NetBSD/sys/arch/powerpc/booke/booke_pmap.c

428 lines
12 KiB
C

/* $NetBSD: booke_pmap.c,v 1.16 2012/09/07 18:05:11 matt Exp $ */
/*-
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
*
* This material is based upon work supported by the Defense Advanced Research
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
* Contract No. N66001-09-C-2073.
* Approved for Public Release, Distribution Unlimited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define __PMAP_PRIVATE
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.16 2012/09/07 18:05:11 matt Exp $");
#include <sys/param.h>
#include <sys/kcore.h>
#include <sys/buf.h>
#include <uvm/uvm.h>
#include <machine/pmap.h>
/*
* Initialize the kernel pmap.
*/
#ifdef MULTIPROCESSOR
#define PMAP_SIZE offsetof(struct pmap, pm_pai[MAXCPUS])
#else
#define PMAP_SIZE sizeof(struct pmap)
#endif
CTASSERT(sizeof(pmap_segtab_t) == NBPG);
pmap_segtab_t pmap_kernel_segtab;
void
pmap_procwr(struct proc *p, vaddr_t va, size_t len)
{
struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
vsize_t off = va & PAGE_SIZE;
kpreempt_disable();
for (const vaddr_t eva = va + len; va < eva; off = 0) {
const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
if (ptep == NULL) {
va = segeva;
continue;
}
pt_entry_t pt_entry = *ptep;
if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
va = segeva;
continue;
}
kpreempt_enable();
dcache_wb(pte_to_paddr(pt_entry), segeva - va);
icache_inv(pte_to_paddr(pt_entry), segeva - va);
kpreempt_disable();
va = segeva;
}
kpreempt_enable();
}
void
pmap_md_page_syncicache(struct vm_page *pg, __cpuset_t onproc)
{
/*
* If onproc is empty, we could do a
* pmap_page_protect(pg, VM_PROT_NONE) and remove all
* mappings of the page and clear its execness. Then
* the next time page is faulted, it will get icache
* synched. But this is easier. :)
*/
paddr_t pa = VM_PAGE_TO_PHYS(pg);
dcache_wb_page(pa);
icache_inv_page(pa);
}
vaddr_t
pmap_md_direct_map_paddr(paddr_t pa)
{
return (vaddr_t) pa;
}
bool
pmap_md_direct_mapped_vaddr_p(vaddr_t va)
{
return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
}
paddr_t
pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
{
return (paddr_t) va;
}
#ifdef PMAP_MINIMALTLB
static pt_entry_t *
kvtopte(const pmap_segtab_t *stp, vaddr_t va)
{
pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
if (ptep == NULL)
return NULL;
return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
}
vaddr_t
pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
{
const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
KASSERT(sva == trunc_page(sva));
pt_entry_t *ptep = kvtopte(stp, sva);
for (; sva < eva; sva += NBPG) {
*ptep++ = pt_entry ? (sva | pt_entry) : 0;
}
return sva;
}
#endif
/*
* Bootstrap the system enough to run with virtual memory.
* firstaddr is the first unused kseg0 address (not page aligned).
*/
vaddr_t
pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
phys_ram_seg_t *avail, size_t cnt)
{
pmap_segtab_t * const stp = &pmap_kernel_segtab;
/*
* Initialize the kernel segment table.
*/
pmap_kernel()->pm_segtab = stp;
curcpu()->ci_pmap_kern_segtab = stp;
KASSERT(endkernel == trunc_page(endkernel));
/*
* Compute the number of pages kmem_arena will have.
*/
kmeminit_nkmempages();
/*
* Figure out how many PTE's are necessary to map the kernel.
* We also reserve space for kmem_alloc_pageable() for vm_fork().
*/
/* Get size of buffer cache and set an upper limit */
buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
vsize_t bufsz = buf_memcalc();
buf_setvalimit(bufsz);
vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
+ (ubc_nwins << ubc_winshift)
+ bufsz
+ 16 * NCARGS
+ pager_map_size
+ maxproc * USPACE
#ifdef SYSVSHM
+ NBPG * shminfo.shmall
#endif
+ NBPG * nkmempages) >> SEGSHIFT;
/*
* Initialize `FYI' variables. Note we're relying on
* the fact that BSEARCH sorts the vm_physmem[] array
* for us. Must do this before uvm_pageboot_alloc()
* can be called.
*/
pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
const size_t max_nsegtabs =
(pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
if (kv_nsegtabs >= max_nsegtabs) {
pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
kv_nsegtabs = max_nsegtabs;
} else {
pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
+ kv_nsegtabs * NBSEG;
}
/*
* Now actually allocate the kernel PTE array (must be done
* after virtual_end is initialized).
*/
const vaddr_t kv_segtabs = avail[0].start;
KASSERT(kv_segtabs == endkernel);
KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
avail[0].start += NBPG * kv_nsegtabs;
avail[0].size -= NBPG * kv_nsegtabs;
endkernel += NBPG * kv_nsegtabs;
/*
* Initialize the kernel's two-level page level. This only wastes
* an extra page for the segment table and allows the user/kernel
* access to be common.
*/
pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
pt_entry_t *ptep = (void *)kv_segtabs;
memset(ptep, 0, NBPG * kv_nsegtabs);
for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
*ptp++ = ptep;
}
#if PMAP_MINIMALTLB
const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
const vaddr_t dm_segtabs = avail[0].start;
printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
KASSERT(dm_segtabs == endkernel);
KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
avail[0].start += NBPG * dm_nsegtabs;
avail[0].size -= NBPG * dm_nsegtabs;
endkernel += NBPG * dm_nsegtabs;
ptp = stp->seg_tab;
ptep = (void *)dm_segtabs;
memset(ptep, 0, NBPG * dm_nsegtabs);
for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
*ptp = ptep;
}
/*
*/
extern uint32_t _fdata[], _etext[];
vaddr_t va;
/* Now make everything before the kernel inaccessible. */
va = pmap_kvptefill(NBPG, startkernel, 0);
/* Kernel text is readonly & executable */
va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
PTE_M | PTE_xR | PTE_xX);
/* Kernel .rdata is readonly */
va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
/* Kernel .data/.bss + page tables are read-write */
va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
/* message buffer page table pages are read-write */
(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
PTE_M | PTE_xR | PTE_xW);
#endif
for (size_t i = 0; i < cnt; i++) {
printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
atop(avail[i].start),
atop(avail[i].start + avail[i].size) - 1,
atop(avail[i].start),
atop(avail[i].start + avail[i].size) - 1,
VM_FREELIST_DEFAULT);
uvm_page_physload(
atop(avail[i].start),
atop(avail[i].start + avail[i].size) - 1,
atop(avail[i].start),
atop(avail[i].start + avail[i].size) - 1,
VM_FREELIST_DEFAULT);
}
pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
/*
* Initialize the pools.
*/
pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
&pool_allocator_nointr, IPL_NONE);
pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
&pmap_pv_page_allocator, IPL_NONE);
tlb_set_asid(0);
return endkernel;
}
struct vm_page *
pmap_md_alloc_poolpage(int flags)
{
/*
* Any managed page works for us.
*/
return uvm_pagealloc(NULL, 0, NULL, flags);
}
vaddr_t
pmap_md_map_poolpage(paddr_t pa, vsize_t size)
{
const vaddr_t sva = (vaddr_t) pa;
#ifdef PMAP_MINIMALTLB
const vaddr_t eva = sva + size;
pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
#endif
return sva;
}
void
pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
{
#ifdef PMAP_MINIMALTLB
struct pmap * const pm = pmap_kernel();
const vaddr_t eva = va + size;
pmap_kvptefill(va, eva, 0);
for (;va < eva; va += NBPG) {
pmap_tlb_invalidate_addr(pm, va);
}
pmap_update(pm);
#endif
}
void
pmap_zero_page(paddr_t pa)
{
vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
dcache_zero_page(va);
KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
pmap_md_unmap_poolpage(va, NBPG);
}
void
pmap_copy_page(paddr_t src, paddr_t dst)
{
const size_t line_size = curcpu()->ci_ci.dcache_line_size;
vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
const vaddr_t end = src_va + PAGE_SIZE;
while (src_va < end) {
__asm(
"dcbt %2,%1" "\n\t" /* touch next src cachline */
"dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
:: "b"(src_va), "b"(dst_va), "b"(line_size));
for (u_int i = 0;
i < line_size;
src_va += 32, dst_va += 32, i += 32) {
register_t tmp;
__asm __volatile(
"mr %[tmp],31" "\n\t"
"lmw 24,0(%[src])" "\n\t"
"stmw 24,0(%[dst])" "\n\t"
"mr 31,%[tmp]" "\n\t"
: [tmp] "=&r"(tmp)
: [src] "b"(src_va), [dst] "b"(dst_va)
: "r24", "r25", "r26", "r27",
"r28", "r29", "r30", "memory");
}
}
pmap_md_unmap_poolpage(src_va, NBPG);
pmap_md_unmap_poolpage(dst_va, NBPG);
KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
}
void
pmap_md_init(void)
{
/* nothing for now */
}
bool
pmap_md_io_vaddr_p(vaddr_t va)
{
return va >= pmap_limits.avail_end
&& !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
}
bool
pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
{
pmap_t pm = ctx;
struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
if (asid != pai->pai_asid)
return true;
const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
KASSERT(ptep != NULL);
pt_entry_t xpte = *ptep;
xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
KASSERTMSG(pte == xpte,
"pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
pm, va, asid, pte, xpte, *ptep);
return true;
}
#ifdef MULTIPROCESSOR
void
pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
{
/* nothing */
}
#endif /* MULTIPROCESSOR */