461 lines
12 KiB
C
461 lines
12 KiB
C
/* $NetBSD: linux_misc_notalpha.c,v 1.109 2014/11/09 17:48:08 maxv Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1995, 1998, 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
|
|
* of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: linux_misc_notalpha.c,v 1.109 2014/11/09 17:48:08 maxv Exp $");
|
|
|
|
/*
|
|
* Note that we must NOT include "opt_compat_linux32.h" here,
|
|
* the maze of ifdefs below relies on COMPAT_LINUX32 only being
|
|
* defined when this file is built for linux32.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/prot.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/time.h>
|
|
#include <sys/vfs_syscalls.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/kauth.h>
|
|
|
|
#include <sys/syscallargs.h>
|
|
|
|
#include <compat/linux/common/linux_types.h>
|
|
#include <compat/linux/common/linux_fcntl.h>
|
|
#include <compat/linux/common/linux_misc.h>
|
|
#include <compat/linux/common/linux_mmap.h>
|
|
#include <compat/linux/common/linux_signal.h>
|
|
#include <compat/linux/common/linux_util.h>
|
|
#include <compat/linux/common/linux_ipc.h>
|
|
#include <compat/linux/common/linux_sem.h>
|
|
#include <compat/linux/common/linux_statfs.h>
|
|
|
|
#include <compat/linux/linux_syscallargs.h>
|
|
|
|
/*
|
|
* This file contains routines which are used
|
|
* on every linux architechture except the Alpha.
|
|
*/
|
|
|
|
/* Used on: arm, i386, m68k, mips, ppc, sparc, sparc64 */
|
|
/* Not used on: alpha */
|
|
|
|
#ifdef DEBUG_LINUX
|
|
#define DPRINTF(a) uprintf a
|
|
#else
|
|
#define DPRINTF(a)
|
|
#endif
|
|
|
|
#ifndef COMPAT_LINUX32
|
|
|
|
/*
|
|
* Alarm. This is a libc call which uses setitimer(2) in NetBSD.
|
|
* Fiddle with the timers to make it work.
|
|
*
|
|
* XXX This shouldn't be dicking about with the ptimer stuff directly.
|
|
*/
|
|
int
|
|
linux_sys_alarm(struct lwp *l, const struct linux_sys_alarm_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(unsigned int) secs;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
struct timespec now;
|
|
struct itimerspec *itp, it;
|
|
struct ptimer *ptp, *spare;
|
|
extern kmutex_t timer_lock;
|
|
struct ptimers *pts;
|
|
|
|
if ((pts = p->p_timers) == NULL)
|
|
pts = timers_alloc(p);
|
|
spare = NULL;
|
|
|
|
retry:
|
|
mutex_spin_enter(&timer_lock);
|
|
if (pts && pts->pts_timers[ITIMER_REAL])
|
|
itp = &pts->pts_timers[ITIMER_REAL]->pt_time;
|
|
else
|
|
itp = NULL;
|
|
/*
|
|
* Clear any pending timer alarms.
|
|
*/
|
|
if (itp) {
|
|
callout_stop(&pts->pts_timers[ITIMER_REAL]->pt_ch);
|
|
timespecclear(&itp->it_interval);
|
|
getnanotime(&now);
|
|
if (timespecisset(&itp->it_value) &&
|
|
timespeccmp(&itp->it_value, &now, >))
|
|
timespecsub(&itp->it_value, &now, &itp->it_value);
|
|
/*
|
|
* Return how many seconds were left (rounded up)
|
|
*/
|
|
retval[0] = itp->it_value.tv_sec;
|
|
if (itp->it_value.tv_nsec)
|
|
retval[0]++;
|
|
} else {
|
|
retval[0] = 0;
|
|
}
|
|
|
|
/*
|
|
* alarm(0) just resets the timer.
|
|
*/
|
|
if (SCARG(uap, secs) == 0) {
|
|
if (itp)
|
|
timespecclear(&itp->it_value);
|
|
mutex_spin_exit(&timer_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the new alarm time for sanity, and set it.
|
|
*/
|
|
timespecclear(&it.it_interval);
|
|
it.it_value.tv_sec = SCARG(uap, secs);
|
|
it.it_value.tv_nsec = 0;
|
|
if (itimespecfix(&it.it_value) || itimespecfix(&it.it_interval)) {
|
|
mutex_spin_exit(&timer_lock);
|
|
return (EINVAL);
|
|
}
|
|
|
|
ptp = pts->pts_timers[ITIMER_REAL];
|
|
if (ptp == NULL) {
|
|
if (spare == NULL) {
|
|
mutex_spin_exit(&timer_lock);
|
|
spare = pool_get(&ptimer_pool, PR_WAITOK);
|
|
goto retry;
|
|
}
|
|
ptp = spare;
|
|
spare = NULL;
|
|
ptp->pt_ev.sigev_notify = SIGEV_SIGNAL;
|
|
ptp->pt_ev.sigev_signo = SIGALRM;
|
|
ptp->pt_overruns = 0;
|
|
ptp->pt_proc = p;
|
|
ptp->pt_type = CLOCK_REALTIME;
|
|
ptp->pt_entry = CLOCK_REALTIME;
|
|
ptp->pt_active = 0;
|
|
ptp->pt_queued = 0;
|
|
callout_init(&ptp->pt_ch, CALLOUT_MPSAFE);
|
|
pts->pts_timers[ITIMER_REAL] = ptp;
|
|
}
|
|
|
|
if (timespecisset(&it.it_value)) {
|
|
/*
|
|
* Don't need to check tvhzto() return value, here.
|
|
* callout_reset() does it for us.
|
|
*/
|
|
getnanotime(&now);
|
|
timespecadd(&it.it_value, &now, &it.it_value);
|
|
callout_reset(&ptp->pt_ch, tshzto(&it.it_value),
|
|
realtimerexpire, ptp);
|
|
}
|
|
ptp->pt_time = it;
|
|
mutex_spin_exit(&timer_lock);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* !COMPAT_LINUX32 */
|
|
|
|
#if !defined(__amd64__)
|
|
int
|
|
linux_sys_nice(struct lwp *l, const struct linux_sys_nice_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) incr;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
struct sys_setpriority_args bsa;
|
|
int error;
|
|
|
|
SCARG(&bsa, which) = PRIO_PROCESS;
|
|
SCARG(&bsa, who) = 0;
|
|
SCARG(&bsa, prio) = p->p_nice - NZERO + SCARG(uap, incr);
|
|
|
|
error = sys_setpriority(l, &bsa, retval);
|
|
return (error) ? EPERM : 0;
|
|
}
|
|
#endif /* !__amd64__ */
|
|
|
|
#ifndef COMPAT_LINUX32
|
|
#ifndef __amd64__
|
|
/*
|
|
* The old Linux readdir was only able to read one entry at a time,
|
|
* even though it had a 'count' argument. In fact, the emulation
|
|
* of the old call was better than the original, because it did handle
|
|
* the count arg properly. Don't bother with it anymore now, and use
|
|
* it to distinguish between old and new. The difference is that the
|
|
* newer one actually does multiple entries, and the reclen field
|
|
* really is the reclen, not the namelength.
|
|
*/
|
|
int
|
|
linux_sys_readdir(struct lwp *l, const struct linux_sys_readdir_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) fd;
|
|
syscallarg(struct linux_dirent *) dent;
|
|
syscallarg(unsigned int) count;
|
|
} */
|
|
int error;
|
|
struct linux_sys_getdents_args da;
|
|
|
|
SCARG(&da, fd) = SCARG(uap, fd);
|
|
SCARG(&da, dent) = SCARG(uap, dent);
|
|
SCARG(&da, count) = 1;
|
|
|
|
error = linux_sys_getdents(l, &da, retval);
|
|
if (error == 0 && *retval > 1)
|
|
*retval = 1;
|
|
|
|
return error;
|
|
}
|
|
#endif /* !amd64 */
|
|
|
|
/*
|
|
* I wonder why Linux has gettimeofday() _and_ time().. Still, we
|
|
* need to deal with it.
|
|
*/
|
|
int
|
|
linux_sys_time(struct lwp *l, const struct linux_sys_time_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(linux_time_t) *t;
|
|
} */
|
|
struct timeval atv;
|
|
linux_time_t tt;
|
|
int error;
|
|
|
|
microtime(&atv);
|
|
|
|
tt = atv.tv_sec;
|
|
if (SCARG(uap, t) && (error = copyout(&tt, SCARG(uap, t), sizeof tt)))
|
|
return error;
|
|
|
|
retval[0] = tt;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* utime(). Do conversion to things that utimes() understands,
|
|
* and pass it on.
|
|
*/
|
|
int
|
|
linux_sys_utime(struct lwp *l, const struct linux_sys_utime_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const char *) path;
|
|
syscallarg(struct linux_utimbuf *)times;
|
|
} */
|
|
int error;
|
|
struct timeval tv[2], *tvp;
|
|
struct linux_utimbuf lut;
|
|
|
|
if (SCARG(uap, times) != NULL) {
|
|
if ((error = copyin(SCARG(uap, times), &lut, sizeof lut)))
|
|
return error;
|
|
tv[0].tv_usec = tv[1].tv_usec = 0;
|
|
tv[0].tv_sec = lut.l_actime;
|
|
tv[1].tv_sec = lut.l_modtime;
|
|
tvp = tv;
|
|
} else
|
|
tvp = NULL;
|
|
|
|
return do_sys_utimes(l, NULL, SCARG(uap, path), FOLLOW,
|
|
tvp, UIO_SYSSPACE);
|
|
}
|
|
|
|
#ifndef __amd64__
|
|
/*
|
|
* waitpid(2). Just forward on to linux_sys_wait4 with a NULL rusage.
|
|
*/
|
|
int
|
|
linux_sys_waitpid(struct lwp *l, const struct linux_sys_waitpid_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) pid;
|
|
syscallarg(int *) status;
|
|
syscallarg(int) options;
|
|
} */
|
|
struct linux_sys_wait4_args linux_w4a;
|
|
|
|
SCARG(&linux_w4a, pid) = SCARG(uap, pid);
|
|
SCARG(&linux_w4a, status) = SCARG(uap, status);
|
|
SCARG(&linux_w4a, options) = SCARG(uap, options);
|
|
SCARG(&linux_w4a, rusage) = NULL;
|
|
|
|
return linux_sys_wait4(l, &linux_w4a, retval);
|
|
}
|
|
#endif /* !amd64 */
|
|
|
|
int
|
|
linux_sys_setresgid(struct lwp *l, const struct linux_sys_setresgid_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(gid_t) rgid;
|
|
syscallarg(gid_t) egid;
|
|
syscallarg(gid_t) sgid;
|
|
} */
|
|
|
|
/*
|
|
* Note: These checks are a little different than the NetBSD
|
|
* setregid(2) call performs. This precisely follows the
|
|
* behavior of the Linux kernel.
|
|
*/
|
|
return do_setresgid(l, SCARG(uap,rgid), SCARG(uap, egid),
|
|
SCARG(uap, sgid),
|
|
ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
|
|
ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
|
|
ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
|
|
}
|
|
|
|
int
|
|
linux_sys_getresgid(struct lwp *l, const struct linux_sys_getresgid_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(gid_t *) rgid;
|
|
syscallarg(gid_t *) egid;
|
|
syscallarg(gid_t *) sgid;
|
|
} */
|
|
kauth_cred_t pc = l->l_cred;
|
|
int error;
|
|
gid_t gid;
|
|
|
|
/*
|
|
* Linux copies these values out to userspace like so:
|
|
*
|
|
* 1. Copy out rgid.
|
|
* 2. If that succeeds, copy out egid.
|
|
* 3. If both of those succeed, copy out sgid.
|
|
*/
|
|
gid = kauth_cred_getgid(pc);
|
|
if ((error = copyout(&gid, SCARG(uap, rgid), sizeof(gid_t))) != 0)
|
|
return (error);
|
|
|
|
gid = kauth_cred_getegid(pc);
|
|
if ((error = copyout(&gid, SCARG(uap, egid), sizeof(gid_t))) != 0)
|
|
return (error);
|
|
|
|
gid = kauth_cred_getsvgid(pc);
|
|
|
|
return (copyout(&gid, SCARG(uap, sgid), sizeof(gid_t)));
|
|
}
|
|
|
|
#ifndef __amd64__
|
|
/*
|
|
* I wonder why Linux has settimeofday() _and_ stime().. Still, we
|
|
* need to deal with it.
|
|
*/
|
|
int
|
|
linux_sys_stime(struct lwp *l, const struct linux_sys_stime_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(linux_time_t) *t;
|
|
} */
|
|
struct timespec ats;
|
|
linux_time_t tt;
|
|
int error;
|
|
|
|
if ((error = copyin(SCARG(uap, t), &tt, sizeof tt)) != 0)
|
|
return error;
|
|
|
|
ats.tv_sec = tt;
|
|
ats.tv_nsec = 0;
|
|
|
|
if ((error = settime(l->l_proc, &ats)))
|
|
return (error);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Implement the fs stat functions. Straightforward.
|
|
*/
|
|
int
|
|
linux_sys_statfs64(struct lwp *l, const struct linux_sys_statfs64_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const char *) path;
|
|
syscallarg(size_t) sz;
|
|
syscallarg(struct linux_statfs64 *) sp;
|
|
} */
|
|
struct statvfs *sb;
|
|
struct linux_statfs64 ltmp;
|
|
int error;
|
|
|
|
if (SCARG(uap, sz) != sizeof ltmp)
|
|
return (EINVAL);
|
|
|
|
sb = STATVFSBUF_GET();
|
|
error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
|
|
if (error == 0) {
|
|
bsd_to_linux_statfs64(sb, <mp);
|
|
error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
|
|
}
|
|
STATVFSBUF_PUT(sb);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
linux_sys_fstatfs64(struct lwp *l, const struct linux_sys_fstatfs64_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) fd;
|
|
syscallarg(size_t) sz;
|
|
syscallarg(struct linux_statfs64 *) sp;
|
|
} */
|
|
struct statvfs *sb;
|
|
struct linux_statfs64 ltmp;
|
|
int error;
|
|
|
|
if (SCARG(uap, sz) != sizeof ltmp)
|
|
return (EINVAL);
|
|
|
|
sb = STATVFSBUF_GET();
|
|
error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
|
|
if (error == 0) {
|
|
bsd_to_linux_statfs64(sb, <mp);
|
|
error = copyout(<mp, SCARG(uap, sp), sizeof ltmp);
|
|
}
|
|
STATVFSBUF_PUT(sb);
|
|
return error;
|
|
}
|
|
#endif /* !__amd64__ */
|
|
#endif /* !COMPAT_LINUX32 */
|