1359 lines
33 KiB
C
1359 lines
33 KiB
C
/* $NetBSD: cpu.c,v 1.71 2011/12/07 15:47:43 cegger Exp $ */
|
|
/* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
|
|
|
|
/*-
|
|
* Copyright (c) 2000 The NetBSD Foundation, Inc.
|
|
* Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by RedBack Networks Inc.
|
|
*
|
|
* Author: Bill Sommerfeld
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1999 Stefan Grefen
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.71 2011/12/07 15:47:43 cegger Exp $");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_multiprocessor.h"
|
|
#include "opt_mpbios.h" /* for MPDEBUG */
|
|
#include "opt_mtrr.h"
|
|
#include "opt_xen.h"
|
|
|
|
#include "lapic.h"
|
|
#include "ioapic.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/cpufreq.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/idle.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/cpuvar.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/vmparam.h>
|
|
#include <machine/mpbiosvar.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/segments.h>
|
|
#include <machine/gdt.h>
|
|
#include <machine/mtrr.h>
|
|
#include <machine/pio.h>
|
|
|
|
#ifdef i386
|
|
#include <machine/npx.h>
|
|
#else
|
|
#include <machine/fpu.h>
|
|
#endif
|
|
|
|
#include <xen/xen.h>
|
|
#include <xen/xen-public/vcpu.h>
|
|
#include <xen/vcpuvar.h>
|
|
|
|
#if NLAPIC > 0
|
|
#include <machine/apicvar.h>
|
|
#include <machine/i82489reg.h>
|
|
#include <machine/i82489var.h>
|
|
#endif
|
|
|
|
#include <dev/ic/mc146818reg.h>
|
|
#include <dev/isa/isareg.h>
|
|
|
|
#if MAXCPUS > 32
|
|
#error cpu_info contains 32bit bitmasks
|
|
#endif
|
|
|
|
static int cpu_match(device_t, cfdata_t, void *);
|
|
static void cpu_attach(device_t, device_t, void *);
|
|
static void cpu_defer(device_t);
|
|
static int cpu_rescan(device_t, const char *, const int *);
|
|
static void cpu_childdetached(device_t, device_t);
|
|
static int vcpu_match(device_t, cfdata_t, void *);
|
|
static void vcpu_attach(device_t, device_t, void *);
|
|
static void cpu_attach_common(device_t, device_t, void *);
|
|
void cpu_offline_md(void);
|
|
|
|
struct cpu_softc {
|
|
device_t sc_dev; /* device tree glue */
|
|
struct cpu_info *sc_info; /* pointer to CPU info */
|
|
bool sc_wasonline;
|
|
};
|
|
|
|
int mp_cpu_start(struct cpu_info *, vaddr_t);
|
|
void mp_cpu_start_cleanup(struct cpu_info *);
|
|
const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
|
|
mp_cpu_start_cleanup };
|
|
|
|
CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
|
|
cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
|
|
|
|
CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
|
|
vcpu_match, vcpu_attach, NULL, NULL);
|
|
|
|
/*
|
|
* Statically-allocated CPU info for the primary CPU (or the only
|
|
* CPU, on uniprocessors). The CPU info list is initialized to
|
|
* point at it.
|
|
*/
|
|
#ifdef TRAPLOG
|
|
#include <machine/tlog.h>
|
|
struct tlog tlog_primary;
|
|
#endif
|
|
struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
|
|
.ci_dev = 0,
|
|
.ci_self = &cpu_info_primary,
|
|
.ci_idepth = -1,
|
|
.ci_curlwp = &lwp0,
|
|
.ci_curldt = -1,
|
|
.ci_cpumask = 1,
|
|
#ifdef TRAPLOG
|
|
.ci_tlog = &tlog_primary,
|
|
#endif
|
|
|
|
};
|
|
struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
|
|
.ci_dev = 0,
|
|
.ci_self = &phycpu_info_primary,
|
|
};
|
|
|
|
struct cpu_info *cpu_info_list = &cpu_info_primary;
|
|
struct cpu_info *phycpu_info_list = &phycpu_info_primary;
|
|
|
|
uint32_t cpus_attached = 1;
|
|
uint32_t cpus_running = 1;
|
|
|
|
uint32_t phycpus_attached = 0;
|
|
uint32_t phycpus_running = 0;
|
|
|
|
uint32_t cpu_feature[5]; /* X86 CPUID feature bits
|
|
* [0] basic features %edx
|
|
* [1] basic features %ecx
|
|
* [2] extended features %edx
|
|
* [3] extended features %ecx
|
|
* [4] VIA padlock features
|
|
*/
|
|
|
|
bool x86_mp_online;
|
|
paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
|
|
|
|
#if defined(MULTIPROCESSOR)
|
|
void cpu_hatch(void *);
|
|
static void cpu_boot_secondary(struct cpu_info *ci);
|
|
static void cpu_start_secondary(struct cpu_info *ci);
|
|
#endif /* MULTIPROCESSOR */
|
|
|
|
static int
|
|
cpu_match(device_t parent, cfdata_t match, void *aux)
|
|
{
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
cpu_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct cpu_softc *sc = device_private(self);
|
|
struct cpu_attach_args *caa = aux;
|
|
struct cpu_info *ci;
|
|
uintptr_t ptr;
|
|
static int nphycpu = 0;
|
|
|
|
sc->sc_dev = self;
|
|
|
|
if (phycpus_attached == ~0) {
|
|
aprint_error(": increase MAXCPUS\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we're an Application Processor, allocate a cpu_info
|
|
* If we're the first attached CPU use the primary cpu_info,
|
|
* otherwise allocate a new one
|
|
*/
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
if (nphycpu > 0) {
|
|
struct cpu_info *tmp;
|
|
ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
|
|
KM_SLEEP);
|
|
ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
|
|
ci->ci_curldt = -1;
|
|
|
|
tmp = phycpu_info_list;
|
|
while (tmp->ci_next)
|
|
tmp = tmp->ci_next;
|
|
|
|
tmp->ci_next = ci;
|
|
} else {
|
|
ci = &phycpu_info_primary;
|
|
}
|
|
|
|
ci->ci_self = ci;
|
|
sc->sc_info = ci;
|
|
|
|
ci->ci_dev = self;
|
|
ci->ci_acpiid = caa->cpu_id;
|
|
ci->ci_cpuid = caa->cpu_number;
|
|
ci->ci_vcpu = NULL;
|
|
ci->ci_index = nphycpu++;
|
|
ci->ci_cpumask = (1 << cpu_index(ci));
|
|
|
|
atomic_or_32(&phycpus_attached, ci->ci_cpumask);
|
|
|
|
if (!pmf_device_register(self, NULL, NULL))
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
|
|
(void)config_defer(self, cpu_defer);
|
|
}
|
|
|
|
static void
|
|
cpu_defer(device_t self)
|
|
{
|
|
cpu_rescan(self, NULL, NULL);
|
|
}
|
|
|
|
static int
|
|
cpu_rescan(device_t self, const char *ifattr, const int *locators)
|
|
{
|
|
struct cpu_softc *sc = device_private(self);
|
|
struct cpufeature_attach_args cfaa;
|
|
struct cpu_info *ci = sc->sc_info;
|
|
|
|
memset(&cfaa, 0, sizeof(cfaa));
|
|
cfaa.ci = ci;
|
|
|
|
if (ifattr_match(ifattr, "cpufeaturebus")) {
|
|
|
|
if (ci->ci_frequency == NULL) {
|
|
cfaa.name = "frequency";
|
|
ci->ci_frequency = config_found_ia(self,
|
|
"cpufeaturebus", &cfaa, NULL);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cpu_childdetached(device_t self, device_t child)
|
|
{
|
|
struct cpu_softc *sc = device_private(self);
|
|
struct cpu_info *ci = sc->sc_info;
|
|
|
|
if (ci->ci_frequency == child)
|
|
ci->ci_frequency = NULL;
|
|
}
|
|
|
|
static int
|
|
vcpu_match(device_t parent, cfdata_t match, void *aux)
|
|
{
|
|
struct vcpu_attach_args *vcaa = aux;
|
|
struct vcpu_runstate_info vcr;
|
|
int error;
|
|
|
|
if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
|
|
error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
|
|
vcaa->vcaa_caa.cpu_number,
|
|
&vcr);
|
|
switch (error) {
|
|
case 0:
|
|
return 1;
|
|
case -ENOENT:
|
|
return 0;
|
|
default:
|
|
panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
vcpu_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct vcpu_attach_args *vcaa = aux;
|
|
|
|
KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
|
|
vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
|
|
cpu_attach_common(parent, self, &vcaa->vcaa_caa);
|
|
|
|
if (!pmf_device_register(self, NULL, NULL))
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
}
|
|
|
|
static int
|
|
vcpu_is_up(struct cpu_info *ci)
|
|
{
|
|
KASSERT(ci != NULL);
|
|
return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
|
|
}
|
|
|
|
static void
|
|
cpu_vm_init(struct cpu_info *ci)
|
|
{
|
|
int ncolors = 2, i;
|
|
|
|
for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
|
|
struct x86_cache_info *cai;
|
|
int tcolors;
|
|
|
|
cai = &ci->ci_cinfo[i];
|
|
|
|
tcolors = atop(cai->cai_totalsize);
|
|
switch(cai->cai_associativity) {
|
|
case 0xff:
|
|
tcolors = 1; /* fully associative */
|
|
break;
|
|
case 0:
|
|
case 1:
|
|
break;
|
|
default:
|
|
tcolors /= cai->cai_associativity;
|
|
}
|
|
ncolors = max(ncolors, tcolors);
|
|
}
|
|
|
|
/*
|
|
* Knowing the size of the largest cache on this CPU, potentially
|
|
* re-color our pages.
|
|
*/
|
|
aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
|
|
uvm_page_recolor(ncolors);
|
|
}
|
|
|
|
static void
|
|
cpu_attach_common(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct cpu_softc *sc = device_private(self);
|
|
struct cpu_attach_args *caa = aux;
|
|
struct cpu_info *ci;
|
|
uintptr_t ptr;
|
|
int cpunum = caa->cpu_number;
|
|
static bool again = false;
|
|
|
|
sc->sc_dev = self;
|
|
|
|
/*
|
|
* If we're an Application Processor, allocate a cpu_info
|
|
* structure, otherwise use the primary's.
|
|
*/
|
|
if (caa->cpu_role == CPU_ROLE_AP) {
|
|
aprint_naive(": Application Processor\n");
|
|
ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
|
|
KM_SLEEP);
|
|
ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
|
|
memset(ci, 0, sizeof(*ci));
|
|
#ifdef TRAPLOG
|
|
ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
|
|
#endif
|
|
} else {
|
|
aprint_naive(": %s Processor\n",
|
|
caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
|
|
ci = &cpu_info_primary;
|
|
}
|
|
|
|
ci->ci_self = ci;
|
|
sc->sc_info = ci;
|
|
ci->ci_dev = self;
|
|
ci->ci_cpuid = cpunum;
|
|
|
|
KASSERT(HYPERVISOR_shared_info != NULL);
|
|
ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
|
|
|
|
KASSERT(ci->ci_func == 0);
|
|
ci->ci_func = caa->cpu_func;
|
|
|
|
/* Must be called before mi_cpu_attach(). */
|
|
cpu_vm_init(ci);
|
|
|
|
if (caa->cpu_role == CPU_ROLE_AP) {
|
|
int error;
|
|
|
|
error = mi_cpu_attach(ci);
|
|
|
|
KASSERT(ci->ci_data.cpu_idlelwp != NULL);
|
|
if (error != 0) {
|
|
aprint_normal("\n");
|
|
aprint_error_dev(self,
|
|
"mi_cpu_attach failed with %d\n", error);
|
|
return;
|
|
}
|
|
|
|
} else {
|
|
KASSERT(ci->ci_data.cpu_idlelwp != NULL);
|
|
}
|
|
|
|
ci->ci_cpumask = (1 << cpu_index(ci));
|
|
pmap_reference(pmap_kernel());
|
|
ci->ci_pmap = pmap_kernel();
|
|
ci->ci_tlbstate = TLBSTATE_STALE;
|
|
|
|
/*
|
|
* Boot processor may not be attached first, but the below
|
|
* must be done to allow booting other processors.
|
|
*/
|
|
if (!again) {
|
|
atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
|
|
/* Basic init. */
|
|
cpu_intr_init(ci);
|
|
cpu_get_tsc_freq(ci);
|
|
cpu_init(ci);
|
|
pmap_cpu_init_late(ci); /* XXX: cosmetic */
|
|
|
|
/* Every processor needs to init it's own ipi h/w (similar to lapic) */
|
|
xen_ipi_init();
|
|
/* XXX: clock_init() */
|
|
|
|
/* Make sure DELAY() is initialized. */
|
|
DELAY(1);
|
|
again = true;
|
|
}
|
|
|
|
/* further PCB init done later. */
|
|
|
|
switch (caa->cpu_role) {
|
|
case CPU_ROLE_SP:
|
|
atomic_or_32(&ci->ci_flags, CPUF_SP);
|
|
cpu_identify(ci);
|
|
#if 0
|
|
x86_errata();
|
|
#endif
|
|
x86_cpu_idle_init();
|
|
|
|
break;
|
|
|
|
case CPU_ROLE_BP:
|
|
atomic_or_32(&ci->ci_flags, CPUF_BSP);
|
|
cpu_identify(ci);
|
|
cpu_init(ci);
|
|
#if 0
|
|
x86_errata();
|
|
#endif
|
|
x86_cpu_idle_init();
|
|
|
|
break;
|
|
|
|
case CPU_ROLE_AP:
|
|
atomic_or_32(&ci->ci_flags, CPUF_AP);
|
|
|
|
/*
|
|
* report on an AP
|
|
*/
|
|
|
|
#if defined(MULTIPROCESSOR)
|
|
/* interrupt handler stack */
|
|
cpu_intr_init(ci);
|
|
|
|
/* Setup per-cpu memory for gdt */
|
|
gdt_alloc_cpu(ci);
|
|
|
|
pmap_cpu_init_late(ci);
|
|
cpu_start_secondary(ci);
|
|
|
|
if (ci->ci_flags & CPUF_PRESENT) {
|
|
struct cpu_info *tmp;
|
|
|
|
cpu_identify(ci);
|
|
tmp = cpu_info_list;
|
|
while (tmp->ci_next)
|
|
tmp = tmp->ci_next;
|
|
|
|
tmp->ci_next = ci;
|
|
}
|
|
#else
|
|
aprint_error(": not started\n");
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
aprint_normal("\n");
|
|
panic("unknown processor type??\n");
|
|
}
|
|
|
|
pat_init(ci);
|
|
atomic_or_32(&cpus_attached, ci->ci_cpumask);
|
|
|
|
#ifdef MPVERBOSE
|
|
if (mp_verbose) {
|
|
struct lwp *l = ci->ci_data.cpu_idlelwp;
|
|
struct pcb *pcb = lwp_getpcb(l);
|
|
|
|
aprint_verbose_dev(self,
|
|
"idle lwp at %p, idle sp at 0x%p\n",
|
|
l,
|
|
#ifdef i386
|
|
(void *)pcb->pcb_esp
|
|
#else /* i386 */
|
|
(void *)pcb->pcb_rsp
|
|
#endif /* i386 */
|
|
);
|
|
|
|
}
|
|
#endif /* MPVERBOSE */
|
|
}
|
|
|
|
/*
|
|
* Initialize the processor appropriately.
|
|
*/
|
|
|
|
void
|
|
cpu_init(struct cpu_info *ci)
|
|
{
|
|
|
|
/*
|
|
* On a P6 or above, enable global TLB caching if the
|
|
* hardware supports it.
|
|
*/
|
|
if (cpu_feature[0] & CPUID_PGE)
|
|
lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
|
|
|
|
#ifdef XXXMTRR
|
|
/*
|
|
* On a P6 or above, initialize MTRR's if the hardware supports them.
|
|
*/
|
|
if (cpu_feature[0] & CPUID_MTRR) {
|
|
if ((ci->ci_flags & CPUF_AP) == 0)
|
|
i686_mtrr_init_first();
|
|
mtrr_init_cpu(ci);
|
|
}
|
|
#endif
|
|
/*
|
|
* If we have FXSAVE/FXRESTOR, use them.
|
|
*/
|
|
if (cpu_feature[0] & CPUID_FXSR) {
|
|
lcr4(rcr4() | CR4_OSFXSR);
|
|
|
|
/*
|
|
* If we have SSE/SSE2, enable XMM exceptions.
|
|
*/
|
|
if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
|
|
lcr4(rcr4() | CR4_OSXMMEXCPT);
|
|
}
|
|
|
|
#ifdef __x86_64__
|
|
/* No user PGD mapped for this CPU yet */
|
|
ci->ci_xen_current_user_pgd = 0;
|
|
#endif
|
|
|
|
atomic_or_32(&cpus_running, ci->ci_cpumask);
|
|
atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
|
|
|
|
/* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
|
|
}
|
|
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
|
|
void
|
|
cpu_boot_secondary_processors(void)
|
|
{
|
|
struct cpu_info *ci;
|
|
u_long i;
|
|
for (i = 0; i < maxcpus; i++) {
|
|
ci = cpu_lookup(i);
|
|
if (ci == NULL)
|
|
continue;
|
|
if (ci->ci_data.cpu_idlelwp == NULL)
|
|
continue;
|
|
if ((ci->ci_flags & CPUF_PRESENT) == 0)
|
|
continue;
|
|
if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
|
|
continue;
|
|
cpu_boot_secondary(ci);
|
|
}
|
|
|
|
x86_mp_online = true;
|
|
}
|
|
|
|
static void
|
|
cpu_init_idle_lwp(struct cpu_info *ci)
|
|
{
|
|
struct lwp *l = ci->ci_data.cpu_idlelwp;
|
|
struct pcb *pcb = lwp_getpcb(l);
|
|
|
|
pcb->pcb_cr0 = rcr0();
|
|
}
|
|
|
|
void
|
|
cpu_init_idle_lwps(void)
|
|
{
|
|
struct cpu_info *ci;
|
|
u_long i;
|
|
|
|
for (i = 0; i < maxcpus; i++) {
|
|
ci = cpu_lookup(i);
|
|
if (ci == NULL)
|
|
continue;
|
|
if (ci->ci_data.cpu_idlelwp == NULL)
|
|
continue;
|
|
if ((ci->ci_flags & CPUF_PRESENT) == 0)
|
|
continue;
|
|
cpu_init_idle_lwp(ci);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cpu_start_secondary(struct cpu_info *ci)
|
|
{
|
|
int i;
|
|
|
|
aprint_debug_dev(ci->ci_dev, "starting\n");
|
|
|
|
ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
|
|
|
|
if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* wait for it to become ready
|
|
*/
|
|
for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
|
|
delay(10);
|
|
}
|
|
if ((ci->ci_flags & CPUF_PRESENT) == 0) {
|
|
aprint_error_dev(ci->ci_dev, "failed to become ready\n");
|
|
#if defined(MPDEBUG) && defined(DDB)
|
|
printf("dropping into debugger; continue from here to resume boot\n");
|
|
Debugger();
|
|
#endif
|
|
}
|
|
|
|
CPU_START_CLEANUP(ci);
|
|
}
|
|
|
|
void
|
|
cpu_boot_secondary(struct cpu_info *ci)
|
|
{
|
|
int i;
|
|
atomic_or_32(&ci->ci_flags, CPUF_GO);
|
|
for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
|
|
delay(10);
|
|
}
|
|
if ((ci->ci_flags & CPUF_RUNNING) == 0) {
|
|
aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
|
|
#if defined(MPDEBUG) && defined(DDB)
|
|
printf("dropping into debugger; continue from here to resume boot\n");
|
|
Debugger();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* APs end up here immediately after initialisation and VCPUOP_up in
|
|
* mp_cpu_start().
|
|
* At this point, we are running in the idle pcb/idle stack of the new
|
|
* CPU. This function jumps to the idle loop and starts looking for
|
|
* work.
|
|
*/
|
|
extern void x86_64_tls_switch(struct lwp *);
|
|
void
|
|
cpu_hatch(void *v)
|
|
{
|
|
struct cpu_info *ci = (struct cpu_info *)v;
|
|
struct pcb *pcb;
|
|
int s, i;
|
|
|
|
/* Setup TLS and kernel GS/FS */
|
|
cpu_init_msrs(ci, true);
|
|
cpu_init_idt();
|
|
gdt_init_cpu(ci);
|
|
|
|
cpu_probe(ci);
|
|
|
|
atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
|
|
|
|
while ((ci->ci_flags & CPUF_GO) == 0) {
|
|
/* Don't use delay, boot CPU may be patching the text. */
|
|
for (i = 10000; i != 0; i--)
|
|
x86_pause();
|
|
}
|
|
|
|
/* Because the text may have been patched in x86_patch(). */
|
|
x86_flush();
|
|
tlbflushg();
|
|
|
|
KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
|
|
|
|
pcb = lwp_getpcb(curlwp);
|
|
pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
|
|
pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
|
|
|
|
xen_ipi_init();
|
|
|
|
xen_initclocks();
|
|
|
|
/* XXX: lapic_initclocks(); */
|
|
|
|
#ifdef __x86_64__
|
|
fpuinit(ci);
|
|
#endif
|
|
|
|
lldt(GSEL(GLDT_SEL, SEL_KPL));
|
|
|
|
cpu_init(ci);
|
|
cpu_get_tsc_freq(ci);
|
|
|
|
s = splhigh();
|
|
x86_enable_intr();
|
|
splx(s);
|
|
#if 0
|
|
x86_errata();
|
|
#endif
|
|
|
|
aprint_debug_dev(ci->ci_dev, "running\n");
|
|
|
|
cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
|
|
|
|
panic("switch to idle_loop context returned!\n");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#if defined(DDB)
|
|
|
|
#include <ddb/db_output.h>
|
|
#include <machine/db_machdep.h>
|
|
|
|
/*
|
|
* Dump CPU information from ddb.
|
|
*/
|
|
void
|
|
cpu_debug_dump(void)
|
|
{
|
|
struct cpu_info *ci;
|
|
CPU_INFO_ITERATOR cii;
|
|
|
|
db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
db_printf("%p %s %ld %x %x %10p %10p\n",
|
|
ci,
|
|
ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
|
|
(long)ci->ci_cpuid,
|
|
ci->ci_flags, ci->ci_ipis,
|
|
ci->ci_curlwp,
|
|
ci->ci_fpcurlwp);
|
|
}
|
|
}
|
|
#endif /* DDB */
|
|
|
|
#endif /* MULTIPROCESSOR */
|
|
|
|
extern void hypervisor_callback(void);
|
|
extern void failsafe_callback(void);
|
|
#ifdef __x86_64__
|
|
typedef void (vector)(void);
|
|
extern vector Xsyscall, Xsyscall32;
|
|
#endif
|
|
|
|
/*
|
|
* Setup the "trampoline". On Xen, we setup nearly all cpu context
|
|
* outside a trampoline, so we prototype and call targetip like so:
|
|
* void targetip(struct cpu_info *);
|
|
*/
|
|
|
|
static void
|
|
gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
|
|
{
|
|
int i;
|
|
for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
|
|
|
|
frames[i] = ((paddr_t) xpmap_ptetomach(
|
|
(pt_entry_t *) (base + (i << PAGE_SHIFT))))
|
|
>> PAGE_SHIFT;
|
|
|
|
/* Mark Read-only */
|
|
pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
|
|
PG_RW);
|
|
}
|
|
}
|
|
|
|
#ifdef __x86_64__
|
|
extern char *ldtstore; /* XXX: Xen MP todo */
|
|
|
|
static void
|
|
xen_init_amd64_vcpuctxt(struct cpu_info *ci,
|
|
struct vcpu_guest_context *initctx,
|
|
void targetrip(struct cpu_info *))
|
|
{
|
|
/* page frames to point at GDT */
|
|
extern int gdt_size;
|
|
paddr_t frames[16];
|
|
psize_t gdt_ents;
|
|
|
|
struct lwp *l;
|
|
struct pcb *pcb;
|
|
|
|
volatile struct vcpu_info *vci;
|
|
|
|
KASSERT(ci != NULL);
|
|
KASSERT(ci != &cpu_info_primary);
|
|
KASSERT(initctx != NULL);
|
|
KASSERT(targetrip != NULL);
|
|
|
|
memset(initctx, 0, sizeof *initctx);
|
|
|
|
gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
|
|
KASSERT(gdt_ents <= 16);
|
|
|
|
gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
|
|
|
|
/* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
|
|
|
|
/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
|
|
|
|
l = ci->ci_data.cpu_idlelwp;
|
|
|
|
KASSERT(l != NULL);
|
|
pcb = lwp_getpcb(l);
|
|
KASSERT(pcb != NULL);
|
|
|
|
/* resume with interrupts off */
|
|
vci = ci->ci_vcpu;
|
|
vci->evtchn_upcall_mask = 1;
|
|
xen_mb();
|
|
|
|
/* resume in kernel-mode */
|
|
initctx->flags = VGCF_in_kernel | VGCF_online;
|
|
|
|
/* Stack and entry points:
|
|
* We arrange for the stack frame for cpu_hatch() to
|
|
* appear as a callee frame of lwp_trampoline(). Being a
|
|
* leaf frame prevents trampling on any of the MD stack setup
|
|
* that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
|
|
*/
|
|
|
|
initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
|
|
initctx->user_regs.rip = (vaddr_t) targetrip;
|
|
|
|
initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
|
|
|
|
initctx->user_regs.rflags = pcb->pcb_flags;
|
|
initctx->user_regs.rsp = pcb->pcb_rsp;
|
|
|
|
/* Data segments */
|
|
initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
|
|
initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
|
|
initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
|
|
|
|
/* GDT */
|
|
memcpy(initctx->gdt_frames, frames, sizeof frames);
|
|
initctx->gdt_ents = gdt_ents;
|
|
|
|
/* LDT */
|
|
initctx->ldt_base = (unsigned long) ldtstore;
|
|
initctx->ldt_ents = LDT_SIZE >> 3;
|
|
|
|
/* Kernel context state */
|
|
initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
|
|
initctx->kernel_sp = pcb->pcb_rsp0;
|
|
initctx->ctrlreg[0] = pcb->pcb_cr0;
|
|
initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
|
|
initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
|
|
/*
|
|
* Use pmap_kernel() L4 PD directly, until we setup the
|
|
* per-cpu L4 PD in pmap_cpu_init_late()
|
|
*/
|
|
initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
|
|
initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
|
|
|
|
|
|
/* Xen callbacks */
|
|
initctx->event_callback_eip = (unsigned long) hypervisor_callback;
|
|
initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
|
|
initctx->syscall_callback_eip = (unsigned long) Xsyscall;
|
|
|
|
return;
|
|
}
|
|
#else /* i386 */
|
|
extern union descriptor *ldt;
|
|
extern void Xsyscall(void);
|
|
|
|
static void
|
|
xen_init_i386_vcpuctxt(struct cpu_info *ci,
|
|
struct vcpu_guest_context *initctx,
|
|
void targeteip(struct cpu_info *))
|
|
{
|
|
/* page frames to point at GDT */
|
|
extern int gdt_size;
|
|
paddr_t frames[16];
|
|
psize_t gdt_ents;
|
|
|
|
struct lwp *l;
|
|
struct pcb *pcb;
|
|
|
|
volatile struct vcpu_info *vci;
|
|
|
|
KASSERT(ci != NULL);
|
|
KASSERT(ci != &cpu_info_primary);
|
|
KASSERT(initctx != NULL);
|
|
KASSERT(targeteip != NULL);
|
|
|
|
memset(initctx, 0, sizeof *initctx);
|
|
|
|
gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
|
|
KASSERT(gdt_ents <= 16);
|
|
|
|
gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
|
|
|
|
/*
|
|
* Initialise the vcpu context:
|
|
* We use this cpu's idle_loop() pcb context.
|
|
*/
|
|
|
|
l = ci->ci_data.cpu_idlelwp;
|
|
|
|
KASSERT(l != NULL);
|
|
pcb = lwp_getpcb(l);
|
|
KASSERT(pcb != NULL);
|
|
|
|
/* resume with interrupts off */
|
|
vci = ci->ci_vcpu;
|
|
vci->evtchn_upcall_mask = 1;
|
|
xen_mb();
|
|
|
|
/* resume in kernel-mode */
|
|
initctx->flags = VGCF_in_kernel | VGCF_online;
|
|
|
|
/* Stack frame setup for cpu_hatch():
|
|
* We arrange for the stack frame for cpu_hatch() to
|
|
* appear as a callee frame of lwp_trampoline(). Being a
|
|
* leaf frame prevents trampling on any of the MD stack setup
|
|
* that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
|
|
*/
|
|
|
|
initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
|
|
arg1 */
|
|
{ /* targeteip(ci); */
|
|
uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
|
|
arg[1] = (uint32_t) ci; /* arg1 */
|
|
|
|
}
|
|
|
|
initctx->user_regs.eip = (vaddr_t) targeteip;
|
|
initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
|
|
initctx->user_regs.eflags |= pcb->pcb_iopl;
|
|
|
|
/* Data segments */
|
|
initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
|
|
initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
|
|
initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
|
|
initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
|
|
|
|
/* GDT */
|
|
memcpy(initctx->gdt_frames, frames, sizeof frames);
|
|
initctx->gdt_ents = gdt_ents;
|
|
|
|
/* LDT */
|
|
initctx->ldt_base = (unsigned long) ldt;
|
|
initctx->ldt_ents = NLDT;
|
|
|
|
/* Kernel context state */
|
|
initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
|
|
initctx->kernel_sp = pcb->pcb_esp0;
|
|
initctx->ctrlreg[0] = pcb->pcb_cr0;
|
|
initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
|
|
initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
|
|
#ifdef PAE
|
|
initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
|
|
#else /* PAE */
|
|
initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
|
|
#endif /* PAE */
|
|
initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
|
|
|
|
|
|
/* Xen callbacks */
|
|
initctx->event_callback_eip = (unsigned long) hypervisor_callback;
|
|
initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
|
|
initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
|
|
initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
|
|
|
|
return;
|
|
}
|
|
#endif /* __x86_64__ */
|
|
|
|
int
|
|
mp_cpu_start(struct cpu_info *ci, vaddr_t target)
|
|
{
|
|
|
|
int hyperror;
|
|
struct vcpu_guest_context vcpuctx;
|
|
|
|
KASSERT(ci != NULL);
|
|
KASSERT(ci != &cpu_info_primary);
|
|
KASSERT(ci->ci_flags & CPUF_AP);
|
|
|
|
#ifdef __x86_64__
|
|
xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
|
|
#else /* i386 */
|
|
xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
|
|
#endif /* __x86_64__ */
|
|
|
|
/* Initialise the given vcpu to execute cpu_hatch(ci); */
|
|
if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
|
|
aprint_error(": context initialisation failed. errno = %d\n", hyperror);
|
|
return hyperror;
|
|
}
|
|
|
|
/* Start it up */
|
|
|
|
/* First bring it down */
|
|
if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
|
|
aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
|
|
return hyperror;
|
|
}
|
|
|
|
if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
|
|
aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
|
|
return hyperror;
|
|
}
|
|
|
|
if (!vcpu_is_up(ci)) {
|
|
aprint_error(": did not come up\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
mp_cpu_start_cleanup(struct cpu_info *ci)
|
|
{
|
|
#if 0
|
|
/*
|
|
* Ensure the NVRAM reset byte contains something vaguely sane.
|
|
*/
|
|
|
|
outb(IO_RTC, NVRAM_RESET);
|
|
outb(IO_RTC+1, NVRAM_RESET_RST);
|
|
#endif
|
|
if (vcpu_is_up(ci)) {
|
|
aprint_debug_dev(ci->ci_dev, "is started.\n");
|
|
}
|
|
else {
|
|
aprint_error_dev(ci->ci_dev, "did not start up.\n");
|
|
}
|
|
|
|
}
|
|
|
|
/* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
|
|
static struct cpu_info *cpu_primary(void)
|
|
{
|
|
return &cpu_info_primary;
|
|
}
|
|
struct cpu_info * (*xpq_cpu)(void) = cpu_primary;
|
|
|
|
void
|
|
cpu_init_msrs(struct cpu_info *ci, bool full)
|
|
{
|
|
#ifdef __x86_64__
|
|
if (full) {
|
|
HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
|
|
HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
|
|
HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
|
|
xpq_cpu = x86_curcpu;
|
|
}
|
|
#endif /* __x86_64__ */
|
|
|
|
if (cpu_feature[2] & CPUID_NOX)
|
|
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
|
|
|
|
}
|
|
|
|
void
|
|
cpu_offline_md(void)
|
|
{
|
|
int s;
|
|
|
|
s = splhigh();
|
|
#ifdef __i386__
|
|
npxsave_cpu(true);
|
|
#else
|
|
fpusave_cpu(true);
|
|
#endif
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
cpu_get_tsc_freq(struct cpu_info *ci)
|
|
{
|
|
uint32_t vcpu_tversion;
|
|
const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
|
|
|
|
vcpu_tversion = tinfo->version;
|
|
while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
|
|
|
|
uint64_t freq = 1000000000ULL << 32;
|
|
freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
|
|
if ( tinfo->tsc_shift < 0 )
|
|
freq = freq << -tinfo->tsc_shift;
|
|
else
|
|
freq = freq >> tinfo->tsc_shift;
|
|
ci->ci_data.cpu_cc_freq = freq;
|
|
}
|
|
|
|
void
|
|
x86_cpu_idle_xen(void)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
|
|
KASSERT(ci->ci_ilevel == IPL_NONE);
|
|
|
|
x86_disable_intr();
|
|
if (!__predict_false(ci->ci_want_resched)) {
|
|
idle_block();
|
|
} else {
|
|
x86_enable_intr();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Loads pmap for the current CPU.
|
|
*/
|
|
void
|
|
cpu_load_pmap(struct pmap *pmap)
|
|
{
|
|
#ifdef i386
|
|
#ifdef PAE
|
|
int i, s;
|
|
struct cpu_info *ci;
|
|
|
|
s = splvm(); /* just to be safe */
|
|
ci = curcpu();
|
|
paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
|
|
/* don't update the kernel L3 slot */
|
|
for (i = 0 ; i < PDP_SIZE - 1; i++) {
|
|
xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
|
|
xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
|
|
}
|
|
splx(s);
|
|
tlbflush();
|
|
#else /* PAE */
|
|
lcr3(pmap_pdirpa(pmap, 0));
|
|
#endif /* PAE */
|
|
#endif /* i386 */
|
|
|
|
#ifdef __x86_64__
|
|
int i, s;
|
|
pd_entry_t *new_pgd;
|
|
struct cpu_info *ci;
|
|
paddr_t l4_pd_ma;
|
|
|
|
ci = curcpu();
|
|
l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
|
|
|
|
/*
|
|
* Map user space address in kernel space and load
|
|
* user cr3
|
|
*/
|
|
s = splvm();
|
|
new_pgd = pmap->pm_pdir;
|
|
|
|
/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
|
|
for (i = 0; i < PDIR_SLOT_PTE; i++) {
|
|
xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t), new_pgd[i]);
|
|
}
|
|
|
|
if (__predict_true(pmap != pmap_kernel())) {
|
|
xen_set_user_pgd(pmap_pdirpa(pmap, 0));
|
|
ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
|
|
}
|
|
else {
|
|
xpq_queue_pt_switch(l4_pd_ma);
|
|
ci->ci_xen_current_user_pgd = 0;
|
|
}
|
|
|
|
tlbflush();
|
|
splx(s);
|
|
|
|
#endif /* __x86_64__ */
|
|
}
|
|
|
|
/*
|
|
* pmap_cpu_init_late: perform late per-CPU initialization.
|
|
* Short note about percpu PDIR pages:
|
|
* Both the PAE and __x86_64__ architectures have per-cpu PDIR
|
|
* tables. This is to get around Xen's pagetable setup constraints for
|
|
* PAE (multiple L3[3]s cannot point to the same L2 - Xen
|
|
* will refuse to pin a table setup this way.) and for multiple cpus
|
|
* to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
|
|
*
|
|
* What this means for us is that the PDIR of the pmap_kernel() is
|
|
* considered to be a canonical "SHADOW" PDIR with the following
|
|
* properties:
|
|
* - Its recursive mapping points to itself
|
|
* - per-cpu recurseive mappings point to themselves
|
|
* - per-cpu L4 pages' kernel entries are expected to be in sync with
|
|
* the shadow
|
|
* - APDP_PDE_SHADOW accesses the shadow pdir
|
|
* - APDP_PDE accesses the per-cpu pdir
|
|
* - alternate mappings are considered per-cpu - however, x86 pmap
|
|
* currently partially consults the shadow - this works because the
|
|
* shadow PDE is updated together with the per-cpu entry (see:
|
|
* xen_pmap.c: pmap_map_ptes(), and the pmap is locked while the
|
|
* alternate ptes are mapped in.
|
|
*/
|
|
|
|
void
|
|
pmap_cpu_init_late(struct cpu_info *ci)
|
|
{
|
|
#if defined(PAE) || defined(__x86_64__)
|
|
/*
|
|
* The BP has already its own PD page allocated during early
|
|
* MD startup.
|
|
*/
|
|
|
|
if (ci == &cpu_info_primary)
|
|
return;
|
|
|
|
KASSERT(ci != NULL);
|
|
|
|
#if defined(PAE)
|
|
ci->ci_pae_l3_pdir = (paddr_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
|
|
UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
|
|
|
|
if (ci->ci_pae_l3_pdir == NULL) {
|
|
panic("%s: failed to allocate L3 per-cpu PD for CPU %d\n",
|
|
__func__, cpu_index(ci));
|
|
}
|
|
ci->ci_pae_l3_pdirpa = vtophys((vaddr_t) ci->ci_pae_l3_pdir);
|
|
KASSERT(ci->ci_pae_l3_pdirpa != 0);
|
|
|
|
/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
|
|
ci->ci_pae_l3_pdir[0] =
|
|
xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[0]) | PG_V;
|
|
ci->ci_pae_l3_pdir[1] =
|
|
xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[1]) | PG_V;
|
|
ci->ci_pae_l3_pdir[2] =
|
|
xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[2]) | PG_V;
|
|
#endif /* PAE */
|
|
|
|
ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
|
|
UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
|
|
|
|
if (ci->ci_kpm_pdir == NULL) {
|
|
panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
|
|
__func__, cpu_index(ci));
|
|
}
|
|
ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
|
|
KASSERT(ci->ci_kpm_pdirpa != 0);
|
|
|
|
#if defined(__x86_64__)
|
|
/*
|
|
* Copy over the pmap_kernel() shadow L4 entries
|
|
*/
|
|
|
|
memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
|
|
|
|
/* Recursive kernel mapping */
|
|
ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
|
|
#elif defined(PAE)
|
|
/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
|
|
memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
|
|
#endif /* __x86_64__ else PAE */
|
|
|
|
/* Xen wants R/O */
|
|
pmap_kenter_pa((vaddr_t)ci->ci_kpm_pdir, ci->ci_kpm_pdirpa,
|
|
VM_PROT_READ, 0);
|
|
|
|
#if defined(PAE)
|
|
/* Initialise L3 entry 3. This mapping is shared across all
|
|
* pmaps and is static, ie; loading a new pmap will not update
|
|
* this entry.
|
|
*/
|
|
|
|
ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
|
|
|
|
/* Mark L3 R/O (Xen wants this) */
|
|
pmap_kenter_pa((vaddr_t)ci->ci_pae_l3_pdir, ci->ci_pae_l3_pdirpa,
|
|
VM_PROT_READ, 0);
|
|
|
|
xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
|
|
|
|
#elif defined(__x86_64__)
|
|
xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
|
|
#endif /* PAE */
|
|
#endif /* defined(PAE) || defined(__x86_64__) */
|
|
}
|
|
|
|
/*
|
|
* Notify all other cpus to halt.
|
|
*/
|
|
|
|
void
|
|
cpu_broadcast_halt(void)
|
|
{
|
|
xen_broadcast_ipi(XEN_IPI_HALT);
|
|
}
|
|
|
|
/*
|
|
* Send a dummy ipi to a cpu.
|
|
*/
|
|
|
|
void
|
|
cpu_kick(struct cpu_info *ci)
|
|
{
|
|
(void)xen_send_ipi(ci, XEN_IPI_KICK);
|
|
}
|