|
|
printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
|
|
}
|
|
rf_EnableParityLogging(raidPtr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
FreeRegionInfo(
|
|
RF_Raid_t * raidPtr,
|
|
RF_RegionId_t regionID)
|
|
{
|
|
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
|
|
RF_Free(raidPtr->regionInfo[regionID].diskMap,
|
|
(raidPtr->regionInfo[regionID].capacity *
|
|
sizeof(RF_DiskMap_t)));
|
|
if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
|
|
rf_ReleaseParityLogs(raidPtr,
|
|
raidPtr->regionInfo[regionID].coreLog);
|
|
raidPtr->regionInfo[regionID].coreLog = NULL;
|
|
} else {
|
|
RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
|
|
RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
|
|
}
|
|
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
|
|
}
|
|
|
|
|
|
static void
|
|
FreeParityLogQueue(
|
|
RF_Raid_t * raidPtr,
|
|
RF_ParityLogQueue_t * queue)
|
|
{
|
|
RF_ParityLog_t *l1, *l2;
|
|
|
|
RF_LOCK_MUTEX(queue->mutex);
|
|
l1 = queue->parityLogs;
|
|
while (l1) {
|
|
l2 = l1;
|
|
l1 = l2->next;
|
|
RF_Free(l2->records, (raidPtr->numSectorsPerLog *
|
|
sizeof(RF_ParityLogRecord_t)));
|
|
RF_Free(l2, sizeof(RF_ParityLog_t));
|
|
}
|
|
RF_UNLOCK_MUTEX(queue->mutex);
|
|
}
|
|
|
|
|
|
static void
|
|
FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
|
|
{
|
|
int i;
|
|
|
|
RF_LOCK_MUTEX(queue->mutex);
|
|
if (queue->availableBuffers != queue->totalBuffers) {
|
|
printf("Attempt to free region queue which is still in use!\n");
|
|
RF_ASSERT(0);
|
|
}
|
|
for (i = 0; i < queue->totalBuffers; i++)
|
|
RF_Free(queue->buffers[i], queue->bufferSize);
|
|
RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
|
|
RF_UNLOCK_MUTEX(queue->mutex);
|
|
}
|
|
|
|
static void
|
|
rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
|
|
{
|
|
RF_Raid_t *raidPtr;
|
|
RF_RegionId_t i;
|
|
|
|
raidPtr = (RF_Raid_t *) arg;
|
|
if (rf_parityLogDebug) {
|
|
printf("raid%d: ShutdownParityLoggingRegionInfo\n",
|
|
raidPtr->raidid);
|
|
}
|
|
/* free region information structs */
|
|
for (i = 0; i < rf_numParityRegions; i++)
|
|
FreeRegionInfo(raidPtr, i);
|
|
RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
|
|
sizeof(raidPtr->regionInfo)));
|
|
raidPtr->regionInfo = NULL;
|
|
}
|
|
|
|
static void
|
|
rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
|
|
{
|
|
RF_Raid_t *raidPtr;
|
|
|
|
raidPtr = (RF_Raid_t *) arg;
|
|
if (rf_parityLogDebug) {
|
|
printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
|
|
}
|
|
/* free contents of parityLogPool */
|
|
FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
|
|
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
|
|
raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
|
|
}
|
|
|
|
static void
|
|
rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
|
|
{
|
|
RF_Raid_t *raidPtr;
|
|
|
|
raidPtr = (RF_Raid_t *) arg;
|
|
if (rf_parityLogDebug) {
|
|
printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
|
|
raidPtr->raidid);
|
|
}
|
|
FreeRegionBufferQueue(&raidPtr->regionBufferPool);
|
|
}
|
|
|
|
static void
|
|
rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
|
|
{
|
|
RF_Raid_t *raidPtr;
|
|
|
|
raidPtr = (RF_Raid_t *) arg;
|
|
if (rf_parityLogDebug) {
|
|
printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
|
|
raidPtr->raidid);
|
|
}
|
|
FreeRegionBufferQueue(&raidPtr->parityBufferPool);
|
|
}
|
|
|
|
static void
|
|
rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
|
|
{
|
|
RF_ParityLogData_t *d;
|
|
RF_CommonLogData_t *c;
|
|
RF_Raid_t *raidPtr;
|
|
|
|
raidPtr = (RF_Raid_t *) arg;
|
|
if (rf_parityLogDebug) {
|
|
printf("raid%d: ShutdownParityLoggingDiskQueue\n",
|
|
raidPtr->raidid);
|
|
}
|
|
/* free disk manager stuff */
|
|
RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
|
|
RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
|
|
RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
|
|
RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
|
|
while (raidPtr->parityLogDiskQueue.freeDataList) {
|
|
d = raidPtr->parityLogDiskQueue.freeDataList;
|
|
raidPtr->parityLogDiskQueue.freeDataList =
|
|
raidPtr->parityLogDiskQueue.freeDataList->next;
|
|
RF_Free(d, sizeof(RF_ParityLogData_t));
|
|
}
|
|
while (raidPtr->parityLogDiskQueue.freeCommonList) {
|
|
c = raidPtr->parityLogDiskQueue.freeCommonList;
|
|
raidPtr->parityLogDiskQueue.freeCommonList =
|
|
raidPtr->parityLogDiskQueue.freeCommonList->next;
|
|
RF_Free(c, sizeof(RF_CommonLogData_t));
|
|
}
|
|
}
|
|
|
|
static void
|
|
rf_ShutdownParityLogging(RF_ThreadArg_t arg)
|
|
{
|
|
RF_Raid_t *raidPtr;
|
|
|
|
raidPtr = (RF_Raid_t *) arg;
|
|
if (rf_parityLogDebug) {
|
|
printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
|
|
}
|
|
/* shutdown disk thread */
|
|
/* This has the desirable side-effect of forcing all regions to be
|
|
* reintegrated. This is necessary since all parity log maps are
|
|
* currently held in volatile memory. */
|
|
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
|
|
/*
|
|
* pLogDiskThread will now terminate when queues are cleared
|
|
* now wait for it to be done
|
|
*/
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
|
|
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
|
|
raidPtr->parityLogDiskQueue.mutex);
|
|
}
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
if (rf_parityLogDebug) {
|
|
printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
|
|
}
|
|
}
|
|
|
|
int
|
|
rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
|
|
{
|
|
return (20);
|
|
}
|
|
|
|
RF_HeadSepLimit_t
|
|
rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
|
|
{
|
|
return (10);
|
|
}
|
|
/* return the region ID for a given RAID address */
|
|
RF_RegionId_t
|
|
rf_MapRegionIDParityLogging(
|
|
RF_Raid_t * raidPtr,
|
|
RF_SectorNum_t address)
|
|
{
|
|
RF_RegionId_t regionID;
|
|
|
|
/* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
|
|
regionID = address / raidPtr->regionParityRange;
|
|
if (regionID == rf_numParityRegions) {
|
|
/* last region may be larger than other regions */
|
|
regionID--;
|
|
}
|
|
RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
|
|
RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
|
|
raidPtr->regionInfo[regionID].numSectorsParity);
|
|
RF_ASSERT(regionID < rf_numParityRegions);
|
|
return (regionID);
|
|
}
|
|
|
|
|
|
/* given a logical RAID sector, determine physical disk address of data */
|
|
void
|
|
rf_MapSectorParityLogging(
|
|
RF_Raid_t * raidPtr,
|
|
RF_RaidAddr_t raidSector,
|
|
RF_RowCol_t * col,
|
|
RF_SectorNum_t * diskSector,
|
|
int remap)
|
|
{
|
|
RF_StripeNum_t SUID = raidSector /
|
|
raidPtr->Layout.sectorsPerStripeUnit;
|
|
/* *col = (SUID % (raidPtr->numCol -
|
|
* raidPtr->Layout.numParityLogCol)); */
|
|
*col = SUID % raidPtr->Layout.numDataCol;
|
|
*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
|
|
raidPtr->Layout.sectorsPerStripeUnit +
|
|
(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
|
|
}
|
|
|
|
|
|
/* given a logical RAID sector, determine physical disk address of parity */
|
|
void
|
|
rf_MapParityParityLogging(
|
|
RF_Raid_t * raidPtr,
|
|
RF_RaidAddr_t raidSector,
|
|
RF_RowCol_t * col,
|
|
RF_SectorNum_t * diskSector,
|
|
int remap)
|
|
{
|
|
RF_StripeNum_t SUID = raidSector /
|
|
raidPtr->Layout.sectorsPerStripeUnit;
|
|
|
|
/* *col =
|
|
* raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
|
|
* r->numCol - raidPtr->Layout.numParityLogCol); */
|
|
*col = raidPtr->Layout.numDataCol;
|
|
*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
|
|
raidPtr->Layout.sectorsPerStripeUnit +
|
|
(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
|
|
}
|
|
|
|
|
|
/* given a regionID and sector offset, determine the physical disk address of the parity log */
|
|
void
|
|
rf_MapLogParityLogging(
|
|
RF_Raid_t * raidPtr,
|
|
RF_RegionId_t regionID,
|
|
RF_SectorNum_t regionOffset,
|
|
RF_RowCol_t * col,
|
|
RF_SectorNum_t * startSector)
|
|
{
|
|
*col = raidPtr->numCol - 1;
|
|
*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
|
|
}
|
|
|
|
|
|
/* given a regionID, determine the physical disk address of the logged
|
|
parity for that region */
|
|
void
|
|
rf_MapRegionParity(
|
|
RF_Raid_t * raidPtr,
|
|
RF_RegionId_t regionID,
|
|
RF_RowCol_t * col,
|
|
RF_SectorNum_t * startSector,
|
|
RF_SectorCount_t * numSector)
|
|
{
|
|
*col = raidPtr->numCol - 2;
|
|
*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
|
|
*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
|
|
}
|
|
|
|
|
|
/* given a logical RAID address, determine the participating disks in
|
|
the stripe */
|
|
void
|
|
rf_IdentifyStripeParityLogging(
|
|
RF_Raid_t * raidPtr,
|
|
RF_RaidAddr_t addr,
|
|
RF_RowCol_t ** diskids)
|
|
{
|
|
RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
|
|
addr);
|
|
RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
|
|
raidPtr->Layout.layoutSpecificInfo;
|
|
*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
|
|
}
|
|
|
|
|
|
void
|
|
rf_MapSIDToPSIDParityLogging(
|
|
RF_RaidLayout_t * layoutPtr,
|
|
RF_StripeNum_t stripeID,
|
|
RF_StripeNum_t * psID,
|
|
RF_ReconUnitNum_t * which_ru)
|
|
{
|
|
*which_ru = 0;
|
|
*psID = stripeID;
|
|
}
|
|
|
|
|
|
/* select an algorithm for performing an access. Returns two pointers,
|
|
* one to a function that will return information about the DAG, and
|
|
* another to a function that will create the dag.
|
|
*/
|
|
void
|
|
rf_ParityLoggingDagSelect(
|
|
RF_Raid_t * raidPtr,
|
|
RF_IoType_t type,
|
|
RF_AccessStripeMap_t * asmp,
|
|
RF_VoidFuncPtr * createFunc)
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_PhysDiskAddr_t *failedPDA = NULL;
|
|
RF_RowCol_t fcol;
|
|
RF_RowStatus_t rstat;
|
|
int prior_recon;
|
|
|
|
RF_ASSERT(RF_IO_IS_R_OR_W(type));
|
|
|
|
if (asmp->numDataFailed + asmp->numParityFailed > 1) {
|
|
RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
|
|
*createFunc = NULL;
|
|
return;
|
|
} else
|
|
if (asmp->numDataFailed + asmp->numParityFailed == 1) {
|
|
|
|
/* if under recon & already reconstructed, redirect
|
|
* the access to the spare drive and eliminate the
|
|
* failure indication */
|
|
failedPDA = asmp->failedPDAs[0];
|
|
fcol = failedPDA->col;
|
|
rstat = raidPtr->status;
|
|
prior_recon = (rstat == rf_rs_reconfigured) || (
|
|
(rstat == rf_rs_reconstructing) ?
|
|
rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
|
|
);
|
|
if (prior_recon) {
|
|
RF_RowCol_t oc = failedPDA->col;
|
|
RF_SectorNum_t oo = failedPDA->startSector;
|
|
if (layoutPtr->map->flags &
|
|
RF_DISTRIBUTE_SPARE) {
|
|
/* redirect to dist spare space */
|
|
|
|
if (failedPDA == asmp->parityInfo) {
|
|
|
|
/* parity has failed */
|
|
(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
|
|
&failedPDA->col, &failedPDA->startSector, RF_REMAP);
|
|
|
|
if (asmp->parityInfo->next) { /* redir 2nd component,
|
|
* if any */
|
|
RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
|
|
RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
|
|
p->col = failedPDA->col;
|
|
p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
|
|
SUoffs; /* cheating:
|
|
* startSector is not
|
|
* really a RAID address */
|
|
}
|
|
} else
|
|
if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
|
|
RF_ASSERT(0); /* should not ever
|
|
* happen */
|
|
} else {
|
|
|
|
/* data has failed */
|
|
(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
|
|
&failedPDA->col, &failedPDA->startSector, RF_REMAP);
|
|
|
|
}
|
|
|
|
} else {
|
|
/* redirect to dedicated spare space */
|
|
|
|
failedPDA->col = raidPtr->Disks[fcol].spareCol;
|
|
|
|
/* the parity may have two distinct
|
|
* components, both of which may need
|
|
* to be redirected */
|
|
if (asmp->parityInfo->next) {
|
|
if (failedPDA == asmp->parityInfo) {
|
|
failedPDA->next->col = failedPDA->col;
|
|
} else
|
|
if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
|
|
asmp->parityInfo->col = failedPDA->col;
|
|
}
|
|
}
|
|
}
|
|
|
|
RF_ASSERT(failedPDA->col != -1);
|
|
|
|
if (rf_dagDebug || rf_mapDebug) {
|
|
printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
|
|
raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
|
|
}
|
|
asmp->numDataFailed = asmp->numParityFailed = 0;
|
|
}
|
|
}
|
|
if (type == RF_IO_TYPE_READ) {
|
|
|
|
if (asmp->numDataFailed == 0)
|
|
*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
|
|
else
|
|
*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
|
|
|
|
} else {
|
|
|
|
|
|
/* if mirroring, always use large writes. If the access
|
|
* requires two distinct parity updates, always do a small
|
|
* write. If the stripe contains a failure but the access
|
|
* does not, do a small write. The first conditional
|
|
* (numStripeUnitsAccessed <= numDataCol/2) uses a
|
|
* less-than-or-equal rather than just a less-than because
|
|
* when G is 3 or 4, numDataCol/2 is 1, and I want
|
|
* single-stripe-unit updates to use just one disk. */
|
|
if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
|
|
if (((asmp->numStripeUnitsAccessed <=
|
|
(layoutPtr->numDataCol / 2)) &&
|
|
(layoutPtr->numDataCol != 1)) ||
|
|
(asmp->parityInfo->next != NULL) ||
|
|
rf_CheckStripeForFailures(raidPtr, asmp)) {
|
|
*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
|
|
} else
|
|
*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
|
|
} else
|
|
if (asmp->numParityFailed == 1)
|
|
*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
|
|
else
|
|
if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
|
|
*createFunc = NULL;
|
|
else
|
|
*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
|
|
}
|
|
}
|
|
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
|