NetBSD/sys/arch/hpcmips/vr/rtc.c

434 lines
13 KiB
C

/* $NetBSD: rtc.c,v 1.18 2002/10/02 05:26:53 thorpej Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura. All rights reserved.
* Copyright (c) 1999 SATO Kazumi. All rights reserved.
* Copyright (c) 1999 PocketBSD Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the PocketBSD project
* and its contributors.
* 4. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include "opt_vr41xx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <machine/sysconf.h>
#include <machine/bus.h>
#include <dev/clock_subr.h>
#include <hpcmips/vr/vr.h>
#include <hpcmips/vr/vrcpudef.h>
#include <hpcmips/vr/vripif.h>
#include <hpcmips/vr/vripreg.h>
#include <hpcmips/vr/rtcreg.h>
/*
* for debugging definitions
* VRRTCDEBUG print rtc debugging information
*/
#ifdef VRRTCDEBUG
#ifndef VRRTCDEBUG_CONF
#define VRRTCDEBUG_CONF 0
#endif
int vrrtc_debug = VRRTCDEBUG_CONF;
#define DPRINTF(arg) if (vrrtc_debug) printf arg;
#define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
#else /* VRRTCDEBUG */
#define DPRINTF(arg)
#define DDUMP_REGS(arg)
#endif /* VRRTCDEBUG */
struct vrrtc_softc {
struct device sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
void *sc_ih;
#ifndef SINGLE_VRIP_BASE
int sc_rtcint_reg;
int sc_tclk_h_reg, sc_tclk_l_reg;
int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
#endif /* SINGLE_VRIP_BASE */
};
void clock_init(struct device *);
void clock_get(struct device *, time_t, struct clock_ymdhms *);
void clock_set(struct device *, struct clock_ymdhms *);
struct platform_clock vr_clock = {
#define CLOCK_RATE 128
CLOCK_RATE, clock_init, clock_get, clock_set,
};
int vrrtc_match(struct device *, struct cfdata *, void *);
void vrrtc_attach(struct device *, struct device *, void *);
int vrrtc_intr(void*, u_int32_t, u_int32_t);
void vrrtc_dump_regs(struct vrrtc_softc *);
CFATTACH_DECL(vrrtc, sizeof(struct vrrtc_softc),
vrrtc_match, vrrtc_attach, NULL, NULL);
static __inline__ void vrrtc_write(struct vrrtc_softc *, int, u_int16_t);
static __inline__ u_int16_t vrrtc_read(struct vrrtc_softc *, int);
void cvt_timehl_ymdhms(u_int32_t, u_int32_t, struct clock_ymdhms *);
extern int rtc_offset;
static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
static __inline__ void
vrrtc_write(struct vrrtc_softc *sc, int port, u_int16_t val)
{
bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
}
static __inline__ u_int16_t
vrrtc_read(struct vrrtc_softc *sc, int port)
{
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, port));
}
int
vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
{
return (1);
}
#ifndef SINGLE_VRIP_BASE
#define RTCINT_REG_W (sc->sc_rtcint_reg)
#define TCLK_H_REG_W (sc->sc_tclk_h_reg)
#define TCLK_L_REG_W (sc->sc_tclk_l_reg)
#define TCLK_CNT_H_REG_W (sc->sc_tclk_cnt_h_reg)
#define TCLK_CNT_L_REG_W (sc->sc_tclk_cnt_l_reg)
#endif /* SINGLE_VRIP_BASE */
void
vrrtc_attach(struct device *parent, struct device *self, void *aux)
{
struct vrip_attach_args *va = aux;
struct vrrtc_softc *sc = (void *)self;
#ifndef SINGLE_VRIP_BASE
if (va->va_addr == VR4102_RTC_ADDR) {
sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
} else
if (va->va_addr == VR4122_RTC_ADDR) {
sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
} else
if (va->va_addr == VR4181_RTC_ADDR) {
sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
sc->sc_tclk_h_reg = RTC_NO_REG_W;
sc->sc_tclk_l_reg = RTC_NO_REG_W;
sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
} else {
panic("%s: unknown base address 0x%lx",
sc->sc_dev.dv_xname, va->va_addr);
}
#endif /* SINGLE_VRIP_BASE */
sc->sc_iot = va->va_iot;
if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
0 /* no flags */, &sc->sc_ioh)) {
printf("vrrtc_attach: can't map i/o space\n");
return;
}
/* RTC interrupt handler is directly dispatched from CPU intr */
vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
/* But need to set level 1 interupt mask register,
* so regsiter fake interrurpt handler
*/
if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
IPL_CLOCK, 0, 0))) {
printf (":can't map interrupt.\n");
return;
}
/*
* Rtc is attached to call this routine
* before cpu_initclock() calls clock_init().
* So we must disable all interrupt for now.
*/
/*
* Disable all rtc interrupts
*/
/* Disable Elapse compare intr */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
/* Disable RTC Long1 intr */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
/* Disable RTC Long2 intr */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
/* Disable RTC TCLK intr */
if (TCLK_H_REG_W != RTC_NO_REG_W) {
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
}
/*
* Clear all rtc intrrupts.
*/
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
platform_clock_attach(sc, &vr_clock);
}
int
vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
{
struct vrrtc_softc *sc = arg;
struct clockframe cf;
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
cf.pc = pc;
cf.sr = statusReg;
hardclock(&cf);
return 0;
}
void
clock_init(struct device *dev)
{
struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
DDUMP_REGS(sc);
/*
* Set tick (CLOCK_RATE)
*/
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W,
RTCL1_L_HZ/CLOCK_RATE);
}
void
clock_get(struct device *dev, time_t base, struct clock_ymdhms *dt)
{
struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t timeh; /* elapse time (2*timeh sec) */
u_int32_t timel; /* timel/32768 sec */
timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
cvt_timehl_ymdhms(timeh, timel, dt);
DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
}
void
clock_set(struct device *dev, struct clock_ymdhms *dt)
{
struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t timeh; /* elapse time (2*timeh sec) */
u_int32_t timel; /* timel/32768 sec */
int year, month, sec2;
timeh = 0;
timel = 0;
DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
dt->dt_year += YBASE;
DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
year = EPOCHYEAR;
sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
while (year < dt->dt_year) {
year++;
timeh += sec2;
sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
}
month = 1; /* now month is 1..12 */
sec2 = SEC2DAY * m2d[month-1];
while (month < dt->dt_mon) {
month++;
timeh += sec2;
sec2 = SEC2DAY * m2d[month-1];
if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
sec2 += SEC2DAY;
}
timeh += (dt->dt_day - 1)*SEC2DAY;
timeh += dt->dt_hour*SEC2HOUR;
timeh += dt->dt_min*SEC2MIN;
timeh += dt->dt_sec/2;
timel += (dt->dt_sec%2)*ETIME_L_HZ;
timeh += EPOCHOFF;
timeh -= (rtc_offset*SEC2MIN);
#ifdef VRRTCDEBUG
cvt_timehl_ymdhms(timeh, timel, NULL);
#endif /* RTCDEBUG */
bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
}
void
cvt_timehl_ymdhms(
u_int32_t timeh, /* 2 sec */
u_int32_t timel, /* 1/32768 sec */
struct clock_ymdhms *dt)
{
u_int32_t year, month, date, hour, min, sec, sec2;
timeh -= EPOCHOFF;
timeh += (rtc_offset*SEC2MIN);
year = EPOCHYEAR;
sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
while (timeh > sec2) {
year++;
timeh -= sec2;
sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
}
DPRINTF(("cvt_timehl_ymdhms: timeh %08x year %d yrref %d\n",
timeh, year, sec2));
month = 0; /* now month is 0..11 */
sec2 = SEC2DAY * m2d[month];
while (timeh > sec2) {
timeh -= sec2;
month++;
sec2 = SEC2DAY * m2d[month];
if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
sec2 += SEC2DAY;
}
month +=1; /* now month is 1..12 */
DPRINTF(("cvt_timehl_ymdhms: timeh %08x month %d mref %d\n",
timeh, month, sec2));
sec2 = SEC2DAY;
date = timeh/sec2+1; /* date is 1..31 */
timeh -= (date-1)*sec2;
DPRINTF(("cvt_timehl_ymdhms: timeh %08x date %d dref %d\n",
timeh, date, sec2));
sec2 = SEC2HOUR;
hour = timeh/sec2;
timeh -= hour*sec2;
sec2 = SEC2MIN;
min = timeh/sec2;
timeh -= min*sec2;
sec = timeh*2 + timel/ETIME_L_HZ;
DPRINTF(("cvt_timehl_ymdhms: hour %d min %d sec %d\n", hour, min, sec));
if (dt) {
dt->dt_year = year - YBASE; /* base 1900 */
dt->dt_mon = month;
dt->dt_day = date;
dt->dt_hour = hour;
dt->dt_min = min;
dt->dt_sec = sec;
}
}
void
vrrtc_dump_regs(struct vrrtc_softc *sc)
{
int timeh;
int timel;
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
timel = (timel << 16)
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
timel = (timel << 16)
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
if (TCLK_H_REG_W != RTC_NO_REG_W) {
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
printf("clock_init() TCLK %04x%04x\n", timeh, timel);
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
}
}