1118 lines
29 KiB
C
1118 lines
29 KiB
C
/* $NetBSD: nslm7x.c,v 1.24 2005/12/11 12:21:28 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Bill Squier.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.24 2005/12/11 12:21:28 christos Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/isa/isareg.h>
|
|
#include <dev/isa/isavar.h>
|
|
|
|
#include <dev/sysmon/sysmonvar.h>
|
|
|
|
#include <dev/ic/nslm7xvar.h>
|
|
|
|
#include <machine/intr.h>
|
|
#include <machine/bus.h>
|
|
|
|
#if defined(LMDEBUG)
|
|
#define DPRINTF(x) printf x
|
|
#else
|
|
#define DPRINTF(x)
|
|
#endif
|
|
|
|
const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
|
|
/* for each unit type */
|
|
{ 7, 7, ENVSYS_STEMP },
|
|
{ 8, 10, ENVSYS_SFANRPM },
|
|
{ 1, 0, ENVSYS_SVOLTS_AC }, /* None */
|
|
{ 0, 6, ENVSYS_SVOLTS_DC },
|
|
{ 1, 0, ENVSYS_SOHMS }, /* None */
|
|
{ 1, 0, ENVSYS_SWATTS }, /* None */
|
|
{ 1, 0, ENVSYS_SAMPS } /* None */
|
|
};
|
|
|
|
|
|
static void setup_fan(struct lm_softc *, int, int);
|
|
static void setup_temp(struct lm_softc *, int, int);
|
|
static void wb_setup_volt(struct lm_softc *);
|
|
|
|
int lm_match(struct lm_softc *);
|
|
int wb_match(struct lm_softc *);
|
|
int itec_match(struct lm_softc *);
|
|
int def_match(struct lm_softc *);
|
|
void lm_common_match(struct lm_softc *);
|
|
static int lm_generic_banksel(struct lm_softc *, int);
|
|
|
|
static void generic_stemp(struct lm_softc *, struct envsys_tre_data *);
|
|
static void generic_svolt(struct lm_softc *, struct envsys_tre_data *,
|
|
struct envsys_basic_info *);
|
|
static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *);
|
|
|
|
void lm_refresh_sensor_data(struct lm_softc *);
|
|
|
|
static void wb_svolt(struct lm_softc *);
|
|
static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int);
|
|
static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *);
|
|
static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *);
|
|
|
|
void wb781_refresh_sensor_data(struct lm_softc *);
|
|
void wb782_refresh_sensor_data(struct lm_softc *);
|
|
void wb697_refresh_sensor_data(struct lm_softc *);
|
|
|
|
static void itec_svolt(struct lm_softc *, struct envsys_tre_data *,
|
|
struct envsys_basic_info *);
|
|
static void itec_stemp(struct lm_softc *, struct envsys_tre_data *);
|
|
static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *);
|
|
void itec_refresh_sensor_data(struct lm_softc *);
|
|
|
|
int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
|
|
|
|
int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
|
|
int, struct envsys_basic_info *);
|
|
int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
|
|
int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
|
|
int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
|
|
int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
|
|
|
|
struct lm_chip {
|
|
int (*chip_match)(struct lm_softc *);
|
|
};
|
|
|
|
struct lm_chip lm_chips[] = {
|
|
{ itec_match },
|
|
{ wb_match },
|
|
{ lm_match },
|
|
{ def_match } /* Must be last */
|
|
};
|
|
|
|
|
|
int
|
|
lm_generic_banksel(lmsc, bank)
|
|
struct lm_softc *lmsc;
|
|
int bank;
|
|
{
|
|
|
|
(*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* bus independent probe
|
|
*/
|
|
int
|
|
lm_probe(iot, ioh)
|
|
bus_space_tag_t iot;
|
|
bus_space_handle_t ioh;
|
|
{
|
|
u_int8_t cr;
|
|
int rv;
|
|
|
|
/*
|
|
* Check for it8705f, before we do the chip reset.
|
|
* In case of an it8705f this might reset all the fan control
|
|
* parameters to defaults which would void all settings done by
|
|
* the BOOTROM/BIOS.
|
|
*/
|
|
bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48);
|
|
cr = bus_space_read_1(iot, ioh, LMC_DATA);
|
|
|
|
if (cr == ITEC_RES48_DEFAULT) {
|
|
bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52);
|
|
cr = bus_space_read_1(iot, ioh, LMC_DATA);
|
|
if (cr == ITEC_RES52_DEFAULT)
|
|
return 1;
|
|
}
|
|
|
|
/* Check for some power-on defaults */
|
|
bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
|
|
|
|
/* Perform LM78 reset */
|
|
bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
|
|
|
|
/* XXX - Why do I have to reselect the register? */
|
|
bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
|
|
cr = bus_space_read_1(iot, ioh, LMC_DATA);
|
|
|
|
/* XXX - spec says *only* 0x08! */
|
|
if ((cr == 0x08) || (cr == 0x01) || (cr == 0x03))
|
|
rv = 1;
|
|
else
|
|
rv = 0;
|
|
|
|
DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
|
|
|
|
return (rv);
|
|
}
|
|
|
|
|
|
/*
|
|
* pre: lmsc contains valid busspace tag and handle
|
|
*/
|
|
void
|
|
lm_attach(lmsc)
|
|
struct lm_softc *lmsc;
|
|
{
|
|
u_int i;
|
|
|
|
/* Install default bank selection routine, if none given. */
|
|
if (lmsc->lm_banksel == NULL)
|
|
lmsc->lm_banksel = lm_generic_banksel;
|
|
|
|
for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
|
|
if (lm_chips[i].chip_match(lmsc))
|
|
break;
|
|
|
|
/* Start the monitoring loop */
|
|
(*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
|
|
|
|
/* Indicate we have never read the registers */
|
|
timerclear(&lmsc->lastread);
|
|
|
|
/* Initialize sensors */
|
|
for (i = 0; i < lmsc->numsensors; ++i) {
|
|
lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
|
|
lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
|
|
lmsc->info[i].validflags = ENVSYS_FVALID;
|
|
lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
|
|
}
|
|
/*
|
|
* Hook into the System Monitor.
|
|
*/
|
|
lmsc->sc_sysmon.sme_ranges = lm_ranges;
|
|
lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
|
|
lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
|
|
lmsc->sc_sysmon.sme_cookie = lmsc;
|
|
|
|
lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
|
|
/* sme_streinfo set in chip-specific attach */
|
|
|
|
lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
|
|
lmsc->sc_sysmon.sme_envsys_version = 1000;
|
|
|
|
if (sysmon_envsys_register(&lmsc->sc_sysmon))
|
|
printf("%s: unable to register with sysmon\n",
|
|
lmsc->sc_dev.dv_xname);
|
|
}
|
|
|
|
int
|
|
lm_match(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
/* See if we have an LM78 or LM79 */
|
|
i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
|
|
switch(i) {
|
|
case LM_ID_LM78:
|
|
printf(": LM78\n");
|
|
break;
|
|
case LM_ID_LM78J:
|
|
printf(": LM78J\n");
|
|
break;
|
|
case LM_ID_LM79:
|
|
printf(": LM79\n");
|
|
break;
|
|
case LM_ID_LM81:
|
|
printf(": LM81\n");
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
lm_common_match(sc);
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
def_match(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
|
|
printf(": Unknown chip (ID %d)\n", i);
|
|
lm_common_match(sc);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
lm_common_match(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
int i;
|
|
sc->numsensors = LM_NUM_SENSORS;
|
|
sc->refresh_sensor_data = lm_refresh_sensor_data;
|
|
|
|
for (i = 0; i < 7; ++i) {
|
|
sc->sensors[i].units = sc->info[i].units =
|
|
ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
|
|
"IN %d", i);
|
|
}
|
|
|
|
/* default correction factors for resistors on higher voltage inputs */
|
|
sc->info[0].rfact = sc->info[1].rfact =
|
|
sc->info[2].rfact = 10000;
|
|
sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
|
|
sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
|
|
sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
|
|
sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
|
|
|
|
sc->sensors[7].units = ENVSYS_STEMP;
|
|
strcpy(sc->info[7].desc, "Temp");
|
|
|
|
setup_fan(sc, 8, 3);
|
|
sc->sc_sysmon.sme_streinfo = lm_streinfo;
|
|
}
|
|
|
|
int
|
|
wb_match(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
int i, j;
|
|
|
|
(*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
|
|
j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
|
|
(*sc->lm_writereg)(sc, WB_BANKSEL, 0);
|
|
j |= (*sc->lm_readreg)(sc, WB_VENDID);
|
|
DPRINTF(("winbond vend id 0x%x\n", j));
|
|
if (j != WB_VENDID_WINBOND)
|
|
return 0;
|
|
/* read device ID */
|
|
(*sc->lm_banksel)(sc, 0);
|
|
j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
|
|
DPRINTF(("winbond chip id 0x%x\n", j));
|
|
switch(j) {
|
|
case WB_CHIPID_83781:
|
|
case WB_CHIPID_83781_2:
|
|
printf(": W83781D\n");
|
|
|
|
for (i = 0; i < 7; ++i) {
|
|
sc->sensors[i].units = sc->info[i].units =
|
|
ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
|
|
"IN %d", i);
|
|
}
|
|
|
|
/* default correction factors for higher voltage inputs */
|
|
sc->info[0].rfact = sc->info[1].rfact =
|
|
sc->info[2].rfact = 10000;
|
|
sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
|
|
sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
|
|
sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
|
|
sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
|
|
|
|
setup_temp(sc, 7, 3);
|
|
setup_fan(sc, 10, 3);
|
|
|
|
sc->numsensors = WB83781_NUM_SENSORS;
|
|
sc->refresh_sensor_data = wb781_refresh_sensor_data;
|
|
sc->sc_sysmon.sme_streinfo = wb781_streinfo;
|
|
return 1;
|
|
case WB_CHIPID_83697:
|
|
printf(": W83697HF\n");
|
|
wb_setup_volt(sc);
|
|
setup_temp(sc, 9, 2);
|
|
setup_fan(sc, 11, 3);
|
|
sc->numsensors = WB83697_NUM_SENSORS;
|
|
sc->refresh_sensor_data = wb697_refresh_sensor_data;
|
|
sc->sc_sysmon.sme_streinfo = wb782_streinfo;
|
|
return 1;
|
|
case WB_CHIPID_83782:
|
|
printf(": W83782D\n");
|
|
break;
|
|
case WB_CHIPID_83627:
|
|
printf(": W83627HF\n");
|
|
break;
|
|
case WB_CHIPID_83627THF:
|
|
printf(": W83627THF\n");
|
|
break;
|
|
default:
|
|
printf(": unknow winbond chip ID 0x%x\n", j);
|
|
/* handle as a standart lm7x */
|
|
lm_common_match(sc);
|
|
return 1;
|
|
}
|
|
/* common code for the W83782D and W83627HF */
|
|
wb_setup_volt(sc);
|
|
setup_temp(sc, 9, 3);
|
|
setup_fan(sc, 12, 3);
|
|
sc->numsensors = WB_NUM_SENSORS;
|
|
sc->refresh_sensor_data = wb782_refresh_sensor_data;
|
|
sc->sc_sysmon.sme_streinfo = wb782_streinfo;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
wb_setup_volt(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
|
|
sc->info[0].rfact = 10000;
|
|
sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
|
|
sc->info[1].rfact = 10000;
|
|
sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
|
|
sc->info[2].rfact = 10000;
|
|
sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
|
|
sc->info[3].rfact = 16778;
|
|
sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
|
|
sc->info[4].rfact = 38000;
|
|
sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
|
|
sc->info[5].rfact = 10000;
|
|
sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
|
|
sc->info[6].rfact = 10000;
|
|
sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
|
|
sc->info[7].rfact = 15151;
|
|
sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
|
|
snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
|
|
sc->info[8].rfact = 10000;
|
|
}
|
|
|
|
int
|
|
itec_match(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
int vendor, coreid;
|
|
|
|
/* do the same thing as in lm_probe() */
|
|
if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT)
|
|
return 0;
|
|
|
|
if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT)
|
|
return 0;
|
|
|
|
/* We check for the core ID register (0x5B), which is available
|
|
* only in the 8712F, if that fails, we check the vendor ID
|
|
* register, available on 8705F and 8712F */
|
|
|
|
coreid = (*sc->lm_readreg)(sc, ITEC_COREID);
|
|
|
|
if (coreid == ITEC_COREID_ITE)
|
|
printf(": ITE8712F\n");
|
|
else {
|
|
vendor = (*sc->lm_readreg)(sc, ITEC_VENDID);
|
|
if (vendor == ITEC_VENDID_ITE)
|
|
printf(": ITE8705F\n");
|
|
else
|
|
printf(": unknown ITE87%02x compatible\n", vendor);
|
|
}
|
|
|
|
/*
|
|
* XXX this is a litle bit lame...
|
|
* All VIN inputs work exactly the same way, it depends of the
|
|
* external wiring what voltages they monitor and which correction
|
|
* factors are needed. We assume a pretty standard setup here
|
|
*/
|
|
wb_setup_volt(sc);
|
|
strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc));
|
|
strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc));
|
|
strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc));
|
|
sc->info[5].rfact = 51100;
|
|
sc->info[7].rfact = 16778;
|
|
|
|
setup_temp(sc, 9, 3);
|
|
setup_fan(sc, 12, 3);
|
|
sc->numsensors = ITEC_NUM_SENSORS;
|
|
sc->refresh_sensor_data = itec_refresh_sensor_data;
|
|
sc->sc_sysmon.sme_streinfo = itec_streinfo;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void
|
|
setup_temp(sc, start, n)
|
|
struct lm_softc *sc;
|
|
int start, n;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
sc->sensors[start + i].units = ENVSYS_STEMP;
|
|
snprintf(sc->info[start + i].desc,
|
|
sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
setup_fan(sc, start, n)
|
|
struct lm_softc *sc;
|
|
int start, n;
|
|
{
|
|
int i;
|
|
for (i = 0; i < n; ++i) {
|
|
sc->sensors[start + i].units = ENVSYS_SFANRPM;
|
|
sc->info[start + i].units = ENVSYS_SFANRPM;
|
|
snprintf(sc->info[start + i].desc,
|
|
sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
|
|
}
|
|
}
|
|
|
|
int
|
|
lm_gtredata(sme, tred)
|
|
struct sysmon_envsys *sme;
|
|
struct envsys_tre_data *tred;
|
|
{
|
|
static const struct timeval onepointfive = { 1, 500000 };
|
|
struct timeval t;
|
|
struct lm_softc *sc = sme->sme_cookie;
|
|
int i, s;
|
|
|
|
/* read new values at most once every 1.5 seconds */
|
|
timeradd(&sc->lastread, &onepointfive, &t);
|
|
s = splclock();
|
|
i = timercmp(&mono_time, &t, >);
|
|
if (i) {
|
|
sc->lastread.tv_sec = mono_time.tv_sec;
|
|
sc->lastread.tv_usec = mono_time.tv_usec;
|
|
}
|
|
splx(s);
|
|
|
|
if (i)
|
|
sc->refresh_sensor_data(sc);
|
|
|
|
*tred = sc->sensors[tred->sensor];
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
generic_streinfo_fan(sc, info, n, binfo)
|
|
struct lm_softc *sc;
|
|
struct envsys_basic_info *info;
|
|
int n;
|
|
struct envsys_basic_info *binfo;
|
|
{
|
|
u_int8_t sdata;
|
|
int divisor;
|
|
|
|
/* FAN1 and FAN2 can have divisors set, but not FAN3 */
|
|
if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
|
|
&& (n < 2)) {
|
|
if (binfo->rpms == 0) {
|
|
binfo->validflags = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* write back the nominal FAN speed */
|
|
info->rpms = binfo->rpms;
|
|
|
|
/* 153 is the nominal FAN speed value */
|
|
divisor = 1350000 / (binfo->rpms * 153);
|
|
|
|
/* ...but we need lg(divisor) */
|
|
if (divisor <= 1)
|
|
divisor = 0;
|
|
else if (divisor <= 2)
|
|
divisor = 1;
|
|
else if (divisor <= 4)
|
|
divisor = 2;
|
|
else
|
|
divisor = 3;
|
|
|
|
/*
|
|
* FAN1 div is in bits <5:4>, FAN2 div is
|
|
* in <7:6>
|
|
*/
|
|
sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
|
|
if ( n == 0 ) { /* FAN1 */
|
|
divisor <<= 4;
|
|
sdata = (sdata & 0xCF) | divisor;
|
|
} else { /* FAN2 */
|
|
divisor <<= 6;
|
|
sdata = (sdata & 0x3F) | divisor;
|
|
}
|
|
|
|
(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
int
|
|
lm_streinfo(sme, binfo)
|
|
struct sysmon_envsys *sme;
|
|
struct envsys_basic_info *binfo;
|
|
{
|
|
struct lm_softc *sc = sme->sme_cookie;
|
|
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
|
|
sc->info[binfo->sensor].rfact = binfo->rfact;
|
|
else {
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
|
|
generic_streinfo_fan(sc, &sc->info[binfo->sensor],
|
|
binfo->sensor - 8, binfo);
|
|
}
|
|
strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
|
|
sizeof(sc->info[binfo->sensor].desc));
|
|
binfo->validflags = ENVSYS_FVALID;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wb781_streinfo(sme, binfo)
|
|
struct sysmon_envsys *sme;
|
|
struct envsys_basic_info *binfo;
|
|
{
|
|
struct lm_softc *sc = sme->sme_cookie;
|
|
int divisor;
|
|
u_int8_t sdata;
|
|
int i;
|
|
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
|
|
sc->info[binfo->sensor].rfact = binfo->rfact;
|
|
else {
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
|
|
if (binfo->rpms == 0) {
|
|
binfo->validflags = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* write back the nominal FAN speed */
|
|
sc->info[binfo->sensor].rpms = binfo->rpms;
|
|
|
|
/* 153 is the nominal FAN speed value */
|
|
divisor = 1350000 / (binfo->rpms * 153);
|
|
|
|
/* ...but we need lg(divisor) */
|
|
for (i = 0; i < 7; i++) {
|
|
if (divisor <= (1 << i))
|
|
break;
|
|
}
|
|
divisor = i;
|
|
|
|
if (binfo->sensor == 10 || binfo->sensor == 11) {
|
|
/*
|
|
* FAN1 div is in bits <5:4>, FAN2 div
|
|
* is in <7:6>
|
|
*/
|
|
sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
|
|
if ( binfo->sensor == 10 ) { /* FAN1 */
|
|
sdata = (sdata & 0xCF) |
|
|
((divisor & 0x3) << 4);
|
|
} else { /* FAN2 */
|
|
sdata = (sdata & 0x3F) |
|
|
((divisor & 0x3) << 6);
|
|
}
|
|
(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
|
|
} else {
|
|
/* FAN3 is in WB_PIN <7:6> */
|
|
sdata = (*sc->lm_readreg)(sc, WB_PIN);
|
|
sdata = (sdata & 0x3F) |
|
|
((divisor & 0x3) << 6);
|
|
(*sc->lm_writereg)(sc, WB_PIN, sdata);
|
|
}
|
|
}
|
|
strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
|
|
sizeof(sc->info[binfo->sensor].desc));
|
|
binfo->validflags = ENVSYS_FVALID;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
wb782_streinfo(sme, binfo)
|
|
struct sysmon_envsys *sme;
|
|
struct envsys_basic_info *binfo;
|
|
{
|
|
struct lm_softc *sc = sme->sme_cookie;
|
|
int divisor;
|
|
u_int8_t sdata;
|
|
int i;
|
|
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
|
|
sc->info[binfo->sensor].rfact = binfo->rfact;
|
|
else {
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
|
|
if (binfo->rpms == 0) {
|
|
binfo->validflags = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* write back the nominal FAN speed */
|
|
sc->info[binfo->sensor].rpms = binfo->rpms;
|
|
|
|
/* 153 is the nominal FAN speed value */
|
|
divisor = 1350000 / (binfo->rpms * 153);
|
|
|
|
/* ...but we need lg(divisor) */
|
|
for (i = 0; i < 7; i++) {
|
|
if (divisor <= (1 << i))
|
|
break;
|
|
}
|
|
divisor = i;
|
|
|
|
if (binfo->sensor == 12 || binfo->sensor == 13) {
|
|
/*
|
|
* FAN1 div is in bits <5:4>, FAN2 div
|
|
* is in <7:6>
|
|
*/
|
|
sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
|
|
if ( binfo->sensor == 12 ) { /* FAN1 */
|
|
sdata = (sdata & 0xCF) |
|
|
((divisor & 0x3) << 4);
|
|
} else { /* FAN2 */
|
|
sdata = (sdata & 0x3F) |
|
|
((divisor & 0x3) << 6);
|
|
}
|
|
(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
|
|
} else {
|
|
/* FAN3 is in WB_PIN <7:6> */
|
|
sdata = (*sc->lm_readreg)(sc, WB_PIN);
|
|
sdata = (sdata & 0x3F) |
|
|
((divisor & 0x3) << 6);
|
|
(*sc->lm_writereg)(sc, WB_PIN, sdata);
|
|
}
|
|
/* Bit 2 of divisor is in WB_BANK0_FANBAT */
|
|
(*sc->lm_banksel)(sc, 0);
|
|
sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
|
|
sdata &= ~(0x20 << (binfo->sensor - 12));
|
|
sdata |= (divisor & 0x4) << (binfo->sensor - 9);
|
|
(*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
|
|
}
|
|
|
|
strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
|
|
sizeof(sc->info[binfo->sensor].desc));
|
|
binfo->validflags = ENVSYS_FVALID;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
itec_streinfo(sme, binfo)
|
|
struct sysmon_envsys *sme;
|
|
struct envsys_basic_info *binfo;
|
|
{
|
|
struct lm_softc *sc = sme->sme_cookie;
|
|
int divisor;
|
|
u_int8_t sdata;
|
|
int i;
|
|
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
|
|
sc->info[binfo->sensor].rfact = binfo->rfact;
|
|
else {
|
|
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
|
|
if (binfo->rpms == 0) {
|
|
binfo->validflags = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* write back the nominal FAN speed */
|
|
sc->info[binfo->sensor].rpms = binfo->rpms;
|
|
|
|
/* 153 is the nominal FAN speed value */
|
|
divisor = 1350000 / (binfo->rpms * 153);
|
|
|
|
/* ...but we need lg(divisor) */
|
|
for (i = 0; i < 7; i++) {
|
|
if (divisor <= (1 << i))
|
|
break;
|
|
}
|
|
divisor = i;
|
|
|
|
sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV);
|
|
/*
|
|
* FAN1 div is in bits <0:2>, FAN2 is in <3:5>
|
|
* FAN3 is in <6>, if set divisor is 8, else 2
|
|
*/
|
|
if ( binfo->sensor == 10 ) { /* FAN1 */
|
|
sdata = (sdata & 0xf8) | divisor;
|
|
} else if ( binfo->sensor == 11 ) { /* FAN2 */
|
|
sdata = (sdata & 0xc7) | divisor << 3;
|
|
} else { /* FAN3 */
|
|
if (divisor>2)
|
|
sdata = sdata & 0xbf;
|
|
else
|
|
sdata = sdata | 0x40;
|
|
}
|
|
(*sc->lm_writereg)(sc, ITEC_FANDIV, sdata);
|
|
}
|
|
strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
|
|
sizeof(sc->info[binfo->sensor].desc));
|
|
binfo->validflags = ENVSYS_FVALID;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
generic_stemp(sc, sensor)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensor;
|
|
{
|
|
int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
|
|
DPRINTF(("sdata[temp] 0x%x\n", sdata));
|
|
/* temp is given in deg. C, we convert to uK */
|
|
sensor->cur.data_us = sdata * 1000000 + 273150000;
|
|
}
|
|
|
|
static void
|
|
generic_svolt(sc, sensors, infos)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
struct envsys_basic_info *infos;
|
|
{
|
|
int i, sdata;
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
|
|
DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
|
|
/* voltage returned as (mV >> 4), we convert to uVDC */
|
|
sensors[i].cur.data_s = (sdata << 4);
|
|
/* rfact is (factor * 10^4) */
|
|
sensors[i].cur.data_s *= infos[i].rfact;
|
|
/* division by 10 gets us back to uVDC */
|
|
sensors[i].cur.data_s /= 10;
|
|
|
|
/* these two are negative voltages */
|
|
if ( (i == 5) || (i == 6) )
|
|
sensors[i].cur.data_s *= -1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
generic_fanrpm(sc, sensors)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
{
|
|
int i, sdata, divisor;
|
|
for (i = 0; i < 3; i++) {
|
|
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
|
|
DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
|
|
if (i == 2)
|
|
divisor = 2; /* Fixed divisor for FAN3 */
|
|
else if (i == 1) /* Bits 7 & 6 of VID/FAN */
|
|
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
|
|
else
|
|
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
|
|
|
|
if (sdata == 0xff || sdata == 0x00) {
|
|
sensors[i].cur.data_us = 0;
|
|
} else {
|
|
sensors[i].cur.data_us = 1350000 / (sdata << divisor);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pre: last read occurred >= 1.5 seconds ago
|
|
* post: sensors[] current data are the latest from the chip
|
|
*/
|
|
void
|
|
lm_refresh_sensor_data(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
/* Refresh our stored data for every sensor */
|
|
generic_stemp(sc, &sc->sensors[7]);
|
|
generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
|
|
generic_fanrpm(sc, &sc->sensors[8]);
|
|
}
|
|
|
|
static void
|
|
wb_svolt(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
int i, sdata;
|
|
for (i = 0; i < 9; ++i) {
|
|
if (i < 7) {
|
|
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
|
|
} else {
|
|
/* from bank5 */
|
|
(*sc->lm_banksel)(sc, 5);
|
|
sdata = (*sc->lm_readreg)(sc, (i == 7) ?
|
|
WB_BANK5_5VSB : WB_BANK5_VBAT);
|
|
}
|
|
DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
|
|
/* voltage returned as (mV >> 4), we convert to uV */
|
|
sdata = sdata << 4;
|
|
/* special case for negative voltages */
|
|
if (i == 5) {
|
|
/*
|
|
* -12Vdc, assume Winbond recommended values for
|
|
* resistors
|
|
*/
|
|
sdata = ((sdata * 1000) - (3600 * 805)) / 195;
|
|
} else if (i == 6) {
|
|
/*
|
|
* -5Vdc, assume Winbond recommended values for
|
|
* resistors
|
|
*/
|
|
sdata = ((sdata * 1000) - (3600 * 682)) / 318;
|
|
}
|
|
/* rfact is (factor * 10^4) */
|
|
sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
|
|
/* division by 10 gets us back to uVDC */
|
|
sc->sensors[i].cur.data_s /= 10;
|
|
}
|
|
}
|
|
|
|
static void
|
|
wb_stemp(sc, sensors, n)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
int n;
|
|
{
|
|
int sdata;
|
|
/* temperatures. Given in dC, we convert to uK */
|
|
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
|
|
DPRINTF(("sdata[temp0] 0x%x\n", sdata));
|
|
sensors[0].cur.data_us = sdata * 1000000 + 273150000;
|
|
/* from bank1 */
|
|
if ((*sc->lm_banksel)(sc, 1))
|
|
sensors[1].validflags &= ~ENVSYS_FCURVALID;
|
|
else {
|
|
sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
|
|
sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
|
|
DPRINTF(("sdata[temp1] 0x%x\n", sdata));
|
|
sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
|
|
}
|
|
if (n < 3)
|
|
return;
|
|
/* from bank2 */
|
|
if ((*sc->lm_banksel)(sc, 2))
|
|
sensors[2].validflags &= ~ENVSYS_FCURVALID;
|
|
else {
|
|
sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
|
|
sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
|
|
DPRINTF(("sdata[temp2] 0x%x\n", sdata));
|
|
sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
|
|
}
|
|
}
|
|
|
|
static void
|
|
wb781_fanrpm(sc, sensors)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
{
|
|
int i, divisor, sdata;
|
|
(*sc->lm_banksel)(sc, 0);
|
|
for (i = 0; i < 3; i++) {
|
|
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
|
|
DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
|
|
if (i == 0)
|
|
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
|
|
else if (i == 1)
|
|
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
|
|
else
|
|
divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
|
|
|
|
DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
|
|
if (sdata == 0xff || sdata == 0x00) {
|
|
sensors[i].cur.data_us = 0;
|
|
} else {
|
|
sensors[i].cur.data_us = 1350000 /
|
|
(sdata << divisor);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
wb_fanrpm(sc, sensors)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
{
|
|
int i, divisor, sdata;
|
|
(*sc->lm_banksel)(sc, 0);
|
|
for (i = 0; i < 3; i++) {
|
|
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
|
|
DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
|
|
if (i == 0)
|
|
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
|
|
else if (i == 1)
|
|
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
|
|
else
|
|
divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
|
|
divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
|
|
|
|
DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
|
|
if (sdata == 0xff || sdata == 0x00) {
|
|
sensors[i].cur.data_us = 0;
|
|
} else {
|
|
sensors[i].cur.data_us = 1350000 /
|
|
(sdata << divisor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
wb781_refresh_sensor_data(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
/* Refresh our stored data for every sensor */
|
|
/* we need to reselect bank0 to access common registers */
|
|
(*sc->lm_banksel)(sc, 0);
|
|
generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
|
|
(*sc->lm_banksel)(sc, 0);
|
|
wb_stemp(sc, &sc->sensors[7], 3);
|
|
(*sc->lm_banksel)(sc, 0);
|
|
wb781_fanrpm(sc, &sc->sensors[10]);
|
|
}
|
|
|
|
void
|
|
wb782_refresh_sensor_data(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
/* Refresh our stored data for every sensor */
|
|
wb_svolt(sc);
|
|
wb_stemp(sc, &sc->sensors[9], 3);
|
|
wb_fanrpm(sc, &sc->sensors[12]);
|
|
}
|
|
|
|
void
|
|
wb697_refresh_sensor_data(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
/* Refresh our stored data for every sensor */
|
|
wb_svolt(sc);
|
|
wb_stemp(sc, &sc->sensors[9], 2);
|
|
wb_fanrpm(sc, &sc->sensors[11]);
|
|
}
|
|
|
|
static void
|
|
itec_svolt(sc, sensors, infos)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
struct envsys_basic_info *infos;
|
|
{
|
|
int i, sdata;
|
|
|
|
for (i = 0; i < 9; i++) {
|
|
sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i);
|
|
DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
|
|
/* voltage returned as (mV >> 4), we convert to uVDC */
|
|
sensors[i].cur.data_s = ( sdata << 4 );
|
|
/* rfact is (factor * 10^4) */
|
|
|
|
sensors[i].cur.data_s *= infos[i].rfact;
|
|
/*
|
|
* XXX We assume input 5 is wired the way iTE suggests to
|
|
* monitor a negative voltage. I'd prefer using negative rfacts
|
|
* for detecting those cases but since rfact is an u_int this
|
|
* isn't possible.
|
|
*/
|
|
if (i == 5)
|
|
sensors[i].cur.data_s -=
|
|
(infos[i].rfact - 10000) * ITEC_VREF;
|
|
/* division by 10 gets us back to uVDC */
|
|
sensors[i].cur.data_s /= 10;
|
|
}
|
|
}
|
|
|
|
static void
|
|
itec_stemp(sc, sensors)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
{
|
|
int i, sdata;
|
|
|
|
/* temperatures. Given in dC, we convert to uK */
|
|
for (i = 0; i < 3; i++) {
|
|
sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i);
|
|
DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata));
|
|
sensors[i].cur.data_us = sdata * 1000000 + 273150000;
|
|
}
|
|
}
|
|
|
|
static void
|
|
itec_fanrpm(sc, sensors)
|
|
struct lm_softc *sc;
|
|
struct envsys_tre_data *sensors;
|
|
{
|
|
int i, fandiv, divisor, sdata;
|
|
(*sc->lm_banksel)(sc, 0);
|
|
fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV));
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i);
|
|
DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
|
|
switch (i) {
|
|
case 0:
|
|
divisor = fandiv & 0x7;
|
|
break;
|
|
case 1:
|
|
divisor = (fandiv >> 3) & 0x7;
|
|
break;
|
|
case 2:
|
|
default: /* XXX */
|
|
divisor = (fandiv & 0x40) ? 3 : 1;
|
|
break;
|
|
}
|
|
DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
|
|
if (sdata == 0xff || sdata == 0x00) {
|
|
sensors[i].cur.data_us = 0;
|
|
} else {
|
|
sensors[i].cur.data_us = 1350000 /
|
|
(sdata << divisor);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
itec_refresh_sensor_data(sc)
|
|
struct lm_softc *sc;
|
|
{
|
|
itec_svolt(sc, &sc->sensors[0], &sc->info[0]);
|
|
itec_stemp(sc, &sc->sensors[9]);
|
|
itec_fanrpm(sc, &sc->sensors[12]);
|
|
}
|