NetBSD/sys/dev/pci/if_ipw.c
cegger b8169823d2 use device_private().
"looks good" ad@
XXX for the device_t/softc split, please check the driver that no cases have been missed.
2009-05-12 08:22:59 +00:00

2304 lines
58 KiB
C

/* $NetBSD: if_ipw.c,v 1.48 2009/05/12 08:23:00 cegger Exp $ */
/* FreeBSD: src/sys/dev/ipw/if_ipw.c,v 1.15 2005/11/13 17:17:40 damien Exp */
/*-
* Copyright (c) 2004, 2005
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.48 2009/05/12 08:23:00 cegger Exp $");
/*-
* Intel(R) PRO/Wireless 2100 MiniPCI driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <dev/firmload.h>
#include <dev/pci/if_ipwreg.h>
#include <dev/pci/if_ipwvar.h>
#ifdef IPW_DEBUG
#define DPRINTF(x) if (ipw_debug > 0) printf x
#define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
int ipw_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/* Permit loading the Intel firmware */
static int ipw_accept_eula;
static int ipw_dma_alloc(struct ipw_softc *);
static void ipw_release(struct ipw_softc *);
static int ipw_match(device_t, cfdata_t, void *);
static void ipw_attach(device_t, device_t, void *);
static int ipw_detach(device_t, int);
static int ipw_media_change(struct ifnet *);
static void ipw_media_status(struct ifnet *, struct ifmediareq *);
static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
struct ipw_soft_bd *, struct ipw_soft_buf *);
static void ipw_rx_intr(struct ipw_softc *);
static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
static void ipw_tx_intr(struct ipw_softc *);
static int ipw_intr(void *);
static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
static int ipw_tx_start(struct ifnet *, struct mbuf *,
struct ieee80211_node *);
static void ipw_start(struct ifnet *);
static void ipw_watchdog(struct ifnet *);
static int ipw_ioctl(struct ifnet *, u_long, void *);
static int ipw_get_table1(struct ipw_softc *, uint32_t *);
static int ipw_get_radio(struct ipw_softc *, int *);
static void ipw_stop_master(struct ipw_softc *);
static int ipw_reset(struct ipw_softc *);
static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
static int ipw_cache_firmware(struct ipw_softc *);
static void ipw_free_firmware(struct ipw_softc *);
static int ipw_config(struct ipw_softc *);
static int ipw_init(struct ifnet *);
static void ipw_stop(struct ifnet *, int);
static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *);
static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
bus_size_t);
static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
bus_size_t);
/*
* Supported rates for 802.11b mode (in 500Kbps unit).
*/
static const struct ieee80211_rateset ipw_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static inline uint8_t
MEM_READ_1(struct ipw_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
}
static inline uint32_t
MEM_READ_4(struct ipw_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
}
CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
ipw_detach, NULL);
static int
ipw_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
return 1;
return 0;
}
/* Base Address Register */
#define IPW_PCI_BAR0 0x10
static void
ipw_attach(device_t parent, device_t self, void *aux)
{
struct ipw_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
char devinfo[256];
bus_space_tag_t memt;
bus_space_handle_t memh;
bus_addr_t base;
pci_intr_handle_t ih;
uint32_t data;
uint16_t val;
int i, revision, error;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
revision = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
/* enable bus-mastering */
data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
data |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
/* map the register window */
error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map memory space\n");
return;
}
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_dmat = pa->pa_dmat;
sc->sc_fwname = "ipw2100-1.2.fw";
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(&sc->sc_dev, "could not map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(&sc->sc_dev, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
if (ipw_reset(sc) != 0) {
aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
goto fail;
}
if (ipw_dma_alloc(sc) != 0) {
aprint_error_dev(&sc->sc_dev, "could not allocate DMA resources\n");
goto fail;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ipw_init;
ifp->if_stop = ipw_stop;
ifp->if_ioctl = ipw_ioctl;
ifp->if_start = ipw_start;
ifp->if_watchdog = ipw_watchdog;
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_IBSS /* ibss mode */
| IEEE80211_C_MONITOR /* monitor mode */
;
/* read MAC address from EEPROM */
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val >> 8;
ic->ic_myaddr[1] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val >> 8;
ic->ic_myaddr[3] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val >> 8;
ic->ic_myaddr[5] = val & 0xff;
/* set supported .11b rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
/* set supported .11b channels (read from EEPROM) */
if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
val = 0x7ff; /* default to channels 1-11 */
val <<= 1;
for (i = 1; i < 16; i++) {
if (val & (1 << i)) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
}
}
/* check support for radio transmitter switch in EEPROM */
if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
ether_sprintf(ic->ic_myaddr));
if_attach(ifp);
ieee80211_ifattach(ic);
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ipw_newstate;
ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
#endif
/*
* Add a few sysctl knobs.
* XXX: Not yet
*/
sc->dwelltime = 100;
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
else
pmf_class_network_register(self, ifp);
ieee80211_announce(ic);
return;
fail: ipw_detach(self, 0);
}
static int
ipw_detach(struct device* self, int flags)
{
struct ipw_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_if;
if (ifp->if_softc) {
ipw_stop(ifp, 1);
ipw_free_firmware(sc);
#if NBPFILTER > 0
bpfdetach(ifp);
#endif
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
ipw_release(sc);
}
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
sc->sc_ih = NULL;
}
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
return 0;
}
static int
ipw_dma_alloc(struct ipw_softc *sc)
{
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
int error, i, nsegs;
/*
* Allocate and map tx ring.
*/
error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
BUS_DMA_NOWAIT, &sc->tbd_map);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not create tbd dma map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
&sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not allocate tbd dma memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
(void **)&sc->tbd_list, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map tbd dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not load tbd dma memory\n");
goto fail;
}
(void)memset(sc->tbd_list, 0, IPW_TBD_SZ);
/*
* Allocate and map rx ring.
*/
error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
BUS_DMA_NOWAIT, &sc->rbd_map);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not create rbd dma map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
&sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not allocate rbd dma memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
(void **)&sc->rbd_list, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map rbd dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not load rbd dma memory\n");
goto fail;
}
(void)memset(sc->rbd_list, 0, IPW_RBD_SZ);
/*
* Allocate and map status ring.
*/
error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
0, BUS_DMA_NOWAIT, &sc->status_map);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not create status dma map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
&sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not allocate status dma memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
IPW_STATUS_SZ, (void **)&sc->status_list, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map status dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not load status dma memory\n");
goto fail;
}
(void)memset(sc->status_list, 0, IPW_STATUS_SZ);
/*
* Allocate command DMA map.
*/
error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd),
1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not create cmd dma map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not allocate cmd dma memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
sizeof (struct ipw_cmd), (void **)&sc->cmd, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd,
sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map cmd dma memory\n");
return error;
}
/*
* Allocate and map hdr list.
*/
error = bus_dmamap_create(sc->sc_dmat,
IPW_NDATA * sizeof(struct ipw_hdr), 1,
sizeof(struct ipw_hdr), 0, BUS_DMA_NOWAIT,
&sc->hdr_map);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not create hdr dma map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
IPW_NDATA * sizeof(struct ipw_hdr), PAGE_SIZE, 0, &sc->hdr_seg,
1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not allocate hdr memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->hdr_seg, nsegs,
IPW_NDATA * sizeof(struct ipw_hdr), (void **)&sc->hdr_list,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map hdr memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->hdr_map, sc->hdr_list,
IPW_NDATA * sizeof(struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not load hdr memory\n");
goto fail;
}
(void)memset(sc->hdr_list, 0, IPW_HDR_SZ);
/*
* Create DMA hdrs tailq.
*/
TAILQ_INIT(&sc->sc_free_shdr);
for (i = 0; i < IPW_NDATA; i++) {
shdr = &sc->shdr_list[i];
shdr->hdr = sc->hdr_list + i;
shdr->offset = sizeof(struct ipw_hdr) * i;
shdr->addr = sc->hdr_map->dm_segs[0].ds_addr + shdr->offset;
TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
}
/*
* Allocate tx buffers DMA maps.
*/
TAILQ_INIT(&sc->sc_free_sbuf);
for (i = 0; i < IPW_NDATA; i++) {
sbuf = &sc->tx_sbuf_list[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not create txbuf dma map\n");
goto fail;
}
TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
}
/*
* Initialize tx ring.
*/
for (i = 0; i < IPW_NTBD; i++) {
sbd = &sc->stbd_list[i];
sbd->bd = &sc->tbd_list[i];
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
/*
* Pre-allocate rx buffers and DMA maps
*/
for (i = 0; i < IPW_NRBD; i++) {
sbd = &sc->srbd_list[i];
sbuf = &sc->rx_sbuf_list[i];
sbd->bd = &sc->rbd_list[i];
MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
if (sbuf->m == NULL) {
aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
MCLGET(sbuf->m, M_DONTWAIT);
if (!(sbuf->m->m_flags & M_EXT)) {
m_freem(sbuf->m);
aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
error = ENOMEM;
goto fail;
}
sbuf->m->m_pkthdr.len = sbuf->m->m_len = sbuf->m->m_ext.ext_size;
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sbuf->map);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not create rxbuf dma map\n");
m_freem(sbuf->m);
goto fail;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
m_freem(sbuf->m);
aprint_error_dev(&sc->sc_dev, "could not map rxbuf dma memory\n");
goto fail;
}
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(MCLBYTES);
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
}
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ,
BUS_DMASYNC_PREREAD);
return 0;
fail: ipw_release(sc);
return error;
}
static void
ipw_release(struct ipw_softc *sc)
{
struct ipw_soft_buf *sbuf;
int i;
if (sc->tbd_map != NULL) {
if (sc->tbd_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->tbd_list,
IPW_TBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
}
if (sc->rbd_map != NULL) {
if (sc->rbd_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->rbd_list,
IPW_RBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
}
if (sc->status_map != NULL) {
if (sc->status_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->status_map);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->status_list,
IPW_RBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
}
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
if (sc->cmd_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
if (sc->hdr_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->hdr_map);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->hdr_list,
IPW_NDATA * sizeof(struct ipw_hdr));
}
if (sc->hdr_map != NULL) {
bus_dmamem_free(sc->sc_dmat, &sc->hdr_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, sc->hdr_map);
}
for (i = 0; i < IPW_NDATA; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map);
for (i = 0; i < IPW_NRBD; i++) {
sbuf = &sc->rx_sbuf_list[i];
if (sbuf->map != NULL) {
if (sbuf->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
m_freem(sbuf->m);
}
bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
}
}
}
static int
ipw_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
ipw_init(ifp);
return 0;
}
/*
* The firmware automatically adapts the transmit speed. We report the current
* transmit speed here.
*/
static void
ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
static const struct {
uint32_t val;
int rate;
} rates[] = {
{ IPW_RATE_DS1, 2 },
{ IPW_RATE_DS2, 4 },
{ IPW_RATE_DS5, 11 },
{ IPW_RATE_DS11, 22 },
};
uint32_t val;
int rate, i;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
/* convert ipw rate to 802.11 rate */
for (i = 0; i < N(rates) && rates[i].val != val; i++);
rate = (i < N(rates)) ? rates[i].rate : 0;
imr->ifm_active |= IFM_IEEE80211_11B;
imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
/* should not get there */
break;
}
#undef N
}
static int
ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
uint8_t macaddr[IEEE80211_ADDR_LEN];
uint32_t len;
struct ipw_rx_radiotap_header *wr = &sc->sc_rxtap;
struct ipw_tx_radiotap_header *wt = &sc->sc_txtap;
switch (nstate) {
case IEEE80211_S_INIT:
break;
default:
KASSERT(ic->ic_curchan != IEEE80211_CHAN_ANYC);
KASSERT(ic->ic_curchan != NULL);
wt->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
wt->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
wr->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
wr->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
break;
}
switch (nstate) {
case IEEE80211_S_RUN:
DELAY(200); /* firmware needs a short delay here */
len = IEEE80211_ADDR_LEN;
ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
ni = ieee80211_find_node(&ic->ic_scan, macaddr);
if (ni == NULL)
break;
ieee80211_ref_node(ni);
ieee80211_sta_join(ic, ni);
ieee80211_node_authorize(ni);
if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_notify_node_join(ic, ni, 1);
break;
case IEEE80211_S_INIT:
case IEEE80211_S_SCAN:
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
break;
}
ic->ic_state = nstate;
return 0;
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
*/
static uint16_t
ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* write start bit (1) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
/* write READ opcode (10) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
}
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
}
IPW_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
return le16toh(val);
}
static void
ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ipw_cmd *cmd;
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
BUS_DMASYNC_POSTREAD);
cmd = mtod(sbuf->m, struct ipw_cmd *);
DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
le32toh(cmd->status)));
wakeup(&sc->cmd);
}
static void
ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t state;
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
BUS_DMASYNC_POSTREAD);
state = le32toh(*mtod(sbuf->m, uint32_t *));
DPRINTFN(2, ("entering state %u\n", state));
switch (state) {
case IPW_STATE_ASSOCIATED:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IPW_STATE_SCANNING:
/* don't leave run state on background scan */
if (ic->ic_state != IEEE80211_S_RUN)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
ic->ic_flags |= IEEE80211_F_SCAN;
break;
case IPW_STATE_SCAN_COMPLETE:
ieee80211_notify_scan_done(ic);
ic->ic_flags &= ~IEEE80211_F_SCAN;
break;
case IPW_STATE_ASSOCIATION_LOST:
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
break;
case IPW_STATE_RADIO_DISABLED:
ic->ic_ifp->if_flags &= ~IFF_UP;
ipw_stop(ifp, 1);
break;
}
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
*/
static void
ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}
static void
ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct mbuf *mnew, *m;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
int error;
DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
status->rssi));
if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
le32toh(status->len) > MCLBYTES)
return;
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
ifp->if_ierrors++;
return;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
m_freem(mnew);
ifp->if_ierrors++;
return;
}
mnew->m_pkthdr.len = mnew->m_len = mnew->m_ext.ext_size;
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, mnew,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map\n");
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map,
sbuf->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: unable to remap rx buf",
device_xname(&sc->sc_dev));
}
ifp->if_ierrors++;
return;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = sbuf->m;
sbuf->m = mnew;
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = le32toh(status->len);
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_antsignal = status->rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
#endif
if (ic->ic_state == IEEE80211_S_SCAN)
ipw_fix_channel(ic, m);
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, status->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0,
sbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
}
static void
ipw_rx_intr(struct ipw_softc *sc)
{
struct ipw_status *status;
struct ipw_soft_bd *sbd;
struct ipw_soft_buf *sbuf;
uint32_t r, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
r = CSR_READ_4(sc, IPW_CSR_RX_READ);
for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
/* firmware was killed, stop processing received frames */
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, sc->status_map,
i * sizeof (struct ipw_status), sizeof (struct ipw_status),
BUS_DMASYNC_POSTREAD);
status = &sc->status_list[i];
sbd = &sc->srbd_list[i];
sbuf = sbd->priv;
switch (le16toh(status->code) & 0xf) {
case IPW_STATUS_CODE_COMMAND:
ipw_command_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_NEWSTATE:
ipw_newstate_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_DATA_802_3:
case IPW_STATUS_CODE_DATA_802_11:
ipw_data_intr(sc, status, sbd, sbuf);
break;
case IPW_STATUS_CODE_NOTIFICATION:
DPRINTFN(2, ("received notification\n"));
break;
default:
aprint_error_dev(&sc->sc_dev, "unknown status code %u\n",
le16toh(status->code));
}
sbd->bd->flags = 0;
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->sc_dmat, sc->status_map,
i * sizeof (struct ipw_status), sizeof (struct ipw_status),
BUS_DMASYNC_PREREAD);
}
/* Tell the firmware what we have processed */
sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
}
static void
ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
{
struct ieee80211com *ic;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
switch (sbd->type) {
case IPW_SBD_TYPE_COMMAND:
bus_dmamap_sync(sc->sc_dmat, sc->cmd_map,
0, sizeof(struct ipw_cmd), BUS_DMASYNC_POSTWRITE);
/* bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); */
break;
case IPW_SBD_TYPE_HEADER:
shdr = sbd->priv;
bus_dmamap_sync(sc->sc_dmat, sc->hdr_map,
shdr->offset, sizeof(struct ipw_hdr), BUS_DMASYNC_POSTWRITE);
TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
break;
case IPW_SBD_TYPE_DATA:
ic = &sc->sc_ic;
sbuf = sbd->priv;
bus_dmamap_sync(sc->sc_dmat, sbuf->map,
0, MCLBYTES, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
m_freem(sbuf->m);
if (sbuf->ni != NULL)
ieee80211_free_node(sbuf->ni);
/* kill watchdog timer */
sc->sc_tx_timer = 0;
TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
break;
}
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
static void
ipw_tx_intr(struct ipw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct ipw_soft_bd *sbd;
uint32_t r, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
r = CSR_READ_4(sc, IPW_CSR_TX_READ);
for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
sbd = &sc->stbd_list[i];
if (sbd->type == IPW_SBD_TYPE_DATA)
ifp->if_opackets++;
ipw_release_sbd(sc, sbd);
sc->txfree++;
}
/* remember what the firmware has processed */
sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
/* Call start() since some buffer descriptors have been released */
ifp->if_flags &= ~IFF_OACTIVE;
(*ifp->if_start)(ifp);
}
static int
ipw_intr(void *arg)
{
struct ipw_softc *sc = arg;
uint32_t r;
r = CSR_READ_4(sc, IPW_CSR_INTR);
if (r == 0 || r == 0xffffffff)
return 0;
/* Disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
aprint_error_dev(&sc->sc_dev, "fatal error\n");
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
ipw_stop(&sc->sc_if, 1);
}
if (r & IPW_INTR_FW_INIT_DONE) {
if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
wakeup(sc);
}
if (r & IPW_INTR_RX_TRANSFER)
ipw_rx_intr(sc);
if (r & IPW_INTR_TX_TRANSFER)
ipw_tx_intr(sc);
/* Acknowledge all interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR, r);
/* Re-enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
return 0;
}
/*
* Send a command to the firmware and wait for the acknowledgement.
*/
static int
ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
{
struct ipw_soft_bd *sbd;
sbd = &sc->stbd_list[sc->txcur];
sc->cmd.type = htole32(type);
sc->cmd.subtype = 0;
sc->cmd.len = htole32(len);
sc->cmd.seq = 0;
(void)memcpy(sc->cmd.data, data, len);
sbd->type = IPW_SBD_TYPE_COMMAND;
sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(sizeof (struct ipw_cmd));
sbd->bd->nfrag = 1;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
IPW_BD_FLAG_TX_LAST_FRAGMENT;
bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_PREWRITE);
DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
/* kick firmware */
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
/* Wait at most one second for command to complete */
return tsleep(&sc->cmd, 0, "ipwcmd", hz);
}
static int
ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
struct ieee80211_key *k;
struct mbuf *mnew;
int error, i;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
#endif
shdr = TAILQ_FIRST(&sc->sc_free_shdr);
sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
KASSERT(shdr != NULL && sbuf != NULL);
shdr->hdr->type = htole32(IPW_HDR_TYPE_SEND);
shdr->hdr->subtype = 0;
shdr->hdr->encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
shdr->hdr->encrypt = 0;
shdr->hdr->keyidx = 0;
shdr->hdr->keysz = 0;
shdr->hdr->fragmentsz = 0;
IEEE80211_ADDR_COPY(shdr->hdr->src_addr, wh->i_addr2);
if (ic->ic_opmode == IEEE80211_M_STA)
IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr3);
else
IEEE80211_ADDR_COPY(shdr->hdr->dst_addr, wh->i_addr1);
/* trim IEEE802.11 header */
m_adj(m0, sizeof (struct ieee80211_frame));
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
m_freem(m0);
return ENOMEM;
}
M_COPY_PKTHDR(mnew, m0);
/* If the data won't fit in the header, get a cluster */
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(m0);
m_freem(mnew);
return ENOMEM;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
m_freem(m0);
mnew->m_len = mnew->m_pkthdr.len;
m0 = mnew;
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
sbd = &sc->stbd_list[sc->txcur];
sbd->type = IPW_SBD_TYPE_HEADER;
sbd->priv = shdr;
sbd->bd->physaddr = htole32(shdr->addr);
sbd->bd->len = htole32(sizeof (struct ipw_hdr));
sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, )\n",
shdr->hdr->type, shdr->hdr->subtype, shdr->hdr->encrypted,
shdr->hdr->encrypt));
DPRINTFN(5, ("%s->", ether_sprintf(shdr->hdr->src_addr)));
DPRINTFN(5, ("%s\n", ether_sprintf(shdr->hdr->dst_addr)));
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd),
sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
sbuf->m = m0;
sbuf->ni = ni;
for (i = 0; i < sbuf->map->dm_nsegs; i++) {
sbd = &sc->stbd_list[sc->txcur];
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
sbd->bd->nfrag = 0;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
if (i == sbuf->map->dm_nsegs - 1) {
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
} else {
sbd->type = IPW_SBD_TYPE_NOASSOC;
sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
}
DPRINTFN(5, ("sending fragment (%d, %d)\n", i,
(int)sbuf->map->dm_segs[i].ds_len));
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd),
sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
}
bus_dmamap_sync(sc->sc_dmat, sc->hdr_map, shdr->offset,
sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
BUS_DMASYNC_PREWRITE);
/* Inform firmware about this new packet */
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
return 0;
}
static void
ipw_start(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
if (ic->ic_state != IEEE80211_S_RUN)
return;
for (;;) {
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->txfree < 1 + IPW_MAX_NSEG) {
IF_PREPEND(&ifp->if_snd, m0);
ifp->if_flags |= IFF_OACTIVE;
break;
}
if (m0->m_len < sizeof (struct ether_header) &&
(m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
continue;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
if (ipw_tx_start(ifp, m0, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
ipw_watchdog(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(&sc->sc_dev, "device timeout\n");
ifp->if_oerrors++;
ifp->if_flags &= ~IFF_UP;
ipw_stop(ifp, 1);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
ipw_get_table1(struct ipw_softc *sc, uint32_t *tbl)
{
uint32_t addr, size, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return ENOTTY;
CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
if (suword(tbl, size) != 0)
return EFAULT;
for (i = 1, ++tbl; i < size; i++, tbl++) {
addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
return EFAULT;
}
return 0;
}
static int
ipw_get_radio(struct ipw_softc *sc, int *ret)
{
uint32_t addr;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return ENOTTY;
addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
suword(ret, -1);
return 0;
}
if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
suword(ret, 0);
else
suword(ret, 1);
return 0;
}
static int
ipw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
ipw_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
ipw_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX no h/w multicast filter? --dyoung */
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
case SIOCGTABLE1:
error = ipw_get_table1(sc, (uint32_t *)ifr->ifr_data);
break;
case SIOCGRADIO:
error = ipw_get_radio(sc, (int *)ifr->ifr_data);
break;
case SIOCSIFMEDIA:
if (ifr->ifr_media & IFM_IEEE80211_ADHOC)
sc->sc_fwname = "ipw2100-1.2-i.fw";
else if (ifr->ifr_media & IFM_IEEE80211_MONITOR)
sc->sc_fwname = "ipw2100-1.2-p.fw";
else
sc->sc_fwname = "ipw2100-1.2.fw";
ipw_free_firmware(sc);
/* FALLTRHOUGH */
default:
error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
if (error != ENETRESET)
break;
if (error == ENETRESET) {
if (IS_RUNNING(ifp) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
ipw_init(ifp);
error = 0;
}
}
splx(s);
return error;
#undef IS_RUNNING
}
static uint32_t
ipw_read_table1(struct ipw_softc *sc, uint32_t off)
{
return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
}
static void
ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
{
MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
}
static int
ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
{
uint32_t addr, info;
uint16_t count, size;
uint32_t total;
/* addr[4] + count[2] + size[2] */
addr = MEM_READ_4(sc, sc->table2_base + off);
info = MEM_READ_4(sc, sc->table2_base + off + 4);
count = info >> 16;
size = info & 0xffff;
total = count * size;
if (total > *len) {
*len = total;
return EINVAL;
}
*len = total;
ipw_read_mem_1(sc, addr, buf, total);
return 0;
}
static void
ipw_stop_master(struct ipw_softc *sc)
{
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
for (ntries = 0; ntries < 50; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 50)
aprint_error_dev(&sc->sc_dev, "timeout waiting for master\n");
CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
IPW_RST_PRINCETON_RESET);
sc->flags &= ~IPW_FLAG_FW_INITED;
}
static int
ipw_reset(struct ipw_softc *sc)
{
int ntries;
ipw_stop_master(sc);
/* move adapter to D0 state */
CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
IPW_CTL_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000)
return EIO;
CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) |
IPW_RST_SW_RESET);
DELAY(10);
CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
IPW_CTL_INIT);
return 0;
}
/*
* Upload the microcode to the device.
*/
static int
ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
{
int ntries;
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
for (ntries = 0; ntries < 10; ntries++) {
if (MEM_READ_1(sc, 0x210000) & 1)
break;
DELAY(10);
}
if (ntries == 10) {
aprint_error_dev(&sc->sc_dev, "timeout waiting for ucode to initialize\n");
return EIO;
}
MEM_WRITE_4(sc, 0x3000e0, 0);
return 0;
}
/* set of macros to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
#define GETLE16(p) ((p)[0] | (p)[1] << 8)
static int
ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
{
u_char *p, *end;
uint32_t dst;
uint16_t len;
int error;
p = fw;
end = fw + size;
while (p < end) {
dst = GETLE32(p); p += 4;
len = GETLE16(p); p += 2;
ipw_write_mem_1(sc, dst, p, len);
p += len;
}
CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
IPW_IO_LED_OFF);
/* enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
/* kick the firmware */
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) |
IPW_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) {
aprint_error_dev(&sc->sc_dev, "timeout waiting for firmware initialization "
"to complete\n");
return error;
}
CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) |
IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
return 0;
}
/*
* Store firmware into kernel memory so we can download it when we need to,
* e.g when the adapter wakes up from suspend mode.
*/
static int
ipw_cache_firmware(struct ipw_softc *sc)
{
struct ipw_firmware *fw = &sc->fw;
struct ipw_firmware_hdr hdr;
firmware_handle_t fwh;
off_t fwsz, p;
int error;
ipw_free_firmware(sc);
if (ipw_accept_eula == 0) {
aprint_error_dev(&sc->sc_dev,
"EULA not accepted; please see the ipw(4) man page.\n");
return EPERM;
}
if ((error = firmware_open("if_ipw", sc->sc_fwname, &fwh)) != 0)
goto fail0;
fwsz = firmware_get_size(fwh);
if (fwsz < sizeof(hdr))
goto fail2;
if ((error = firmware_read(fwh, 0, &hdr, sizeof(hdr))) != 0)
goto fail2;
fw->main_size = le32toh(hdr.main_size);
fw->ucode_size = le32toh(hdr.ucode_size);
fw->main = firmware_malloc(fw->main_size);
if (fw->main == NULL) {
error = ENOMEM;
goto fail1;
}
fw->ucode = firmware_malloc(fw->ucode_size);
if (fw->ucode == NULL) {
error = ENOMEM;
goto fail2;
}
p = sizeof(hdr);
if ((error = firmware_read(fwh, p, fw->main, fw->main_size)) != 0)
goto fail3;
p += fw->main_size;
if ((error = firmware_read(fwh, p, fw->ucode, fw->ucode_size)) != 0)
goto fail3;
DPRINTF(("Firmware cached: main %u, ucode %u\n", fw->main_size,
fw->ucode_size));
sc->flags |= IPW_FLAG_FW_CACHED;
firmware_close(fwh);
return 0;
fail3: firmware_free(fw->ucode, 0);
fail2: firmware_free(fw->main, 0);
fail1: firmware_close(fwh);
fail0:
return error;
}
static void
ipw_free_firmware(struct ipw_softc *sc)
{
if (!(sc->flags & IPW_FLAG_FW_CACHED))
return;
firmware_free(sc->fw.main, 0);
firmware_free(sc->fw.ucode, 0);
sc->flags &= ~IPW_FLAG_FW_CACHED;
}
static int
ipw_config(struct ipw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ipw_security security;
struct ieee80211_key *k;
struct ipw_wep_key wepkey;
struct ipw_scan_options options;
struct ipw_configuration config;
uint32_t data;
int error, i;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_HOSTAP:
data = htole32(IPW_MODE_BSS);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
data = htole32(IPW_MODE_IBSS);
break;
case IEEE80211_M_MONITOR:
data = htole32(IPW_MODE_MONITOR);
break;
}
DPRINTF(("Setting mode to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_MONITOR) {
data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
DPRINTF(("Setting channel to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
if (error != 0)
return error;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
DPRINTF(("Enabling adapter\n"));
return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
}
DPRINTF(("Setting MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
return error;
config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
if (ic->ic_opmode == IEEE80211_M_IBSS)
config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
if (ifp->if_flags & IFF_PROMISC)
config.flags |= htole32(IPW_CFG_PROMISCUOUS);
config.bss_chan = htole32(0x3fff); /* channels 1-14 */
config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
if (error != 0)
return error;
data = htole32(0x3); /* 1, 2 */
DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(0xf); /* 1, 2, 5.5, 11 */
DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(IPW_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
data = htole32(32); /* default value */
DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
sizeof data);
if (error != 0)
return error;
}
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
#ifdef IPW_DEBUG
if (ipw_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
printf("\n");
}
#endif
error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
ic->ic_des_esslen);
if (error != 0)
return error;
/* no mandatory BSSID */
DPRINTF(("Setting mandatory BSSID to null\n"));
error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_DESBSSID) {
DPRINTF(("Setting desired BSSID to %s\n",
ether_sprintf(ic->ic_des_bssid)));
error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
ic->ic_des_bssid, IEEE80211_ADDR_LEN);
if (error != 0)
return error;
}
(void)memset(&security, 0, sizeof(security));
security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
IPW_AUTH_SHARED : IPW_AUTH_OPEN;
security.ciphers = htole32(IPW_CIPHER_NONE);
DPRINTF(("Setting authmode to %u\n", security.authmode));
error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
sizeof security);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
k = ic->ic_crypto.cs_nw_keys;
for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
if (k->wk_keylen == 0)
continue;
wepkey.idx = i;
wepkey.len = k->wk_keylen;
memset(wepkey.key, 0, sizeof(wepkey.key));
memcpy(wepkey.key, k->wk_key, k->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n",
wepkey.idx, wepkey.len));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey);
if (error != 0)
return error;
}
data = htole32(ic->ic_crypto.cs_def_txkey);
DPRINTF(("Setting tx key index to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
sizeof data);
if (error != 0)
return error;
}
data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
if (error != 0)
return error;
#if 0
struct ipw_wpa_ie ie;
memset(&ie, 0 sizeof(ie));
ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
DPRINTF(("Setting wpa ie\n"));
error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
if (error != 0)
return error;
#endif
if (ic->ic_opmode == IEEE80211_M_IBSS) {
data = htole32(ic->ic_bintval);
DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
sizeof data);
if (error != 0)
return error;
}
options.flags = 0;
options.channels = htole32(0x3fff); /* scan channels 1-14 */
DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
if (error != 0)
return error;
/* finally, enable adapter (start scanning for an access point) */
DPRINTF(("Enabling adapter\n"));
return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
}
static int
ipw_init(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ipw_firmware *fw = &sc->fw;
if (!(sc->flags & IPW_FLAG_FW_CACHED)) {
if (ipw_cache_firmware(sc) != 0) {
aprint_error_dev(&sc->sc_dev, "could not cache the firmware (%s)\n",
sc->sc_fwname);
goto fail;
}
}
ipw_stop(ifp, 0);
if (ipw_reset(sc) != 0) {
aprint_error_dev(&sc->sc_dev, "could not reset adapter\n");
goto fail;
}
if (ipw_load_ucode(sc, fw->ucode, fw->ucode_size) != 0) {
aprint_error_dev(&sc->sc_dev, "could not load microcode\n");
goto fail;
}
ipw_stop_master(sc);
/*
* Setup tx, rx and status rings.
*/
sc->txold = IPW_NTBD - 1;
sc->txcur = 0;
sc->txfree = IPW_NTBD - 2;
sc->rxcur = IPW_NRBD - 1;
CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr);
if (ipw_load_firmware(sc, fw->main, fw->main_size) != 0) {
aprint_error_dev(&sc->sc_dev, "could not load firmware\n");
goto fail;
}
sc->flags |= IPW_FLAG_FW_INITED;
/* retrieve information tables base addresses */
sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
ipw_write_table1(sc, IPW_INFO_LOCK, 0);
if (ipw_config(sc) != 0) {
aprint_error_dev(&sc->sc_dev, "device configuration failed\n");
goto fail;
}
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
return 0;
fail: ifp->if_flags &= ~IFF_UP;
ipw_stop(ifp, 0);
return EIO;
}
static void
ipw_stop(struct ifnet *ifp, int disable)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int i;
ipw_stop_master(sc);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
/*
* Release tx buffers.
*/
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
static void
ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
}
}
static void
ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
}
}
SYSCTL_SETUP(sysctl_hw_ipw_accept_eula_setup, "sysctl hw.ipw.accept_eula")
{
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
sysctl_createv(NULL, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "hw",
NULL,
NULL, 0,
NULL, 0,
CTL_HW, CTL_EOL);
sysctl_createv(NULL, 0, &rnode, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ipw",
NULL,
NULL, 0,
NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(NULL, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "accept_eula",
SYSCTL_DESCR("Accept Intel EULA and permit use of ipw(4) firmware"),
NULL, 0,
&ipw_accept_eula, sizeof(ipw_accept_eula),
CTL_CREATE, CTL_EOL);
}