NetBSD/sys/arch/xen/x86/cpu.c
rmind 3127d2afb9 Initialise cpus_running to 1 on Xen, as it was done on x86.
Problem analysed by hannken@.  Fixes PR/45062.
2011-07-16 14:46:18 +00:00

1180 lines
27 KiB
C

/* $NetBSD: cpu.c,v 1.60 2011/07/16 14:46:18 rmind Exp $ */
/* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by RedBack Networks Inc.
*
* Author: Bill Sommerfeld
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1999 Stefan Grefen
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.60 2011/07/16 14:46:18 rmind Exp $");
#include "opt_ddb.h"
#include "opt_multiprocessor.h"
#include "opt_mpbios.h" /* for MPDEBUG */
#include "opt_mtrr.h"
#include "opt_xen.h"
#include "lapic.h"
#include "ioapic.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <sys/reboot.h>
#include <uvm/uvm.h>
#include <machine/cpufunc.h>
#include <machine/cpuvar.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#include <machine/mpbiosvar.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/gdt.h>
#include <machine/mtrr.h>
#include <machine/pio.h>
#include <xen/vcpuvar.h>
#if NLAPIC > 0
#include <machine/apicvar.h>
#include <machine/i82489reg.h>
#include <machine/i82489var.h>
#endif
#include <dev/ic/mc146818reg.h>
#include <dev/isa/isareg.h>
#if MAXCPUS > 32
#error cpu_info contains 32bit bitmasks
#endif
static int cpu_match(device_t, cfdata_t, void *);
static void cpu_attach(device_t, device_t, void *);
static void cpu_defer(device_t);
static int cpu_rescan(device_t, const char *, const int *);
static void cpu_childdetached(device_t, device_t);
static int vcpu_match(device_t, cfdata_t, void *);
static void vcpu_attach(device_t, device_t, void *);
static void cpu_attach_common(device_t, device_t, void *);
void cpu_offline_md(void);
struct cpu_softc {
device_t sc_dev; /* device tree glue */
struct cpu_info *sc_info; /* pointer to CPU info */
bool sc_wasonline;
};
int mp_cpu_start(struct cpu_info *, paddr_t);
void mp_cpu_start_cleanup(struct cpu_info *);
const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
mp_cpu_start_cleanup };
CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
vcpu_match, vcpu_attach, NULL, NULL);
/*
* Statically-allocated CPU info for the primary CPU (or the only
* CPU, on uniprocessors). The CPU info list is initialized to
* point at it.
*/
#ifdef TRAPLOG
#include <machine/tlog.h>
struct tlog tlog_primary;
#endif
struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
.ci_dev = 0,
.ci_self = &cpu_info_primary,
.ci_idepth = -1,
.ci_curlwp = &lwp0,
.ci_curldt = -1,
.ci_cpumask = 1,
#ifdef TRAPLOG
.ci_tlog = &tlog_primary,
#endif
};
struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
.ci_dev = 0,
.ci_self = &phycpu_info_primary,
};
struct cpu_info *cpu_info_list = &cpu_info_primary;
struct cpu_info *phycpu_info_list = &phycpu_info_primary;
static void cpu_set_tss_gates(struct cpu_info *ci);
uint32_t cpus_attached = 1;
uint32_t cpus_running = 1;
uint32_t phycpus_attached = 0;
uint32_t phycpus_running = 0;
uint32_t cpu_feature[5]; /* X86 CPUID feature bits
* [0] basic features %edx
* [1] basic features %ecx
* [2] extended features %edx
* [3] extended features %ecx
* [4] VIA padlock features
*/
bool x86_mp_online;
paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
#if defined(MULTIPROCESSOR)
void cpu_hatch(void *);
static void cpu_boot_secondary(struct cpu_info *ci);
static void cpu_start_secondary(struct cpu_info *ci);
static void cpu_copy_trampoline(void);
/*
* Runs once per boot once multiprocessor goo has been detected and
* the local APIC on the boot processor has been mapped.
*
* Called from lapic_boot_init() (from mpbios_scan()).
*/
void
cpu_init_first(void)
{
cpu_info_primary.ci_cpuid = lapic_cpu_number();
cpu_copy_trampoline();
}
#endif /* MULTIPROCESSOR */
static int
cpu_match(device_t parent, cfdata_t match, void *aux)
{
return 1;
}
static void
cpu_attach(device_t parent, device_t self, void *aux)
{
struct cpu_softc *sc = device_private(self);
struct cpu_attach_args *caa = aux;
struct cpu_info *ci;
uintptr_t ptr;
static int nphycpu = 0;
sc->sc_dev = self;
if (phycpus_attached == ~0) {
aprint_error(": increase MAXCPUS\n");
return;
}
/*
* If we're an Application Processor, allocate a cpu_info
* If we're the first attached CPU use the primary cpu_info,
* otherwise allocate a new one
*/
aprint_naive("\n");
aprint_normal("\n");
if (nphycpu > 0) {
struct cpu_info *tmp;
ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
KM_SLEEP);
ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
ci->ci_curldt = -1;
tmp = phycpu_info_list;
while (tmp->ci_next)
tmp = tmp->ci_next;
tmp->ci_next = ci;
} else {
ci = &phycpu_info_primary;
}
ci->ci_self = ci;
sc->sc_info = ci;
ci->ci_dev = self;
ci->ci_acpiid = caa->cpu_id;
ci->ci_cpuid = caa->cpu_number;
ci->ci_vcpu = NULL;
ci->ci_index = nphycpu++;
ci->ci_cpumask = (1 << cpu_index(ci));
atomic_or_32(&phycpus_attached, ci->ci_cpumask);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
(void)config_defer(self, cpu_defer);
}
static void
cpu_defer(device_t self)
{
cpu_rescan(self, NULL, NULL);
}
static int
cpu_rescan(device_t self, const char *ifattr, const int *locators)
{
struct cpu_softc *sc = device_private(self);
struct cpufeature_attach_args cfaa;
struct cpu_info *ci = sc->sc_info;
memset(&cfaa, 0, sizeof(cfaa));
cfaa.ci = ci;
if (ifattr_match(ifattr, "cpufeaturebus")) {
if (ci->ci_frequency == NULL) {
cfaa.name = "frequency";
ci->ci_frequency = config_found_ia(self,
"cpufeaturebus", &cfaa, NULL);
}
}
return 0;
}
static void
cpu_childdetached(device_t self, device_t child)
{
struct cpu_softc *sc = device_private(self);
struct cpu_info *ci = sc->sc_info;
if (ci->ci_frequency == child)
ci->ci_frequency = NULL;
}
static int
vcpu_match(device_t parent, cfdata_t match, void *aux)
{
struct vcpu_attach_args *vcaa = aux;
if (strcmp(vcaa->vcaa_name, match->cf_name) == 0)
return 1;
return 0;
}
static void
vcpu_attach(device_t parent, device_t self, void *aux)
{
struct vcpu_attach_args *vcaa = aux;
cpu_attach_common(parent, self, &vcaa->vcaa_caa);
}
static void
cpu_vm_init(struct cpu_info *ci)
{
int ncolors = 2, i;
for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
struct x86_cache_info *cai;
int tcolors;
cai = &ci->ci_cinfo[i];
tcolors = atop(cai->cai_totalsize);
switch(cai->cai_associativity) {
case 0xff:
tcolors = 1; /* fully associative */
break;
case 0:
case 1:
break;
default:
tcolors /= cai->cai_associativity;
}
ncolors = max(ncolors, tcolors);
}
/*
* Knowing the size of the largest cache on this CPU, re-color
* our pages.
*/
if (ncolors <= uvmexp.ncolors)
return;
aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
uvm_page_recolor(ncolors);
}
static void
cpu_attach_common(device_t parent, device_t self, void *aux)
{
struct cpu_softc *sc = device_private(self);
struct cpu_attach_args *caa = aux;
struct cpu_info *ci;
uintptr_t ptr;
int cpunum = caa->cpu_number;
static bool again = false;
sc->sc_dev = self;
/*
* If we're an Application Processor, allocate a cpu_info
* structure, otherwise use the primary's.
*/
if (caa->cpu_role == CPU_ROLE_AP) {
aprint_naive(": Application Processor\n");
ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
KM_SLEEP);
ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
memset(ci, 0, sizeof(*ci));
#ifdef TRAPLOG
ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
#endif
} else {
aprint_naive(": %s Processor\n",
caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
ci = &cpu_info_primary;
#if NLAPIC > 0
if (cpunum != lapic_cpu_number()) {
/* XXX should be done earlier */
uint32_t reg;
aprint_verbose("\n");
aprint_verbose_dev(self, "running CPU at apic %d"
" instead of at expected %d", lapic_cpu_number(),
cpunum);
reg = i82489_readreg(LAPIC_ID);
i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
(cpunum << LAPIC_ID_SHIFT));
}
if (cpunum != lapic_cpu_number()) {
aprint_error_dev(self, "unable to reset apic id\n");
}
#endif
}
ci->ci_self = ci;
sc->sc_info = ci;
ci->ci_dev = self;
ci->ci_cpuid = cpunum;
KASSERT(HYPERVISOR_shared_info != NULL);
ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
ci->ci_func = caa->cpu_func;
/* Must be called before mi_cpu_attach(). */
cpu_vm_init(ci);
if (caa->cpu_role == CPU_ROLE_AP) {
int error;
error = mi_cpu_attach(ci);
if (error != 0) {
aprint_normal("\n");
aprint_error_dev(self,
"mi_cpu_attach failed with %d\n", error);
return;
}
} else {
KASSERT(ci->ci_data.cpu_idlelwp != NULL);
}
ci->ci_cpumask = (1 << cpu_index(ci));
pmap_reference(pmap_kernel());
ci->ci_pmap = pmap_kernel();
ci->ci_tlbstate = TLBSTATE_STALE;
/*
* Boot processor may not be attached first, but the below
* must be done to allow booting other processors.
*/
if (!again) {
atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
/* Basic init. */
cpu_intr_init(ci);
cpu_get_tsc_freq(ci);
cpu_init(ci);
cpu_set_tss_gates(ci);
#if NLAPIC > 0
if (caa->cpu_role != CPU_ROLE_SP) {
/* Enable lapic. */
lapic_enable();
lapic_set_lvt();
lapic_calibrate_timer();
}
#endif
/* Make sure DELAY() is initialized. */
DELAY(1);
again = true;
}
/* further PCB init done later. */
switch (caa->cpu_role) {
case CPU_ROLE_SP:
atomic_or_32(&ci->ci_flags, CPUF_SP);
cpu_identify(ci);
#if 0
x86_errata();
#endif
x86_cpu_idle_init();
break;
case CPU_ROLE_BP:
atomic_or_32(&ci->ci_flags, CPUF_BSP);
cpu_identify(ci);
cpu_init(ci);
#if 0
x86_errata();
#endif
x86_cpu_idle_init();
break;
case CPU_ROLE_AP:
/*
* report on an AP
*/
#if defined(MULTIPROCESSOR)
cpu_intr_init(ci);
gdt_alloc_cpu(ci);
cpu_set_tss_gates(ci);
cpu_start_secondary(ci);
if (ci->ci_flags & CPUF_PRESENT) {
struct cpu_info *tmp;
identifycpu(ci);
tmp = cpu_info_list;
while (tmp->ci_next)
tmp = tmp->ci_next;
tmp->ci_next = ci;
}
#else
aprint_error_dev(self, "not started\n");
#endif
break;
default:
aprint_normal("\n");
panic("unknown processor type??\n");
}
pat_init(ci);
atomic_or_32(&cpus_attached, ci->ci_cpumask);
#if 0
if (!pmf_device_register(self, cpu_suspend, cpu_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
#endif
#if defined(MULTIPROCESSOR)
if (mp_verbose) {
struct lwp *l = ci->ci_data.cpu_idlelwp;
struct pcb *pcb = lwp_getpcb(l);
aprint_verbose_dev(self,
"idle lwp at %p, idle sp at 0x%p\n",
l,
#ifdef i386
(void *)pcb->pcb_esp
#else
(void *)pcb->pcb_rsp
#endif
);
}
#endif
}
/*
* Initialize the processor appropriately.
*/
void
cpu_init(struct cpu_info *ci)
{
/*
* On a P6 or above, enable global TLB caching if the
* hardware supports it.
*/
if (cpu_feature[0] & CPUID_PGE)
lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
#ifdef XXXMTRR
/*
* On a P6 or above, initialize MTRR's if the hardware supports them.
*/
if (cpu_feature[0] & CPUID_MTRR) {
if ((ci->ci_flags & CPUF_AP) == 0)
i686_mtrr_init_first();
mtrr_init_cpu(ci);
}
#endif
/*
* If we have FXSAVE/FXRESTOR, use them.
*/
if (cpu_feature[0] & CPUID_FXSR) {
lcr4(rcr4() | CR4_OSFXSR);
/*
* If we have SSE/SSE2, enable XMM exceptions.
*/
if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
lcr4(rcr4() | CR4_OSXMMEXCPT);
}
#ifdef __x86_64__
/* No user PGD mapped for this CPU yet */
ci->ci_xen_current_user_pgd = 0;
#endif
atomic_or_32(&cpus_running, ci->ci_cpumask);
atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
}
#ifdef MULTIPROCESSOR
void
cpu_boot_secondary_processors(void)
{
struct cpu_info *ci;
u_long i;
for (i = 0; i < maxcpus; i++) {
ci = cpu_lookup(i);
if (ci == NULL)
continue;
if (ci->ci_data.cpu_idlelwp == NULL)
continue;
if ((ci->ci_flags & CPUF_PRESENT) == 0)
continue;
if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
continue;
cpu_boot_secondary(ci);
}
x86_mp_online = true;
}
static void
cpu_init_idle_lwp(struct cpu_info *ci)
{
struct lwp *l = ci->ci_data.cpu_idlelwp;
struct pcb *pcb = lwp_getpcb(l);
pcb->pcb_cr0 = rcr0();
}
void
cpu_init_idle_lwps(void)
{
struct cpu_info *ci;
u_long i;
for (i = 0; i < maxcpus; i++) {
ci = cpu_lookup(i);
if (ci == NULL)
continue;
if (ci->ci_data.cpu_idlelwp == NULL)
continue;
if ((ci->ci_flags & CPUF_PRESENT) == 0)
continue;
cpu_init_idle_lwp(ci);
}
}
void
cpu_start_secondary(struct cpu_info *ci)
{
int i;
struct pmap *kpm = pmap_kernel();
extern uint32_t mp_pdirpa;
mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
atomic_or_32(&ci->ci_flags, CPUF_AP);
aprint_debug_dev(ci->ci_dev, "starting\n");
ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
return;
/*
* wait for it to become ready
*/
for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
#ifdef MPDEBUG
extern int cpu_trace[3];
static int otrace[3];
if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
cpu_trace[0], cpu_trace[1], cpu_trace[2]);
memcpy(otrace, cpu_trace, sizeof(otrace));
}
#endif
delay(10);
}
if ((ci->ci_flags & CPUF_PRESENT) == 0) {
aprint_error_dev(ci->ci_dev, "failed to become ready\n");
#if defined(MPDEBUG) && defined(DDB)
printf("dropping into debugger; continue from here to resume boot\n");
Debugger();
#endif
}
CPU_START_CLEANUP(ci);
}
void
cpu_boot_secondary(struct cpu_info *ci)
{
int i;
atomic_or_32(&ci->ci_flags, CPUF_GO);
for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
delay(10);
}
if ((ci->ci_flags & CPUF_RUNNING) == 0) {
aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
#if defined(MPDEBUG) && defined(DDB)
printf("dropping into debugger; continue from here to resume boot\n");
Debugger();
#endif
}
}
/*
* The CPU ends up here when its ready to run
* This is called from code in mptramp.s; at this point, we are running
* in the idle pcb/idle stack of the new CPU. When this function returns,
* this processor will enter the idle loop and start looking for work.
*
* XXX should share some of this with init386 in machdep.c
*/
void
cpu_hatch(void *v)
{
struct cpu_info *ci = (struct cpu_info *)v;
struct pcb *pcb;
int s, i;
cpu_probe(ci);
cpu_feature[0] &= ~CPUID_FEAT_BLACKLIST;
cpu_feature[2] &= ~CPUID_FEAT_EXT_BLACKLIST;
cpu_init_msrs(ci, true);
KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
while ((ci->ci_flags & CPUF_GO) == 0) {
/* Don't use delay, boot CPU may be patching the text. */
for (i = 10000; i != 0; i--)
x86_pause();
}
/* Because the text may have been patched in x86_patch(). */
wbinvd();
x86_flush();
tlbflushg();
KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
pcb = lwp_getpcb(curlwp);
lcr3(pmap_kernel()->pm_pdirpa);
pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
lcr0(pcb->pcb_cr0);
cpu_init_idt();
gdt_init_cpu(ci);
lapic_enable();
lapic_set_lvt();
lapic_initclocks();
#ifdef i386
npxinit(ci);
#else
fpuinit(ci);
#endif
lldt(GSEL(GLDT_SEL, SEL_KPL));
ltr(ci->ci_tss_sel);
cpu_init(ci);
cpu_get_tsc_freq(ci);
s = splhigh();
#ifdef i386
lapic_tpr = 0;
#else
lcr8(0);
#endif
x86_enable_intr();
splx(s);
#if 0
x86_errata();
#endif
aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
(long)ci->ci_cpuid);
}
#if defined(DDB)
#include <ddb/db_output.h>
#include <machine/db_machdep.h>
/*
* Dump CPU information from ddb.
*/
void
cpu_debug_dump(void)
{
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
for (CPU_INFO_FOREACH(cii, ci)) {
db_printf("%p %s %ld %x %x %10p %10p\n",
ci,
ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
(long)ci->ci_cpuid,
ci->ci_flags, ci->ci_ipis,
ci->ci_curlwp,
ci->ci_fpcurlwp);
}
}
#endif /* DDB */
static void
cpu_copy_trampoline(void)
{
/*
* Copy boot code.
*/
extern u_char cpu_spinup_trampoline[];
extern u_char cpu_spinup_trampoline_end[];
vaddr_t mp_trampoline_vaddr;
mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
UVM_KMF_VAONLY);
pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
VM_PROT_READ | VM_PROT_WRITE, 0);
pmap_update(pmap_kernel());
memcpy((void *)mp_trampoline_vaddr,
cpu_spinup_trampoline,
cpu_spinup_trampoline_end - cpu_spinup_trampoline);
pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
pmap_update(pmap_kernel());
uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
}
#endif /* MULTIPROCESSOR */
#ifdef i386
#if 0
static void
tss_init(struct i386tss *tss, void *stack, void *func)
{
memset(tss, 0, sizeof *tss);
tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
tss->tss_gs = tss->__tss_es = tss->__tss_ds =
tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
tss->tss_esp = (int)((char *)stack + USPACE - 16);
tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
tss->__tss_eip = (int)func;
}
#endif
/* XXX */
#define IDTVEC(name) __CONCAT(X, name)
typedef void (vector)(void);
extern vector IDTVEC(tss_trap08);
#ifdef DDB
extern vector Xintrddbipi;
extern int ddb_vec;
#endif
static void
cpu_set_tss_gates(struct cpu_info *ci)
{
#if 0
struct segment_descriptor sd;
ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
UVM_KMF_WIRED);
tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
IDTVEC(tss_trap08));
setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
SDT_SYS386TSS, SEL_KPL, 0, 0);
ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
GSEL(GTRAPTSS_SEL, SEL_KPL));
#endif
#if defined(DDB) && defined(MULTIPROCESSOR)
/*
* Set up separate handler for the DDB IPI, so that it doesn't
* stomp on a possibly corrupted stack.
*
* XXX overwriting the gate set in db_machine_init.
* Should rearrange the code so that it's set only once.
*/
ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
UVM_KMF_WIRED);
tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
Xintrddbipi);
setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
SDT_SYS386TSS, SEL_KPL, 0, 0);
ci->ci_gdt[GIPITSS_SEL].sd = sd;
setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
GSEL(GIPITSS_SEL, SEL_KPL));
#endif
}
#else
static void
cpu_set_tss_gates(struct cpu_info *ci)
{
}
#endif /* i386 */
int
mp_cpu_start(struct cpu_info *ci, paddr_t target)
{
#if 0
#if NLAPIC > 0
int error;
#endif
unsigned short dwordptr[2];
/*
* Bootstrap code must be addressable in real mode
* and it must be page aligned.
*/
KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
/*
* "The BSP must initialize CMOS shutdown code to 0Ah ..."
*/
outb(IO_RTC, NVRAM_RESET);
outb(IO_RTC+1, NVRAM_RESET_JUMP);
/*
* "and the warm reset vector (DWORD based at 40:67) to point
* to the AP startup code ..."
*/
dwordptr[0] = 0;
dwordptr[1] = target >> 4;
pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
pmap_update(pmap_kernel());
memcpy ((uint8_t *) 0x467, dwordptr, 4);
pmap_kremove (0, PAGE_SIZE);
pmap_update(pmap_kernel());
#if NLAPIC > 0
/*
* ... prior to executing the following sequence:"
*/
if (ci->ci_flags & CPUF_AP) {
if ((error = x86_ipi_init(ci->ci_cpuid)) != 0)
return error;
delay(10000);
if (cpu_feature & CPUID_APIC) {
error = x86_ipi_init(ci->ci_cpuid);
if (error != 0) {
aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
__func__);
return error;
}
delay(10000);
error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
LAPIC_DLMODE_STARTUP);
if (error != 0) {
aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
__func__);
return error;
}
delay(200);
error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid,
LAPIC_DLMODE_STARTUP);
if (error != 0) {
aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n",
__func__);
return error;
}
delay(200);
}
}
#endif
#endif /* 0 */
return 0;
}
void
mp_cpu_start_cleanup(struct cpu_info *ci)
{
#if 0
/*
* Ensure the NVRAM reset byte contains something vaguely sane.
*/
outb(IO_RTC, NVRAM_RESET);
outb(IO_RTC+1, NVRAM_RESET_RST);
#endif
}
void
cpu_init_msrs(struct cpu_info *ci, bool full)
{
#ifdef __x86_64__
if (full) {
HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
}
#endif /* __x86_64__ */
if (cpu_feature[2] & CPUID_NOX)
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
}
void
cpu_offline_md(void)
{
int s;
s = splhigh();
#ifdef __i386__
npxsave_cpu(true);
#else
fpusave_cpu(true);
#endif
splx(s);
}
#if 0
/* XXX joerg restructure and restart CPUs individually */
static bool
cpu_suspend(device_t dv, const pmf_qual_t *qual)
{
struct cpu_softc *sc = device_private(dv);
struct cpu_info *ci = sc->sc_info;
int err;
if (ci->ci_flags & CPUF_PRIMARY)
return true;
if (ci->ci_data.cpu_idlelwp == NULL)
return true;
if ((ci->ci_flags & CPUF_PRESENT) == 0)
return true;
sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
if (sc->sc_wasonline) {
mutex_enter(&cpu_lock);
err = cpu_setstate(ci, false);
mutex_exit(&cpu_lock);
if (err)
return false;
}
return true;
}
static bool
cpu_resume(device_t dv, const pmf_qual_t *qual)
{
struct cpu_softc *sc = device_private(dv);
struct cpu_info *ci = sc->sc_info;
int err = 0;
if (ci->ci_flags & CPUF_PRIMARY)
return true;
if (ci->ci_data.cpu_idlelwp == NULL)
return true;
if ((ci->ci_flags & CPUF_PRESENT) == 0)
return true;
if (sc->sc_wasonline) {
mutex_enter(&cpu_lock);
err = cpu_setstate(ci, true);
mutex_exit(&cpu_lock);
}
return err == 0;
}
#endif
void
cpu_get_tsc_freq(struct cpu_info *ci)
{
const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
delay(1000000);
uint64_t freq = 1000000000ULL << 32;
freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
if ( tinfo->tsc_shift < 0 )
freq = freq << -tinfo->tsc_shift;
else
freq = freq >> tinfo->tsc_shift;
ci->ci_data.cpu_cc_freq = freq;
}
void
x86_cpu_idle_xen(void)
{
struct cpu_info *ci = curcpu();
KASSERT(ci->ci_ilevel == IPL_NONE);
x86_disable_intr();
if (!__predict_false(ci->ci_want_resched)) {
idle_block();
} else {
x86_enable_intr();
}
}
/*
* Loads pmap for the current CPU.
*/
void
cpu_load_pmap(struct pmap *pmap)
{
#ifdef i386
#ifdef PAE
int i, s;
struct cpu_info *ci;
s = splvm(); /* just to be safe */
ci = curcpu();
paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
/* don't update the kernel L3 slot */
for (i = 0 ; i < PDP_SIZE - 1; i++) {
xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
}
splx(s);
tlbflush();
#else /* PAE */
lcr3(pmap_pdirpa(pmap, 0));
#endif /* PAE */
#endif /* i386 */
#ifdef __x86_64__
int i, s;
pd_entry_t *old_pgd, *new_pgd;
paddr_t addr;
struct cpu_info *ci;
/* kernel pmap always in cr3 and should never go in user cr3 */
if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
ci = curcpu();
/*
* Map user space address in kernel space and load
* user cr3
*/
s = splvm();
new_pgd = pmap->pm_pdir;
old_pgd = pmap_kernel()->pm_pdir;
addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
for (i = 0; i < PDIR_SLOT_PTE;
i++, addr += sizeof(pd_entry_t)) {
if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
xpq_queue_pte_update(addr, new_pgd[i]);
}
xen_set_user_pgd(pmap_pdirpa(pmap, 0));
ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
tlbflush();
splx(s);
}
#endif /* __x86_64__ */
}