428 lines
12 KiB
C
428 lines
12 KiB
C
/* $NetBSD: booke_pmap.c,v 1.16 2012/09/07 18:05:11 matt Exp $ */
|
|
/*-
|
|
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
|
|
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
|
|
*
|
|
* This material is based upon work supported by the Defense Advanced Research
|
|
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
|
|
* Contract No. N66001-09-C-2073.
|
|
* Approved for Public Release, Distribution Unlimited
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#define __PMAP_PRIVATE
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.16 2012/09/07 18:05:11 matt Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kcore.h>
|
|
#include <sys/buf.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <machine/pmap.h>
|
|
|
|
/*
|
|
* Initialize the kernel pmap.
|
|
*/
|
|
#ifdef MULTIPROCESSOR
|
|
#define PMAP_SIZE offsetof(struct pmap, pm_pai[MAXCPUS])
|
|
#else
|
|
#define PMAP_SIZE sizeof(struct pmap)
|
|
#endif
|
|
|
|
CTASSERT(sizeof(pmap_segtab_t) == NBPG);
|
|
|
|
pmap_segtab_t pmap_kernel_segtab;
|
|
|
|
void
|
|
pmap_procwr(struct proc *p, vaddr_t va, size_t len)
|
|
{
|
|
struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
|
|
vsize_t off = va & PAGE_SIZE;
|
|
|
|
kpreempt_disable();
|
|
for (const vaddr_t eva = va + len; va < eva; off = 0) {
|
|
const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
|
|
pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
|
|
if (ptep == NULL) {
|
|
va = segeva;
|
|
continue;
|
|
}
|
|
pt_entry_t pt_entry = *ptep;
|
|
if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
|
|
va = segeva;
|
|
continue;
|
|
}
|
|
kpreempt_enable();
|
|
dcache_wb(pte_to_paddr(pt_entry), segeva - va);
|
|
icache_inv(pte_to_paddr(pt_entry), segeva - va);
|
|
kpreempt_disable();
|
|
va = segeva;
|
|
}
|
|
kpreempt_enable();
|
|
}
|
|
|
|
void
|
|
pmap_md_page_syncicache(struct vm_page *pg, __cpuset_t onproc)
|
|
{
|
|
/*
|
|
* If onproc is empty, we could do a
|
|
* pmap_page_protect(pg, VM_PROT_NONE) and remove all
|
|
* mappings of the page and clear its execness. Then
|
|
* the next time page is faulted, it will get icache
|
|
* synched. But this is easier. :)
|
|
*/
|
|
paddr_t pa = VM_PAGE_TO_PHYS(pg);
|
|
dcache_wb_page(pa);
|
|
icache_inv_page(pa);
|
|
}
|
|
|
|
vaddr_t
|
|
pmap_md_direct_map_paddr(paddr_t pa)
|
|
{
|
|
return (vaddr_t) pa;
|
|
}
|
|
|
|
bool
|
|
pmap_md_direct_mapped_vaddr_p(vaddr_t va)
|
|
{
|
|
return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
|
|
}
|
|
|
|
paddr_t
|
|
pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
|
|
{
|
|
return (paddr_t) va;
|
|
}
|
|
|
|
#ifdef PMAP_MINIMALTLB
|
|
static pt_entry_t *
|
|
kvtopte(const pmap_segtab_t *stp, vaddr_t va)
|
|
{
|
|
pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
|
|
if (ptep == NULL)
|
|
return NULL;
|
|
return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
|
|
}
|
|
|
|
vaddr_t
|
|
pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
|
|
{
|
|
const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
|
|
KASSERT(sva == trunc_page(sva));
|
|
pt_entry_t *ptep = kvtopte(stp, sva);
|
|
for (; sva < eva; sva += NBPG) {
|
|
*ptep++ = pt_entry ? (sva | pt_entry) : 0;
|
|
}
|
|
return sva;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Bootstrap the system enough to run with virtual memory.
|
|
* firstaddr is the first unused kseg0 address (not page aligned).
|
|
*/
|
|
vaddr_t
|
|
pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
|
|
phys_ram_seg_t *avail, size_t cnt)
|
|
{
|
|
pmap_segtab_t * const stp = &pmap_kernel_segtab;
|
|
|
|
/*
|
|
* Initialize the kernel segment table.
|
|
*/
|
|
pmap_kernel()->pm_segtab = stp;
|
|
curcpu()->ci_pmap_kern_segtab = stp;
|
|
|
|
KASSERT(endkernel == trunc_page(endkernel));
|
|
|
|
/*
|
|
* Compute the number of pages kmem_arena will have.
|
|
*/
|
|
kmeminit_nkmempages();
|
|
|
|
/*
|
|
* Figure out how many PTE's are necessary to map the kernel.
|
|
* We also reserve space for kmem_alloc_pageable() for vm_fork().
|
|
*/
|
|
|
|
/* Get size of buffer cache and set an upper limit */
|
|
buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
|
|
vsize_t bufsz = buf_memcalc();
|
|
buf_setvalimit(bufsz);
|
|
|
|
vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
|
|
+ (ubc_nwins << ubc_winshift)
|
|
+ bufsz
|
|
+ 16 * NCARGS
|
|
+ pager_map_size
|
|
+ maxproc * USPACE
|
|
#ifdef SYSVSHM
|
|
+ NBPG * shminfo.shmall
|
|
#endif
|
|
+ NBPG * nkmempages) >> SEGSHIFT;
|
|
|
|
/*
|
|
* Initialize `FYI' variables. Note we're relying on
|
|
* the fact that BSEARCH sorts the vm_physmem[] array
|
|
* for us. Must do this before uvm_pageboot_alloc()
|
|
* can be called.
|
|
*/
|
|
pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
|
|
pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
|
|
const size_t max_nsegtabs =
|
|
(pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
|
|
- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
|
|
if (kv_nsegtabs >= max_nsegtabs) {
|
|
pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
|
|
kv_nsegtabs = max_nsegtabs;
|
|
} else {
|
|
pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
|
|
+ kv_nsegtabs * NBSEG;
|
|
}
|
|
|
|
/*
|
|
* Now actually allocate the kernel PTE array (must be done
|
|
* after virtual_end is initialized).
|
|
*/
|
|
const vaddr_t kv_segtabs = avail[0].start;
|
|
KASSERT(kv_segtabs == endkernel);
|
|
KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
|
|
printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
|
|
printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
|
|
avail[0].start += NBPG * kv_nsegtabs;
|
|
avail[0].size -= NBPG * kv_nsegtabs;
|
|
endkernel += NBPG * kv_nsegtabs;
|
|
|
|
/*
|
|
* Initialize the kernel's two-level page level. This only wastes
|
|
* an extra page for the segment table and allows the user/kernel
|
|
* access to be common.
|
|
*/
|
|
pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
|
|
pt_entry_t *ptep = (void *)kv_segtabs;
|
|
memset(ptep, 0, NBPG * kv_nsegtabs);
|
|
for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
|
|
*ptp++ = ptep;
|
|
}
|
|
|
|
#if PMAP_MINIMALTLB
|
|
const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
|
|
const vaddr_t dm_segtabs = avail[0].start;
|
|
printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
|
|
printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
|
|
KASSERT(dm_segtabs == endkernel);
|
|
KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
|
|
avail[0].start += NBPG * dm_nsegtabs;
|
|
avail[0].size -= NBPG * dm_nsegtabs;
|
|
endkernel += NBPG * dm_nsegtabs;
|
|
|
|
ptp = stp->seg_tab;
|
|
ptep = (void *)dm_segtabs;
|
|
memset(ptep, 0, NBPG * dm_nsegtabs);
|
|
for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
|
|
*ptp = ptep;
|
|
}
|
|
|
|
/*
|
|
*/
|
|
extern uint32_t _fdata[], _etext[];
|
|
vaddr_t va;
|
|
|
|
/* Now make everything before the kernel inaccessible. */
|
|
va = pmap_kvptefill(NBPG, startkernel, 0);
|
|
|
|
/* Kernel text is readonly & executable */
|
|
va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
|
|
PTE_M | PTE_xR | PTE_xX);
|
|
|
|
/* Kernel .rdata is readonly */
|
|
va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
|
|
|
|
/* Kernel .data/.bss + page tables are read-write */
|
|
va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
|
|
|
|
/* message buffer page table pages are read-write */
|
|
(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
|
|
PTE_M | PTE_xR | PTE_xW);
|
|
#endif
|
|
|
|
for (size_t i = 0; i < cnt; i++) {
|
|
printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
|
|
atop(avail[i].start),
|
|
atop(avail[i].start + avail[i].size) - 1,
|
|
atop(avail[i].start),
|
|
atop(avail[i].start + avail[i].size) - 1,
|
|
VM_FREELIST_DEFAULT);
|
|
uvm_page_physload(
|
|
atop(avail[i].start),
|
|
atop(avail[i].start + avail[i].size) - 1,
|
|
atop(avail[i].start),
|
|
atop(avail[i].start + avail[i].size) - 1,
|
|
VM_FREELIST_DEFAULT);
|
|
}
|
|
|
|
pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
|
|
|
|
/*
|
|
* Initialize the pools.
|
|
*/
|
|
pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
|
|
&pmap_pv_page_allocator, IPL_NONE);
|
|
|
|
tlb_set_asid(0);
|
|
|
|
return endkernel;
|
|
}
|
|
|
|
struct vm_page *
|
|
pmap_md_alloc_poolpage(int flags)
|
|
{
|
|
/*
|
|
* Any managed page works for us.
|
|
*/
|
|
return uvm_pagealloc(NULL, 0, NULL, flags);
|
|
}
|
|
|
|
vaddr_t
|
|
pmap_md_map_poolpage(paddr_t pa, vsize_t size)
|
|
{
|
|
const vaddr_t sva = (vaddr_t) pa;
|
|
#ifdef PMAP_MINIMALTLB
|
|
const vaddr_t eva = sva + size;
|
|
pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
|
|
#endif
|
|
return sva;
|
|
}
|
|
|
|
void
|
|
pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
|
|
{
|
|
#ifdef PMAP_MINIMALTLB
|
|
struct pmap * const pm = pmap_kernel();
|
|
const vaddr_t eva = va + size;
|
|
pmap_kvptefill(va, eva, 0);
|
|
for (;va < eva; va += NBPG) {
|
|
pmap_tlb_invalidate_addr(pm, va);
|
|
}
|
|
pmap_update(pm);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
pmap_zero_page(paddr_t pa)
|
|
{
|
|
vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
|
|
dcache_zero_page(va);
|
|
|
|
KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
|
|
pmap_md_unmap_poolpage(va, NBPG);
|
|
}
|
|
|
|
void
|
|
pmap_copy_page(paddr_t src, paddr_t dst)
|
|
{
|
|
const size_t line_size = curcpu()->ci_ci.dcache_line_size;
|
|
vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
|
|
vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
|
|
const vaddr_t end = src_va + PAGE_SIZE;
|
|
|
|
while (src_va < end) {
|
|
__asm(
|
|
"dcbt %2,%1" "\n\t" /* touch next src cachline */
|
|
"dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
|
|
:: "b"(src_va), "b"(dst_va), "b"(line_size));
|
|
for (u_int i = 0;
|
|
i < line_size;
|
|
src_va += 32, dst_va += 32, i += 32) {
|
|
register_t tmp;
|
|
__asm __volatile(
|
|
"mr %[tmp],31" "\n\t"
|
|
"lmw 24,0(%[src])" "\n\t"
|
|
"stmw 24,0(%[dst])" "\n\t"
|
|
"mr 31,%[tmp]" "\n\t"
|
|
: [tmp] "=&r"(tmp)
|
|
: [src] "b"(src_va), [dst] "b"(dst_va)
|
|
: "r24", "r25", "r26", "r27",
|
|
"r28", "r29", "r30", "memory");
|
|
}
|
|
}
|
|
pmap_md_unmap_poolpage(src_va, NBPG);
|
|
pmap_md_unmap_poolpage(dst_va, NBPG);
|
|
|
|
KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
|
|
}
|
|
|
|
void
|
|
pmap_md_init(void)
|
|
{
|
|
|
|
/* nothing for now */
|
|
}
|
|
|
|
bool
|
|
pmap_md_io_vaddr_p(vaddr_t va)
|
|
{
|
|
return va >= pmap_limits.avail_end
|
|
&& !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
|
|
}
|
|
|
|
bool
|
|
pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
|
|
{
|
|
pmap_t pm = ctx;
|
|
struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
|
|
|
|
if (asid != pai->pai_asid)
|
|
return true;
|
|
|
|
const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
|
|
KASSERT(ptep != NULL);
|
|
pt_entry_t xpte = *ptep;
|
|
xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
|
|
xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
|
|
|
|
KASSERTMSG(pte == xpte,
|
|
"pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
|
|
pm, va, asid, pte, xpte, *ptep);
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
void
|
|
pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
|
|
{
|
|
/* nothing */
|
|
}
|
|
#endif /* MULTIPROCESSOR */
|