NetBSD/sys/dev/ic/arn9280.c
2013-04-03 14:20:02 +00:00

629 lines
18 KiB
C

/* $NetBSD: arn9280.c,v 1.2 2013/04/03 14:20:02 christos Exp $ */
/* $OpenBSD: ar9280.c,v 1.18 2012/06/10 21:23:36 kettenis Exp $ */
/*-
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros 802.11a/g/n chipsets.
* Routines for AR9220, AR9223, AR9280 and AR9281 chipsets.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arn9280.c,v 1.2 2013/04/03 14:20:02 christos Exp $");
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>
#include <dev/ic/arn5008reg.h>
#include <dev/ic/arn5008.h>
#include <dev/ic/arn5416reg.h> /* We share the ROM layout. */
#include <dev/ic/arn5416.h> /* We share the ROM layout. */
#include <dev/ic/arn9280reg.h>
#include <dev/ic/arn9280.h>
#define Static static
Static void ar9280_init_from_rom(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
Static void ar9280_olpc_init(struct athn_softc *);
Static void ar9280_olpc_temp_compensation(struct athn_softc *);
Static void ar9280_setup(struct athn_softc *);
PUBLIC int
ar9280_attach(struct athn_softc *sc)
{
sc->sc_eep_base = AR5416_EEP_START_LOC;
sc->sc_eep_size = sizeof(struct ar5416_eeprom);
sc->sc_def_nf = AR9280_PHY_CCA_MAX_GOOD_VALUE;
sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 10;
sc->sc_led_pin = 1;
sc->sc_workaround = AR9280_WA_DEFAULT;
sc->sc_ops.setup = ar9280_setup;
sc->sc_ops.swap_rom = ar5416_swap_rom;
sc->sc_ops.init_from_rom = ar9280_init_from_rom;
sc->sc_ops.set_txpower = ar5416_set_txpower;
sc->sc_ops.set_synth = ar9280_set_synth;
sc->sc_ops.spur_mitigate = ar9280_spur_mitigate;
sc->sc_ops.get_spur_chans = ar5416_get_spur_chans;
sc->sc_ops.olpc_init = ar9280_olpc_init;
sc->sc_ops.olpc_temp_compensation = ar9280_olpc_temp_compensation;
sc->sc_ini = &ar9280_2_0_ini;
sc->sc_serdes = &ar9280_2_0_serdes;
return ar5008_attach(sc);
}
Static void
ar9280_setup(struct athn_softc *sc)
{
const struct ar5416_eeprom *eep = sc->sc_eep;
uint8_t type;
/* Determine if open loop power control should be used. */
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_19 &&
eep->baseEepHeader.openLoopPwrCntl)
sc->sc_flags |= ATHN_FLAG_OLPC;
/* Determine if fast PLL clock is supported. */
if (AR_SREV_9280_20(sc) &&
(sc->sc_eep_rev <= AR_EEP_MINOR_VER_16 ||
eep->baseEepHeader.fastClk5g))
sc->sc_flags |= ATHN_FLAG_FAST_PLL_CLOCK;
/*
* Determine if initialization value for AR_AN_TOP2 must be fixed.
* This is required for some AR9220 devices such as Ubiquiti SR71-12.
*/
if (AR_SREV_9280_20(sc) &&
sc->sc_eep_rev > AR_EEP_MINOR_VER_10 &&
!eep->baseEepHeader.pwdclkind) {
DPRINTFN(DBG_INIT, sc, "AR_AN_TOP2 fixup required\n");
sc->sc_flags |= ATHN_FLAG_AN_TOP2_FIXUP;
}
if (AR_SREV_9280_20(sc)) {
/* Check if we have a valid rxGainType field in ROM. */
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_17) {
/* Select initialization values based on ROM. */
type = eep->baseEepHeader.rxGainType;
DPRINTFN(DBG_INIT, sc, "Rx gain type=0x%x\n", type);
if (type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
sc->sc_rx_gain = &ar9280_2_0_rx_gain_23db_backoff;
else if (type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
sc->sc_rx_gain = &ar9280_2_0_rx_gain_13db_backoff;
else
sc->sc_rx_gain = &ar9280_2_0_rx_gain;
}
else
sc->sc_rx_gain = &ar9280_2_0_rx_gain;
/* Check if we have a valid txGainType field in ROM. */
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_19) {
/* Select initialization values based on ROM. */
type = eep->baseEepHeader.txGainType;
DPRINTFN(DBG_INIT, sc, "Tx gain type=0x%x\n", type);
if (type == AR_EEP_TXGAIN_HIGH_POWER)
sc->sc_tx_gain = &ar9280_2_0_tx_gain_high_power;
else
sc->sc_tx_gain = &ar9280_2_0_tx_gain;
}
else
sc->sc_tx_gain = &ar9280_2_0_tx_gain;
}
}
PUBLIC int
ar9280_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint32_t phy, reg, ndiv = 0;
uint32_t freq = c->ic_freq;
phy = AR_READ(sc, AR9280_PHY_SYNTH_CONTROL) & ~0x3fffffff;
if (IEEE80211_IS_CHAN_2GHZ(c)) {
phy |= (freq << 16) / 15;
phy |= AR9280_BMODE | AR9280_FRACMODE;
if (AR_SREV_9287_11_OR_LATER(sc)) {
/* NB: Magic values from the Linux driver. */
if (freq == 2484) { /* Channel 14. */
/* Japanese regulatory requirements. */
AR_WRITE(sc, AR_PHY(637), 0x00000000);
AR_WRITE(sc, AR_PHY(638), 0xefff0301);
AR_WRITE(sc, AR_PHY(639), 0xca9228ee);
}
else {
AR_WRITE(sc, AR_PHY(637), 0x00fffeff);
AR_WRITE(sc, AR_PHY(638), 0x00f5f9ff);
AR_WRITE(sc, AR_PHY(639), 0xb79f6427);
}
}
else {
reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) /* Channel 14. */
reg |= AR_PHY_CCK_TX_CTRL_JAPAN;
else
reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN;
AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);
}
}
else {
if (AR_SREV_9285_10_OR_LATER(sc) ||
sc->sc_eep_rev < AR_EEP_MINOR_VER_22 ||
!((struct ar5416_base_eep_header *)sc->sc_eep)->frac_n_5g) {
if ((freq % 20) == 0) {
ndiv = (freq * 3) / 60;
phy |= SM(AR9280_AMODE_REFSEL, 3);
}
else if ((freq % 10) == 0) {
ndiv = (freq * 6) / 60;
phy |= SM(AR9280_AMODE_REFSEL, 2);
}
}
if (ndiv != 0) {
phy |= (ndiv & 0x1ff) << 17;
phy |= (ndiv & ~0x1ff) * 2;
}
else {
phy |= (freq << 15) / 15;
phy |= AR9280_FRACMODE;
reg = AR_READ(sc, AR_AN_SYNTH9);
reg = RW(reg, AR_AN_SYNTH9_REFDIVA, 1);
AR_WRITE(sc, AR_AN_SYNTH9, reg);
}
}
AR_WRITE_BARRIER(sc);
DPRINTFN(DBG_RF, sc, "AR9280_PHY_SYNTH_CONTROL=0x%08x\n", phy);
AR_WRITE(sc, AR9280_PHY_SYNTH_CONTROL, phy);
AR_WRITE_BARRIER(sc);
return 0;
}
Static void
ar9280_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
const struct ar5416_eeprom *eep = sc->sc_eep;
const struct ar5416_modal_eep_header *modal;
uint32_t reg, offset;
uint8_t txRxAtten;
int i;
modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
for (i = 0; i < AR9280_MAX_CHAINS; i++) {
if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
offset = chainoffset[i];
else
offset = i * 0x1000;
AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
modal->antCtrlChain[i]);
reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
modal->iqCalICh[i]);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
modal->iqCalQCh[i]);
AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) {
reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
modal->bswMargin[i]);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
modal->bswAtten[i]);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
modal->xatten2Margin[i]);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
modal->xatten2Db[i]);
AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
}
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3)
txRxAtten = modal->txRxAttenCh[i];
else /* Workaround for ROM versions < 14.3. */
txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44;
reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN,
txRxAtten);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN,
modal->rxTxMarginCh[i]);
AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
}
if (IEEE80211_IS_CHAN_2GHZ(c)) {
reg = AR_READ(sc, AR_AN_RF2G1_CH0);
reg = RW(reg, AR_AN_RF2G1_CH0_OB, modal->ob);
reg = RW(reg, AR_AN_RF2G1_CH0_DB, modal->db);
AR_WRITE(sc, AR_AN_RF2G1_CH0, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR_AN_RF2G1_CH1);
reg = RW(reg, AR_AN_RF2G1_CH1_OB, modal->ob_ch1);
reg = RW(reg, AR_AN_RF2G1_CH1_DB, modal->db_ch1);
AR_WRITE(sc, AR_AN_RF2G1_CH1, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
}
else {
reg = AR_READ(sc, AR_AN_RF5G1_CH0);
reg = RW(reg, AR_AN_RF5G1_CH0_OB5, modal->ob);
reg = RW(reg, AR_AN_RF5G1_CH0_DB5, modal->db);
AR_WRITE(sc, AR_AN_RF5G1_CH0, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR_AN_RF5G1_CH1);
reg = RW(reg, AR_AN_RF5G1_CH1_OB5, modal->ob_ch1);
reg = RW(reg, AR_AN_RF5G1_CH1_DB5, modal->db_ch1);
AR_WRITE(sc, AR_AN_RF5G1_CH1, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
}
reg = AR_READ(sc, AR_AN_TOP2);
if ((sc->sc_flags & ATHN_FLAG_USB) && IEEE80211_IS_CHAN_5GHZ(c)) {
/*
* Hardcode the output voltage of x-PA bias LDO to the
* lowest value for UB94 such that the card doesn't get
* too hot.
*/
reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, 0);
}
else
reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl);
if (modal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)
reg |= AR_AN_TOP2_LOCALBIAS;
else
reg &= ~AR_AN_TOP2_LOCALBIAS;
AR_WRITE(sc, AR_AN_TOP2, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR_PHY_XPA_CFG);
if (modal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)
reg |= AR_PHY_FORCE_XPA_CFG;
else
reg &= ~AR_PHY_FORCE_XPA_CFG;
AR_WRITE(sc, AR_PHY_XPA_CFG, reg);
reg = AR_READ(sc, AR_PHY_SETTLING);
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
AR_WRITE(sc, AR_PHY_SETTLING, reg);
reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
reg = AR_READ(sc, AR_PHY_RF_CTL3);
reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
reg = AR_READ(sc, AR_PHY_CCA(0));
reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_CCA(0), reg);
reg = AR_READ(sc, AR_PHY_EXT_CCA0);
reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
reg = AR_READ(sc, AR_PHY_RF_CTL2);
reg = RW(reg, AR_PHY_TX_END_DATA_START,
modal->txFrameToDataStart);
reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
}
#ifndef IEEE80211_NO_HT
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
/* Overwrite switch settling with HT-40 value. */
reg = AR_READ(sc, AR_PHY_SETTLING);
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
AR_WRITE(sc, AR_PHY_SETTLING, reg);
}
#endif
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_19) {
reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
reg = RW(reg, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
MS(modal->miscBits, AR5416_EEP_MISC_TX_DAC_SCALE_CCK));
AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);
}
if (AR_SREV_9280_20(sc) &&
sc->sc_eep_rev >= AR_EEP_MINOR_VER_20) {
reg = AR_READ(sc, AR_AN_TOP1);
if (eep->baseEepHeader.dacLpMode &&
(IEEE80211_IS_CHAN_2GHZ(c) ||
!eep->baseEepHeader.dacHiPwrMode_5G))
reg |= AR_AN_TOP1_DACLPMODE;
else
reg &= ~AR_AN_TOP1_DACLPMODE;
AR_WRITE(sc, AR_AN_TOP1, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR_PHY_FRAME_CTL);
reg = RW(reg, AR_PHY_FRAME_CTL_TX_CLIP,
MS(modal->miscBits, AR5416_EEP_MISC_TX_CLIP));
AR_WRITE(sc, AR_PHY_FRAME_CTL, reg);
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL9);
reg = RW(reg, AR_PHY_TX_DESIRED_SCALE_CCK,
eep->baseEepHeader.desiredScaleCCK);
AR_WRITE(sc, AR_PHY_TX_PWRCTRL9, reg);
}
AR_WRITE_BARRIER(sc);
}
PUBLIC void
ar9280_olpc_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
int chain, uint8_t *boundaries, uint8_t *pdadcs, uint8_t *txgain)
{
const struct ar5416_eeprom *eep = sc->sc_eep;
const struct ar_cal_data_per_freq_olpc *pierdata;
const uint8_t *pierfreq;
uint8_t fbin, pcdac, pwr, idx;
int i, lo, hi, npiers;
if (IEEE80211_IS_CHAN_2GHZ(c)) {
pierfreq = eep->calFreqPier2G;
pierdata = (const struct ar_cal_data_per_freq_olpc *)
eep->calPierData2G[chain];
npiers = AR5416_NUM_2G_CAL_PIERS;
}
else {
pierfreq = eep->calFreqPier5G;
pierdata = (const struct ar_cal_data_per_freq_olpc *)
eep->calPierData5G[chain];
npiers = AR5416_NUM_5G_CAL_PIERS;
}
/* Find channel in ROM pier table. */
fbin = athn_chan2fbin(c);
athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
/* Get average. */
pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2;
pwr /= 2; /* Convert to dB. */
/* Find power control digital-to-analog converter (PCDAC) value. */
pcdac = pierdata[hi].pcdac[0][0];
for (idx = 0; idx < AR9280_TX_GAIN_TABLE_SIZE - 1; idx++)
if (pcdac <= sc->sc_tx_gain_tbl[idx])
break;
*txgain = idx;
DPRINTFN(DBG_RF, sc,
"fbin=%d lo=%d hi=%d pwr=%d pcdac=%d txgain=%d\n",
fbin, lo, hi, pwr, pcdac, idx);
/* Fill phase domain analog-to-digital converter (PDADC) table. */
for (i = 0; i < AR_NUM_PDADC_VALUES; i++)
pdadcs[i] = (i < pwr) ? 0x00 : 0xff;
for (i = 0; i < AR_PD_GAINS_IN_MASK; i++)
boundaries[i] = AR9280_PD_GAIN_BOUNDARY_DEFAULT;
}
PUBLIC void
ar9280_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
const struct ar_spur_chan *spurchans;
int spur, bin, spur_delta_phase, spur_freq_sd, spur_subchannel_sd;
int spur_off, range, i;
/* NB: Always clear. */
AR_CLRBITS(sc, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
range = (extc != NULL) ? 19 : 10;
spurchans = sc->sc_ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c));
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
spur = spurchans[i].spurChan;
if (spur == AR_NO_SPUR)
return; /* XXX disable if it was enabled! */
spur /= 10;
if (IEEE80211_IS_CHAN_2GHZ(c))
spur += AR_BASE_FREQ_2GHZ;
else
spur += AR_BASE_FREQ_5GHZ;
spur -= c->ic_freq;
if (abs(spur) < range)
break;
}
if (i == AR_EEPROM_MODAL_SPURS)
return; /* XXX disable if it was enabled! */
DPRINTFN(DBG_RF, sc, "enabling spur mitigation\n");
AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
AR_WRITE(sc, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH));
#ifndef IEEE80211_NO_HT
if (extc != NULL) {
spur_delta_phase = (spur * 262144) / 10;
if (spur < 0) {
spur_subchannel_sd = 1;
spur_off = spur + 10;
}
else {
spur_subchannel_sd = 0;
spur_off = spur - 10;
}
}
else
#endif
{
spur_delta_phase = (spur * 524288) / 10;
spur_subchannel_sd = 0;
spur_off = spur;
}
if (IEEE80211_IS_CHAN_2GHZ(c))
spur_freq_sd = (spur_off * 2048) / 44;
else
spur_freq_sd = (spur_off * 2048) / 40;
AR_WRITE(sc, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) |
SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase));
AR_WRITE(sc, AR_PHY_SFCORR_EXT,
SM(AR_PHY_SFCORR_SPUR_SUBCHNL_SD, spur_subchannel_sd));
AR_WRITE_BARRIER(sc);
bin = spur * 320;
ar5008_set_viterbi_mask(sc, bin);
}
PUBLIC void
ar9280_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
{
const struct athn_gain *prog = sc->sc_rx_gain;
const uint32_t *pvals;
int i;
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = prog->vals_2g;
else
pvals = prog->vals_5g;
for (i = 0; i < prog->nregs; i++)
AR_WRITE(sc, prog->regs[i], pvals[i]);
}
PUBLIC void
ar9280_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
{
const struct athn_gain *prog = sc->sc_tx_gain;
const uint32_t *pvals;
int i;
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = prog->vals_2g;
else
pvals = prog->vals_5g;
for (i = 0; i < prog->nregs; i++)
AR_WRITE(sc, prog->regs[i], pvals[i]);
}
Static void
ar9280_olpc_init(struct athn_softc *sc)
{
uint32_t reg;
int i;
/* Save original Tx gain values. */
for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) {
reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
sc->sc_tx_gain_tbl[i] = MS(reg, AR_PHY_TX_GAIN);
}
/* Initial Tx gain temperature compensation. */
sc->sc_tcomp = 0;
}
Static void
ar9280_olpc_temp_compensation(struct athn_softc *sc)
{
const struct ar5416_eeprom *eep = sc->sc_eep;
int8_t pdadc, txgain, tcomp;
uint32_t reg;
int i;
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4);
pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
DPRINTFN(DBG_RF, sc, "PD Avg Out=%d\n", pdadc);
if (sc->sc_pdadc == 0 || pdadc == 0)
return; /* No frames transmitted yet. */
/* Compute Tx gain temperature compensation. */
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_20 &&
eep->baseEepHeader.dacHiPwrMode_5G)
tcomp = (pdadc - sc->sc_pdadc + 4) / 8;
else
tcomp = (pdadc - sc->sc_pdadc + 5) / 10;
DPRINTFN(DBG_RF, sc, "OLPC temp compensation=%d\n", tcomp);
if (tcomp == sc->sc_tcomp)
return; /* Don't rewrite the same values. */
sc->sc_tcomp = tcomp;
/* Adjust Tx gain values. */
for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) {
txgain = sc->sc_tx_gain_tbl[i] - tcomp;
if (txgain < 0)
txgain = 0;
reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
reg = RW(reg, AR_PHY_TX_GAIN, txgain);
AR_WRITE(sc, AR_PHY_TX_GAIN_TBL(i), reg);
}
AR_WRITE_BARRIER(sc);
}