2782 lines
82 KiB
C
2782 lines
82 KiB
C
/* Extended regular expression matching and search library.
|
||
Copyright (C) 1985, 1989-90 Free Software Foundation, Inc.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* To test, compile with -Dtest. This Dtestable feature turns this into
|
||
a self-contained program which reads a pattern, describes how it
|
||
compiles, then reads a string and searches for it.
|
||
|
||
On the other hand, if you compile with both -Dtest and -Dcanned you
|
||
can run some tests we've already thought of. */
|
||
|
||
/* AIX requires the alloca decl to be the first thing in the file. */
|
||
#ifdef __GNUC__
|
||
#define alloca __builtin_alloca
|
||
#else
|
||
#ifdef sparc
|
||
#include <alloca.h>
|
||
#else
|
||
#ifdef _AIX
|
||
#pragma alloca
|
||
#else
|
||
char *alloca ();
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef emacs
|
||
|
||
/* The `emacs' switch turns on certain special matching commands
|
||
that make sense only in emacs. */
|
||
|
||
#include "config.h"
|
||
#include "lisp.h"
|
||
#include "buffer.h"
|
||
#include "syntax.h"
|
||
|
||
#else /* not emacs */
|
||
|
||
#if defined (USG) || defined (STDC_HEADERS)
|
||
#ifndef BSTRING
|
||
#include <string.h>
|
||
#define bcopy(s,d,n) memcpy((d),(s),(n))
|
||
#define bcmp(s1,s2,n) memcmp((s1),(s2),(n))
|
||
#define bzero(s,n) memset((s),0,(n))
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef STDC_HEADERS
|
||
#include <stdlib.h>
|
||
#else
|
||
char *malloc ();
|
||
char *realloc ();
|
||
#endif
|
||
|
||
/* Define the syntax stuff, so we can do the \<, \>, etc. */
|
||
|
||
/* This must be nonzero for the wordchar and notwordchar pattern
|
||
commands in re_match_2. */
|
||
#ifndef Sword
|
||
#define Sword 1
|
||
#endif
|
||
|
||
#define SYNTAX(c) re_syntax_table[c]
|
||
|
||
|
||
#ifdef SYNTAX_TABLE
|
||
|
||
char *re_syntax_table;
|
||
|
||
#else /* not SYNTAX_TABLE */
|
||
|
||
static char re_syntax_table[256];
|
||
|
||
|
||
static void
|
||
init_syntax_once ()
|
||
{
|
||
register int c;
|
||
static int done = 0;
|
||
|
||
if (done)
|
||
return;
|
||
|
||
bzero (re_syntax_table, sizeof re_syntax_table);
|
||
|
||
for (c = 'a'; c <= 'z'; c++)
|
||
re_syntax_table[c] = Sword;
|
||
|
||
for (c = 'A'; c <= 'Z'; c++)
|
||
re_syntax_table[c] = Sword;
|
||
|
||
for (c = '0'; c <= '9'; c++)
|
||
re_syntax_table[c] = Sword;
|
||
|
||
done = 1;
|
||
}
|
||
|
||
#endif /* SYNTAX_TABLE */
|
||
#endif /* emacs */
|
||
|
||
/* We write fatal error messages on standard error. */
|
||
#include <stdio.h>
|
||
|
||
/* isalpha(3) etc. are used for the character classes. */
|
||
#include <ctype.h>
|
||
/* Sequents are missing isgraph. */
|
||
#ifndef isgraph
|
||
#define isgraph(c) (isprint((c)) && !isspace((c)))
|
||
#endif
|
||
|
||
/* Get the interface, including the syntax bits. */
|
||
#include "regex.h"
|
||
|
||
|
||
/* These are the command codes that appear in compiled regular
|
||
expressions, one per byte. Some command codes are followed by
|
||
argument bytes. A command code can specify any interpretation
|
||
whatsoever for its arguments. Zero-bytes may appear in the compiled
|
||
regular expression.
|
||
|
||
The value of `exactn' is needed in search.c (search_buffer) in emacs.
|
||
So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
|
||
`exactn' we use here must also be 1. */
|
||
|
||
enum regexpcode
|
||
{
|
||
unused=0,
|
||
exactn=1, /* Followed by one byte giving n, then by n literal bytes. */
|
||
begline, /* Fail unless at beginning of line. */
|
||
endline, /* Fail unless at end of line. */
|
||
jump, /* Followed by two bytes giving relative address to jump to. */
|
||
on_failure_jump, /* Followed by two bytes giving relative address of
|
||
place to resume at in case of failure. */
|
||
finalize_jump, /* Throw away latest failure point and then jump to
|
||
address. */
|
||
maybe_finalize_jump, /* Like jump but finalize if safe to do so.
|
||
This is used to jump back to the beginning
|
||
of a repeat. If the command that follows
|
||
this jump is clearly incompatible with the
|
||
one at the beginning of the repeat, such that
|
||
we can be sure that there is no use backtracking
|
||
out of repetitions already completed,
|
||
then we finalize. */
|
||
dummy_failure_jump, /* Jump, and push a dummy failure point. This
|
||
failure point will be thrown away if an attempt
|
||
is made to use it for a failure. A + construct
|
||
makes this before the first repeat. Also
|
||
use it as an intermediary kind of jump when
|
||
compiling an or construct. */
|
||
succeed_n, /* Used like on_failure_jump except has to succeed n times;
|
||
then gets turned into an on_failure_jump. The relative
|
||
address following it is useless until then. The
|
||
address is followed by two bytes containing n. */
|
||
jump_n, /* Similar to jump, but jump n times only; also the relative
|
||
address following is in turn followed by yet two more bytes
|
||
containing n. */
|
||
set_number_at, /* Set the following relative location to the
|
||
subsequent number. */
|
||
anychar, /* Matches any (more or less) one character. */
|
||
charset, /* Matches any one char belonging to specified set.
|
||
First following byte is number of bitmap bytes.
|
||
Then come bytes for a bitmap saying which chars are in.
|
||
Bits in each byte are ordered low-bit-first.
|
||
A character is in the set if its bit is 1.
|
||
A character too large to have a bit in the map
|
||
is automatically not in the set. */
|
||
charset_not, /* Same parameters as charset, but match any character
|
||
that is not one of those specified. */
|
||
start_memory, /* Start remembering the text that is matched, for
|
||
storing in a memory register. Followed by one
|
||
byte containing the register number. Register numbers
|
||
must be in the range 0 through RE_NREGS. */
|
||
stop_memory, /* Stop remembering the text that is matched
|
||
and store it in a memory register. Followed by
|
||
one byte containing the register number. Register
|
||
numbers must be in the range 0 through RE_NREGS. */
|
||
duplicate, /* Match a duplicate of something remembered.
|
||
Followed by one byte containing the index of the memory
|
||
register. */
|
||
before_dot, /* Succeeds if before point. */
|
||
at_dot, /* Succeeds if at point. */
|
||
after_dot, /* Succeeds if after point. */
|
||
begbuf, /* Succeeds if at beginning of buffer. */
|
||
endbuf, /* Succeeds if at end of buffer. */
|
||
wordchar, /* Matches any word-constituent character. */
|
||
notwordchar, /* Matches any char that is not a word-constituent. */
|
||
wordbeg, /* Succeeds if at word beginning. */
|
||
wordend, /* Succeeds if at word end. */
|
||
wordbound, /* Succeeds if at a word boundary. */
|
||
notwordbound,/* Succeeds if not at a word boundary. */
|
||
syntaxspec, /* Matches any character whose syntax is specified.
|
||
followed by a byte which contains a syntax code,
|
||
e.g., Sword. */
|
||
notsyntaxspec /* Matches any character whose syntax differs from
|
||
that specified. */
|
||
};
|
||
|
||
|
||
/* Number of failure points to allocate space for initially,
|
||
when matching. If this number is exceeded, more space is allocated,
|
||
so it is not a hard limit. */
|
||
|
||
#ifndef NFAILURES
|
||
#define NFAILURES 80
|
||
#endif
|
||
|
||
#ifdef CHAR_UNSIGNED
|
||
#define SIGN_EXTEND_CHAR(c) ((c)>(char)127?(c)-256:(c)) /* for IBM RT */
|
||
#endif
|
||
#ifndef SIGN_EXTEND_CHAR
|
||
#define SIGN_EXTEND_CHAR(x) (x)
|
||
#endif
|
||
|
||
|
||
/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
||
#define STORE_NUMBER(destination, number) \
|
||
{ (destination)[0] = (number) & 0377; \
|
||
(destination)[1] = (number) >> 8; }
|
||
|
||
/* Same as STORE_NUMBER, except increment the destination pointer to
|
||
the byte after where the number is stored. Watch out that values for
|
||
DESTINATION such as p + 1 won't work, whereas p will. */
|
||
#define STORE_NUMBER_AND_INCR(destination, number) \
|
||
{ STORE_NUMBER(destination, number); \
|
||
(destination) += 2; }
|
||
|
||
|
||
/* Put into DESTINATION a number stored in two contingous bytes starting
|
||
at SOURCE. */
|
||
#define EXTRACT_NUMBER(destination, source) \
|
||
{ (destination) = *(source) & 0377; \
|
||
(destination) += SIGN_EXTEND_CHAR (*(char *)((source) + 1)) << 8; }
|
||
|
||
/* Same as EXTRACT_NUMBER, except increment the pointer for source to
|
||
point to second byte of SOURCE. Note that SOURCE has to be a value
|
||
such as p, not, e.g., p + 1. */
|
||
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
||
{ EXTRACT_NUMBER (destination, source); \
|
||
(source) += 2; }
|
||
|
||
|
||
/* Specify the precise syntax of regexps for compilation. This provides
|
||
for compatibility for various utilities which historically have
|
||
different, incompatible syntaxes.
|
||
|
||
The argument SYNTAX is a bit-mask comprised of the various bits
|
||
defined in regex.h. */
|
||
|
||
int
|
||
re_set_syntax (syntax)
|
||
int syntax;
|
||
{
|
||
int ret;
|
||
|
||
ret = obscure_syntax;
|
||
obscure_syntax = syntax;
|
||
return ret;
|
||
}
|
||
|
||
/* Set by re_set_syntax to the current regexp syntax to recognize. */
|
||
int obscure_syntax = 0;
|
||
|
||
|
||
|
||
/* Macros for re_compile_pattern, which is found below these definitions. */
|
||
|
||
#define CHAR_CLASS_MAX_LENGTH 6
|
||
|
||
/* Fetch the next character in the uncompiled pattern, translating it if
|
||
necessary. */
|
||
#define PATFETCH(c) \
|
||
{if (p == pend) goto end_of_pattern; \
|
||
c = * (unsigned char *) p++; \
|
||
if (translate) c = translate[c]; }
|
||
|
||
/* Fetch the next character in the uncompiled pattern, with no
|
||
translation. */
|
||
#define PATFETCH_RAW(c) \
|
||
{if (p == pend) goto end_of_pattern; \
|
||
c = * (unsigned char *) p++; }
|
||
|
||
#define PATUNFETCH p--
|
||
|
||
|
||
/* If the buffer isn't allocated when it comes in, use this. */
|
||
#define INIT_BUF_SIZE 28
|
||
|
||
/* Make sure we have at least N more bytes of space in buffer. */
|
||
#define GET_BUFFER_SPACE(n) \
|
||
{ \
|
||
while (b - bufp->buffer + (n) >= bufp->allocated) \
|
||
EXTEND_BUFFER; \
|
||
}
|
||
|
||
/* Make sure we have one more byte of buffer space and then add CH to it. */
|
||
#define BUFPUSH(ch) \
|
||
{ \
|
||
GET_BUFFER_SPACE (1); \
|
||
*b++ = (char) (ch); \
|
||
}
|
||
|
||
/* Extend the buffer by twice its current size via reallociation and
|
||
reset the pointers that pointed into the old allocation to point to
|
||
the correct places in the new allocation. If extending the buffer
|
||
results in it being larger than 1 << 16, then flag memory exhausted. */
|
||
#define EXTEND_BUFFER \
|
||
{ char *old_buffer = bufp->buffer; \
|
||
if (bufp->allocated == (1L<<16)) goto too_big; \
|
||
bufp->allocated *= 2; \
|
||
if (bufp->allocated > (1L<<16)) bufp->allocated = (1L<<16); \
|
||
bufp->buffer = (char *) realloc (bufp->buffer, bufp->allocated); \
|
||
if (bufp->buffer == 0) \
|
||
goto memory_exhausted; \
|
||
b = (b - old_buffer) + bufp->buffer; \
|
||
if (fixup_jump) \
|
||
fixup_jump = (fixup_jump - old_buffer) + bufp->buffer; \
|
||
if (laststart) \
|
||
laststart = (laststart - old_buffer) + bufp->buffer; \
|
||
begalt = (begalt - old_buffer) + bufp->buffer; \
|
||
if (pending_exact) \
|
||
pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
|
||
}
|
||
|
||
/* Set the bit for character C in a character set list. */
|
||
#define SET_LIST_BIT(c) (b[(c) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
|
||
|
||
/* Get the next unsigned number in the uncompiled pattern. */
|
||
#define GET_UNSIGNED_NUMBER(num) \
|
||
{ if (p != pend) \
|
||
{ \
|
||
PATFETCH (c); \
|
||
while (isdigit (c)) \
|
||
{ \
|
||
if (num < 0) \
|
||
num = 0; \
|
||
num = num * 10 + c - '0'; \
|
||
if (p == pend) \
|
||
break; \
|
||
PATFETCH (c); \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
/* Subroutines for re_compile_pattern. */
|
||
static void store_jump (), insert_jump (), store_jump_n (),
|
||
insert_jump_n (), insert_op_2 ();
|
||
|
||
|
||
/* re_compile_pattern takes a regular-expression string
|
||
and converts it into a buffer full of byte commands for matching.
|
||
|
||
PATTERN is the address of the pattern string
|
||
SIZE is the length of it.
|
||
BUFP is a struct re_pattern_buffer * which points to the info
|
||
on where to store the byte commands.
|
||
This structure contains a char * which points to the
|
||
actual space, which should have been obtained with malloc.
|
||
re_compile_pattern may use realloc to grow the buffer space.
|
||
|
||
The number of bytes of commands can be found out by looking in
|
||
the `struct re_pattern_buffer' that bufp pointed to, after
|
||
re_compile_pattern returns. */
|
||
|
||
char *
|
||
re_compile_pattern (pattern, size, bufp)
|
||
char *pattern;
|
||
int size;
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
register char *b = bufp->buffer;
|
||
register char *p = pattern;
|
||
char *pend = pattern + size;
|
||
register unsigned c, c1;
|
||
char *p1;
|
||
unsigned char *translate = (unsigned char *) bufp->translate;
|
||
|
||
/* Address of the count-byte of the most recently inserted `exactn'
|
||
command. This makes it possible to tell whether a new exact-match
|
||
character can be added to that command or requires a new `exactn'
|
||
command. */
|
||
|
||
char *pending_exact = 0;
|
||
|
||
/* Address of the place where a forward-jump should go to the end of
|
||
the containing expression. Each alternative of an `or', except the
|
||
last, ends with a forward-jump of this sort. */
|
||
|
||
char *fixup_jump = 0;
|
||
|
||
/* Address of start of the most recently finished expression.
|
||
This tells postfix * where to find the start of its operand. */
|
||
|
||
char *laststart = 0;
|
||
|
||
/* In processing a repeat, 1 means zero matches is allowed. */
|
||
|
||
char zero_times_ok;
|
||
|
||
/* In processing a repeat, 1 means many matches is allowed. */
|
||
|
||
char many_times_ok;
|
||
|
||
/* Address of beginning of regexp, or inside of last \(. */
|
||
|
||
char *begalt = b;
|
||
|
||
/* In processing an interval, at least this many matches must be made. */
|
||
int lower_bound;
|
||
|
||
/* In processing an interval, at most this many matches can be made. */
|
||
int upper_bound;
|
||
|
||
/* Place in pattern (i.e., the {) to which to go back if the interval
|
||
is invalid. */
|
||
char *beg_interval = 0;
|
||
|
||
/* Stack of information saved by \( and restored by \).
|
||
Four stack elements are pushed by each \(:
|
||
First, the value of b.
|
||
Second, the value of fixup_jump.
|
||
Third, the value of regnum.
|
||
Fourth, the value of begalt. */
|
||
|
||
int stackb[40];
|
||
int *stackp = stackb;
|
||
int *stacke = stackb + 40;
|
||
int *stackt;
|
||
|
||
/* Counts \('s as they are encountered. Remembered for the matching \),
|
||
where it becomes the register number to put in the stop_memory
|
||
command. */
|
||
|
||
int regnum = 1;
|
||
|
||
bufp->fastmap_accurate = 0;
|
||
|
||
#ifndef emacs
|
||
#ifndef SYNTAX_TABLE
|
||
/* Initialize the syntax table. */
|
||
init_syntax_once();
|
||
#endif
|
||
#endif
|
||
|
||
if (bufp->allocated == 0)
|
||
{
|
||
bufp->allocated = INIT_BUF_SIZE;
|
||
if (bufp->buffer)
|
||
/* EXTEND_BUFFER loses when bufp->allocated is 0. */
|
||
bufp->buffer = (char *) realloc (bufp->buffer, INIT_BUF_SIZE);
|
||
else
|
||
/* Caller did not allocate a buffer. Do it for them. */
|
||
bufp->buffer = (char *) malloc (INIT_BUF_SIZE);
|
||
if (!bufp->buffer) goto memory_exhausted;
|
||
begalt = b = bufp->buffer;
|
||
}
|
||
|
||
while (p != pend)
|
||
{
|
||
PATFETCH (c);
|
||
|
||
switch (c)
|
||
{
|
||
case '$':
|
||
{
|
||
char *p1 = p;
|
||
/* When testing what follows the $,
|
||
look past the \-constructs that don't consume anything. */
|
||
if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
|
||
while (p1 != pend)
|
||
{
|
||
if (*p1 == '\\' && p1 + 1 != pend
|
||
&& (p1[1] == '<' || p1[1] == '>'
|
||
|| p1[1] == '`' || p1[1] == '\''
|
||
#ifdef emacs
|
||
|| p1[1] == '='
|
||
#endif
|
||
|| p1[1] == 'b' || p1[1] == 'B'))
|
||
p1 += 2;
|
||
else
|
||
break;
|
||
}
|
||
if (obscure_syntax & RE_TIGHT_VBAR)
|
||
{
|
||
if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS) && p1 != pend)
|
||
goto normal_char;
|
||
/* Make operand of last vbar end before this `$'. */
|
||
if (fixup_jump)
|
||
store_jump (fixup_jump, jump, b);
|
||
fixup_jump = 0;
|
||
BUFPUSH (endline);
|
||
break;
|
||
}
|
||
/* $ means succeed if at end of line, but only in special contexts.
|
||
If validly in the middle of a pattern, it is a normal character. */
|
||
|
||
if ((obscure_syntax & RE_CONTEXTUAL_INVALID_OPS) && p1 != pend)
|
||
goto invalid_pattern;
|
||
if (p1 == pend || *p1 == '\n'
|
||
|| (obscure_syntax & RE_CONTEXT_INDEP_OPS)
|
||
|| (obscure_syntax & RE_NO_BK_PARENS
|
||
? *p1 == ')'
|
||
: *p1 == '\\' && p1[1] == ')')
|
||
|| (obscure_syntax & RE_NO_BK_VBAR
|
||
? *p1 == '|'
|
||
: *p1 == '\\' && p1[1] == '|'))
|
||
{
|
||
BUFPUSH (endline);
|
||
break;
|
||
}
|
||
goto normal_char;
|
||
}
|
||
case '^':
|
||
/* ^ means succeed if at beg of line, but only if no preceding
|
||
pattern. */
|
||
|
||
if ((obscure_syntax & RE_CONTEXTUAL_INVALID_OPS) && laststart)
|
||
goto invalid_pattern;
|
||
if (laststart && p - 2 >= pattern && p[-2] != '\n'
|
||
&& !(obscure_syntax & RE_CONTEXT_INDEP_OPS))
|
||
goto normal_char;
|
||
if (obscure_syntax & RE_TIGHT_VBAR)
|
||
{
|
||
if (p != pattern + 1
|
||
&& ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
|
||
goto normal_char;
|
||
BUFPUSH (begline);
|
||
begalt = b;
|
||
}
|
||
else
|
||
BUFPUSH (begline);
|
||
break;
|
||
|
||
case '+':
|
||
case '?':
|
||
if ((obscure_syntax & RE_BK_PLUS_QM)
|
||
|| (obscure_syntax & RE_LIMITED_OPS))
|
||
goto normal_char;
|
||
handle_plus:
|
||
case '*':
|
||
/* If there is no previous pattern, char not special. */
|
||
if (!laststart)
|
||
{
|
||
if (obscure_syntax & RE_CONTEXTUAL_INVALID_OPS)
|
||
goto invalid_pattern;
|
||
else if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
|
||
goto normal_char;
|
||
}
|
||
/* If there is a sequence of repetition chars,
|
||
collapse it down to just one. */
|
||
zero_times_ok = 0;
|
||
many_times_ok = 0;
|
||
while (1)
|
||
{
|
||
zero_times_ok |= c != '+';
|
||
many_times_ok |= c != '?';
|
||
if (p == pend)
|
||
break;
|
||
PATFETCH (c);
|
||
if (c == '*')
|
||
;
|
||
else if (!(obscure_syntax & RE_BK_PLUS_QM)
|
||
&& (c == '+' || c == '?'))
|
||
;
|
||
else if ((obscure_syntax & RE_BK_PLUS_QM)
|
||
&& c == '\\')
|
||
{
|
||
int c1;
|
||
PATFETCH (c1);
|
||
if (!(c1 == '+' || c1 == '?'))
|
||
{
|
||
PATUNFETCH;
|
||
PATUNFETCH;
|
||
break;
|
||
}
|
||
c = c1;
|
||
}
|
||
else
|
||
{
|
||
PATUNFETCH;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Star, etc. applied to an empty pattern is equivalent
|
||
to an empty pattern. */
|
||
if (!laststart)
|
||
break;
|
||
|
||
/* Now we know whether or not zero matches is allowed
|
||
and also whether or not two or more matches is allowed. */
|
||
if (many_times_ok)
|
||
{
|
||
/* If more than one repetition is allowed, put in at the
|
||
end a backward relative jump from b to before the next
|
||
jump we're going to put in below (which jumps from
|
||
laststart to after this jump). */
|
||
GET_BUFFER_SPACE (3);
|
||
store_jump (b, maybe_finalize_jump, laststart - 3);
|
||
b += 3; /* Because store_jump put stuff here. */
|
||
}
|
||
/* On failure, jump from laststart to b + 3, which will be the
|
||
end of the buffer after this jump is inserted. */
|
||
GET_BUFFER_SPACE (3);
|
||
insert_jump (on_failure_jump, laststart, b + 3, b);
|
||
pending_exact = 0;
|
||
b += 3;
|
||
if (!zero_times_ok)
|
||
{
|
||
/* At least one repetition is required, so insert a
|
||
dummy-failure before the initial on-failure-jump
|
||
instruction of the loop. This effects a skip over that
|
||
instruction the first time we hit that loop. */
|
||
GET_BUFFER_SPACE (6);
|
||
insert_jump (dummy_failure_jump, laststart, laststart + 6, b);
|
||
b += 3;
|
||
}
|
||
break;
|
||
|
||
case '.':
|
||
laststart = b;
|
||
BUFPUSH (anychar);
|
||
break;
|
||
|
||
case '[':
|
||
if (p == pend)
|
||
goto invalid_pattern;
|
||
while (b - bufp->buffer
|
||
> bufp->allocated - 3 - (1 << BYTEWIDTH) / BYTEWIDTH)
|
||
EXTEND_BUFFER;
|
||
|
||
laststart = b;
|
||
if (*p == '^')
|
||
{
|
||
BUFPUSH (charset_not);
|
||
p++;
|
||
}
|
||
else
|
||
BUFPUSH (charset);
|
||
p1 = p;
|
||
|
||
BUFPUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
|
||
/* Clear the whole map */
|
||
bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
|
||
|
||
if ((obscure_syntax & RE_HAT_NOT_NEWLINE) && b[-2] == charset_not)
|
||
SET_LIST_BIT ('\n');
|
||
|
||
|
||
/* Read in characters and ranges, setting map bits. */
|
||
while (1)
|
||
{
|
||
/* Don't translate while fetching, in case it's a range bound.
|
||
When we set the bit for the character, we translate it. */
|
||
PATFETCH_RAW (c);
|
||
|
||
/* If set, \ escapes characters when inside [...]. */
|
||
if ((obscure_syntax & RE_AWK_CLASS_HACK) && c == '\\')
|
||
{
|
||
PATFETCH(c1);
|
||
SET_LIST_BIT (c1);
|
||
continue;
|
||
}
|
||
if (c == ']')
|
||
{
|
||
if (p == p1 + 1)
|
||
{
|
||
/* If this is an empty bracket expression. */
|
||
if ((obscure_syntax & RE_NO_EMPTY_BRACKETS)
|
||
&& p == pend)
|
||
goto invalid_pattern;
|
||
}
|
||
else
|
||
/* Stop if this isn't merely a ] inside a bracket
|
||
expression, but rather the end of a bracket
|
||
expression. */
|
||
break;
|
||
}
|
||
/* Get a range. */
|
||
if (p[0] == '-' && p[1] != ']')
|
||
{
|
||
PATFETCH (c1);
|
||
/* Don't translate the range bounds while fetching them. */
|
||
PATFETCH_RAW (c1);
|
||
|
||
if ((obscure_syntax & RE_NO_EMPTY_RANGES) && c > c1)
|
||
goto invalid_pattern;
|
||
|
||
if ((obscure_syntax & RE_NO_HYPHEN_RANGE_END)
|
||
&& c1 == '-' && *p != ']')
|
||
goto invalid_pattern;
|
||
|
||
while (c <= c1)
|
||
{
|
||
/* Translate each char that's in the range. */
|
||
if (translate)
|
||
SET_LIST_BIT (translate[c]);
|
||
else
|
||
SET_LIST_BIT (c);
|
||
c++;
|
||
}
|
||
}
|
||
else if ((obscure_syntax & RE_CHAR_CLASSES)
|
||
&& c == '[' && p[0] == ':')
|
||
{
|
||
/* Longest valid character class word has six characters. */
|
||
char str[CHAR_CLASS_MAX_LENGTH];
|
||
PATFETCH (c);
|
||
c1 = 0;
|
||
/* If no ] at end. */
|
||
if (p == pend)
|
||
goto invalid_pattern;
|
||
while (1)
|
||
{
|
||
/* Don't translate the ``character class'' characters. */
|
||
PATFETCH_RAW (c);
|
||
if (c == ':' || c == ']' || p == pend
|
||
|| c1 == CHAR_CLASS_MAX_LENGTH)
|
||
break;
|
||
str[c1++] = c;
|
||
}
|
||
str[c1] = '\0';
|
||
if (p == pend
|
||
|| c == ']' /* End of the bracket expression. */
|
||
|| p[0] != ']'
|
||
|| p + 1 == pend
|
||
|| (strcmp (str, "alpha") != 0
|
||
&& strcmp (str, "upper") != 0
|
||
&& strcmp (str, "lower") != 0
|
||
&& strcmp (str, "digit") != 0
|
||
&& strcmp (str, "alnum") != 0
|
||
&& strcmp (str, "xdigit") != 0
|
||
&& strcmp (str, "space") != 0
|
||
&& strcmp (str, "print") != 0
|
||
&& strcmp (str, "punct") != 0
|
||
&& strcmp (str, "graph") != 0
|
||
&& strcmp (str, "cntrl") != 0))
|
||
{
|
||
/* Undo the ending character, the letters, and leave
|
||
the leading : and [ (but set bits for them). */
|
||
c1++;
|
||
while (c1--)
|
||
PATUNFETCH;
|
||
SET_LIST_BIT ('[');
|
||
SET_LIST_BIT (':');
|
||
}
|
||
else
|
||
{
|
||
/* The ] at the end of the character class. */
|
||
PATFETCH (c);
|
||
if (c != ']')
|
||
goto invalid_pattern;
|
||
for (c = 0; c < (1 << BYTEWIDTH); c++)
|
||
{
|
||
if ((strcmp (str, "alpha") == 0 && isalpha (c))
|
||
|| (strcmp (str, "upper") == 0 && isupper (c))
|
||
|| (strcmp (str, "lower") == 0 && islower (c))
|
||
|| (strcmp (str, "digit") == 0 && isdigit (c))
|
||
|| (strcmp (str, "alnum") == 0 && isalnum (c))
|
||
|| (strcmp (str, "xdigit") == 0 && isxdigit (c))
|
||
|| (strcmp (str, "space") == 0 && isspace (c))
|
||
|| (strcmp (str, "print") == 0 && isprint (c))
|
||
|| (strcmp (str, "punct") == 0 && ispunct (c))
|
||
|| (strcmp (str, "graph") == 0 && isgraph (c))
|
||
|| (strcmp (str, "cntrl") == 0 && iscntrl (c)))
|
||
SET_LIST_BIT (c);
|
||
}
|
||
}
|
||
}
|
||
else if (translate)
|
||
SET_LIST_BIT (translate[c]);
|
||
else
|
||
SET_LIST_BIT (c);
|
||
}
|
||
|
||
/* Discard any character set/class bitmap bytes that are all
|
||
0 at the end of the map. Decrement the map-length byte too. */
|
||
while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
|
||
b[-1]--;
|
||
b += b[-1];
|
||
break;
|
||
|
||
case '(':
|
||
if (! (obscure_syntax & RE_NO_BK_PARENS))
|
||
goto normal_char;
|
||
else
|
||
goto handle_open;
|
||
|
||
case ')':
|
||
if (! (obscure_syntax & RE_NO_BK_PARENS))
|
||
goto normal_char;
|
||
else
|
||
goto handle_close;
|
||
|
||
case '\n':
|
||
if (! (obscure_syntax & RE_NEWLINE_OR))
|
||
goto normal_char;
|
||
else
|
||
goto handle_bar;
|
||
|
||
case '|':
|
||
if ((obscure_syntax & RE_CONTEXTUAL_INVALID_OPS)
|
||
&& (! laststart || p == pend))
|
||
goto invalid_pattern;
|
||
else if (! (obscure_syntax & RE_NO_BK_VBAR))
|
||
goto normal_char;
|
||
else
|
||
goto handle_bar;
|
||
|
||
case '{':
|
||
if (! ((obscure_syntax & RE_NO_BK_CURLY_BRACES)
|
||
&& (obscure_syntax & RE_INTERVALS)))
|
||
goto normal_char;
|
||
else
|
||
goto handle_interval;
|
||
|
||
case '\\':
|
||
if (p == pend) goto invalid_pattern;
|
||
PATFETCH_RAW (c);
|
||
switch (c)
|
||
{
|
||
case '(':
|
||
if (obscure_syntax & RE_NO_BK_PARENS)
|
||
goto normal_backsl;
|
||
handle_open:
|
||
if (stackp == stacke) goto nesting_too_deep;
|
||
|
||
/* Laststart should point to the start_memory that we are about
|
||
to push (unless the pattern has RE_NREGS or more ('s). */
|
||
*stackp++ = b - bufp->buffer;
|
||
if (regnum < RE_NREGS)
|
||
{
|
||
BUFPUSH (start_memory);
|
||
BUFPUSH (regnum);
|
||
}
|
||
*stackp++ = fixup_jump ? fixup_jump - bufp->buffer + 1 : 0;
|
||
*stackp++ = regnum++;
|
||
*stackp++ = begalt - bufp->buffer;
|
||
fixup_jump = 0;
|
||
laststart = 0;
|
||
begalt = b;
|
||
break;
|
||
|
||
case ')':
|
||
if (obscure_syntax & RE_NO_BK_PARENS)
|
||
goto normal_backsl;
|
||
handle_close:
|
||
if (stackp == stackb) goto unmatched_close;
|
||
begalt = *--stackp + bufp->buffer;
|
||
if (fixup_jump)
|
||
store_jump (fixup_jump, jump, b);
|
||
if (stackp[-1] < RE_NREGS)
|
||
{
|
||
BUFPUSH (stop_memory);
|
||
BUFPUSH (stackp[-1]);
|
||
}
|
||
stackp -= 2;
|
||
fixup_jump = *stackp ? *stackp + bufp->buffer - 1 : 0;
|
||
laststart = *--stackp + bufp->buffer;
|
||
break;
|
||
|
||
case '|':
|
||
if ((obscure_syntax & RE_LIMITED_OPS)
|
||
|| (obscure_syntax & RE_NO_BK_VBAR))
|
||
goto normal_backsl;
|
||
handle_bar:
|
||
if (obscure_syntax & RE_LIMITED_OPS)
|
||
goto normal_char;
|
||
/* Insert before the previous alternative a jump which
|
||
jumps to this alternative if the former fails. */
|
||
GET_BUFFER_SPACE (6);
|
||
insert_jump (on_failure_jump, begalt, b + 6, b);
|
||
pending_exact = 0;
|
||
b += 3;
|
||
/* The alternative before the previous alternative has a
|
||
jump after it which gets executed if it gets matched.
|
||
Adjust that jump so it will jump to the previous
|
||
alternative's analogous jump (put in below, which in
|
||
turn will jump to the next (if any) alternative's such
|
||
jump, etc.). The last such jump jumps to the correct
|
||
final destination. */
|
||
if (fixup_jump)
|
||
store_jump (fixup_jump, jump, b);
|
||
|
||
/* Leave space for a jump after previous alternative---to be
|
||
filled in later. */
|
||
fixup_jump = b;
|
||
b += 3;
|
||
|
||
laststart = 0;
|
||
begalt = b;
|
||
break;
|
||
|
||
case '{':
|
||
if (! (obscure_syntax & RE_INTERVALS)
|
||
/* Let \{ be a literal. */
|
||
|| ((obscure_syntax & RE_INTERVALS)
|
||
&& (obscure_syntax & RE_NO_BK_CURLY_BRACES))
|
||
/* If it's the string "\{". */
|
||
|| (p - 2 == pattern && p == pend))
|
||
goto normal_backsl;
|
||
handle_interval:
|
||
beg_interval = p - 1; /* The {. */
|
||
/* If there is no previous pattern, this isn't an interval. */
|
||
if (!laststart)
|
||
{
|
||
if (obscure_syntax & RE_CONTEXTUAL_INVALID_OPS)
|
||
goto invalid_pattern;
|
||
else
|
||
goto normal_backsl;
|
||
}
|
||
/* It also isn't an interval if not preceded by an re
|
||
matching a single character or subexpression, or if
|
||
the current type of intervals can't handle back
|
||
references and the previous thing is a back reference. */
|
||
if (! (*laststart == anychar
|
||
|| *laststart == charset
|
||
|| *laststart == charset_not
|
||
|| *laststart == start_memory
|
||
|| (*laststart == exactn && laststart[1] == 1)
|
||
|| (! (obscure_syntax & RE_NO_BK_REFS)
|
||
&& *laststart == duplicate)))
|
||
{
|
||
if (obscure_syntax & RE_NO_BK_CURLY_BRACES)
|
||
goto normal_char;
|
||
|
||
/* Posix extended syntax is handled in previous
|
||
statement; this is for Posix basic syntax. */
|
||
if (obscure_syntax & RE_INTERVALS)
|
||
goto invalid_pattern;
|
||
|
||
goto normal_backsl;
|
||
}
|
||
lower_bound = -1; /* So can see if are set. */
|
||
upper_bound = -1;
|
||
GET_UNSIGNED_NUMBER (lower_bound);
|
||
if (c == ',')
|
||
{
|
||
GET_UNSIGNED_NUMBER (upper_bound);
|
||
if (upper_bound < 0)
|
||
upper_bound = RE_DUP_MAX;
|
||
}
|
||
if (upper_bound < 0)
|
||
upper_bound = lower_bound;
|
||
if (! (obscure_syntax & RE_NO_BK_CURLY_BRACES))
|
||
{
|
||
if (c != '\\')
|
||
goto invalid_pattern;
|
||
PATFETCH (c);
|
||
}
|
||
if (c != '}' || lower_bound < 0 || upper_bound > RE_DUP_MAX
|
||
|| lower_bound > upper_bound
|
||
|| ((obscure_syntax & RE_NO_BK_CURLY_BRACES)
|
||
&& p != pend && *p == '{'))
|
||
{
|
||
if (obscure_syntax & RE_NO_BK_CURLY_BRACES)
|
||
goto unfetch_interval;
|
||
else
|
||
goto invalid_pattern;
|
||
}
|
||
|
||
/* If upper_bound is zero, don't want to succeed at all;
|
||
jump from laststart to b + 3, which will be the end of
|
||
the buffer after this jump is inserted. */
|
||
|
||
if (upper_bound == 0)
|
||
{
|
||
GET_BUFFER_SPACE (3);
|
||
insert_jump (jump, laststart, b + 3, b);
|
||
b += 3;
|
||
}
|
||
|
||
/* Otherwise, after lower_bound number of succeeds, jump
|
||
to after the jump_n which will be inserted at the end
|
||
of the buffer, and insert that jump_n. */
|
||
else
|
||
{ /* Set to 5 if only one repetition is allowed and
|
||
hence no jump_n is inserted at the current end of
|
||
the buffer; then only space for the succeed_n is
|
||
needed. Otherwise, need space for both the
|
||
succeed_n and the jump_n. */
|
||
|
||
unsigned slots_needed = upper_bound == 1 ? 5 : 10;
|
||
|
||
GET_BUFFER_SPACE (slots_needed);
|
||
/* Initialize the succeed_n to n, even though it will
|
||
be set by its attendant set_number_at, because
|
||
re_compile_fastmap will need to know it. Jump to
|
||
what the end of buffer will be after inserting
|
||
this succeed_n and possibly appending a jump_n. */
|
||
insert_jump_n (succeed_n, laststart, b + slots_needed,
|
||
b, lower_bound);
|
||
b += 5; /* Just increment for the succeed_n here. */
|
||
|
||
/* More than one repetition is allowed, so put in at
|
||
the end of the buffer a backward jump from b to the
|
||
succeed_n we put in above. By the time we've gotten
|
||
to this jump when matching, we'll have matched once
|
||
already, so jump back only upper_bound - 1 times. */
|
||
|
||
if (upper_bound > 1)
|
||
{
|
||
store_jump_n (b, jump_n, laststart, upper_bound - 1);
|
||
b += 5;
|
||
/* When hit this when matching, reset the
|
||
preceding jump_n's n to upper_bound - 1. */
|
||
BUFPUSH (set_number_at);
|
||
GET_BUFFER_SPACE (2);
|
||
STORE_NUMBER_AND_INCR (b, -5);
|
||
STORE_NUMBER_AND_INCR (b, upper_bound - 1);
|
||
}
|
||
/* When hit this when matching, set the succeed_n's n. */
|
||
GET_BUFFER_SPACE (5);
|
||
insert_op_2 (set_number_at, laststart, b, 5, lower_bound);
|
||
b += 5;
|
||
}
|
||
pending_exact = 0;
|
||
beg_interval = 0;
|
||
break;
|
||
|
||
|
||
unfetch_interval:
|
||
/* If an invalid interval, match the characters as literals. */
|
||
if (beg_interval)
|
||
p = beg_interval;
|
||
else
|
||
{
|
||
fprintf (stderr,
|
||
"regex: no interval beginning to which to backtrack.\n");
|
||
exit (1);
|
||
}
|
||
|
||
beg_interval = 0;
|
||
PATFETCH (c); /* normal_char expects char in `c'. */
|
||
goto normal_char;
|
||
break;
|
||
|
||
#ifdef emacs
|
||
case '=':
|
||
BUFPUSH (at_dot);
|
||
break;
|
||
|
||
case 's':
|
||
laststart = b;
|
||
BUFPUSH (syntaxspec);
|
||
PATFETCH (c);
|
||
BUFPUSH (syntax_spec_code[c]);
|
||
break;
|
||
|
||
case 'S':
|
||
laststart = b;
|
||
BUFPUSH (notsyntaxspec);
|
||
PATFETCH (c);
|
||
BUFPUSH (syntax_spec_code[c]);
|
||
break;
|
||
#endif /* emacs */
|
||
|
||
case 'w':
|
||
laststart = b;
|
||
BUFPUSH (wordchar);
|
||
break;
|
||
|
||
case 'W':
|
||
laststart = b;
|
||
BUFPUSH (notwordchar);
|
||
break;
|
||
|
||
case '<':
|
||
BUFPUSH (wordbeg);
|
||
break;
|
||
|
||
case '>':
|
||
BUFPUSH (wordend);
|
||
break;
|
||
|
||
case 'b':
|
||
BUFPUSH (wordbound);
|
||
break;
|
||
|
||
case 'B':
|
||
BUFPUSH (notwordbound);
|
||
break;
|
||
|
||
case '`':
|
||
BUFPUSH (begbuf);
|
||
break;
|
||
|
||
case '\'':
|
||
BUFPUSH (endbuf);
|
||
break;
|
||
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
if (obscure_syntax & RE_NO_BK_REFS)
|
||
goto normal_char;
|
||
c1 = c - '0';
|
||
if (c1 >= regnum)
|
||
{
|
||
if (obscure_syntax & RE_NO_EMPTY_BK_REF)
|
||
goto invalid_pattern;
|
||
else
|
||
goto normal_char;
|
||
}
|
||
/* Can't back reference to a subexpression if inside of it. */
|
||
for (stackt = stackp - 2; stackt > stackb; stackt -= 4)
|
||
if (*stackt == c1)
|
||
goto normal_char;
|
||
laststart = b;
|
||
BUFPUSH (duplicate);
|
||
BUFPUSH (c1);
|
||
break;
|
||
|
||
case '+':
|
||
case '?':
|
||
if (obscure_syntax & RE_BK_PLUS_QM)
|
||
goto handle_plus;
|
||
else
|
||
goto normal_backsl;
|
||
break;
|
||
|
||
default:
|
||
normal_backsl:
|
||
/* You might think it would be useful for \ to mean
|
||
not to translate; but if we don't translate it
|
||
it will never match anything. */
|
||
if (translate) c = translate[c];
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
normal_char: /* Expects the character in `c'. */
|
||
if (!pending_exact || pending_exact + *pending_exact + 1 != b
|
||
|| *pending_exact == 0177 || *p == '*' || *p == '^'
|
||
|| ((obscure_syntax & RE_BK_PLUS_QM)
|
||
? *p == '\\' && (p[1] == '+' || p[1] == '?')
|
||
: (*p == '+' || *p == '?'))
|
||
|| ((obscure_syntax & RE_INTERVALS)
|
||
&& ((obscure_syntax & RE_NO_BK_CURLY_BRACES)
|
||
? *p == '{'
|
||
: (p[0] == '\\' && p[1] == '{'))))
|
||
{
|
||
laststart = b;
|
||
BUFPUSH (exactn);
|
||
pending_exact = b;
|
||
BUFPUSH (0);
|
||
}
|
||
BUFPUSH (c);
|
||
(*pending_exact)++;
|
||
}
|
||
}
|
||
|
||
if (fixup_jump)
|
||
store_jump (fixup_jump, jump, b);
|
||
|
||
if (stackp != stackb) goto unmatched_open;
|
||
|
||
bufp->used = b - bufp->buffer;
|
||
return 0;
|
||
|
||
invalid_pattern:
|
||
return "Invalid regular expression";
|
||
|
||
unmatched_open:
|
||
return "Unmatched \\(";
|
||
|
||
unmatched_close:
|
||
return "Unmatched \\)";
|
||
|
||
end_of_pattern:
|
||
return "Premature end of regular expression";
|
||
|
||
nesting_too_deep:
|
||
return "Nesting too deep";
|
||
|
||
too_big:
|
||
return "Regular expression too big";
|
||
|
||
memory_exhausted:
|
||
return "Memory exhausted";
|
||
}
|
||
|
||
|
||
/* Store a jump of the form <OPCODE> <relative address>.
|
||
Store in the location FROM a jump operation to jump to relative
|
||
address FROM - TO. OPCODE is the opcode to store. */
|
||
|
||
static void
|
||
store_jump (from, opcode, to)
|
||
char *from, *to;
|
||
char opcode;
|
||
{
|
||
from[0] = opcode;
|
||
STORE_NUMBER(from + 1, to - (from + 3));
|
||
}
|
||
|
||
|
||
/* Open up space before char FROM, and insert there a jump to TO.
|
||
CURRENT_END gives the end of the storage not in use, so we know
|
||
how much data to copy up. OP is the opcode of the jump to insert.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
insert_jump (op, from, to, current_end)
|
||
char op;
|
||
char *from, *to, *current_end;
|
||
{
|
||
register char *pfrom = current_end; /* Copy from here... */
|
||
register char *pto = current_end + 3; /* ...to here. */
|
||
|
||
while (pfrom != from)
|
||
*--pto = *--pfrom;
|
||
store_jump (from, op, to);
|
||
}
|
||
|
||
|
||
/* Store a jump of the form <opcode> <relative address> <n> .
|
||
|
||
Store in the location FROM a jump operation to jump to relative
|
||
address FROM - TO. OPCODE is the opcode to store, N is a number the
|
||
jump uses, say, to decide how many times to jump.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
store_jump_n (from, opcode, to, n)
|
||
char *from, *to;
|
||
char opcode;
|
||
unsigned n;
|
||
{
|
||
from[0] = opcode;
|
||
STORE_NUMBER (from + 1, to - (from + 3));
|
||
STORE_NUMBER (from + 3, n);
|
||
}
|
||
|
||
|
||
/* Similar to insert_jump, but handles a jump which needs an extra
|
||
number to handle minimum and maximum cases. Open up space at
|
||
location FROM, and insert there a jump to TO. CURRENT_END gives the
|
||
end of the storage in use, so we know how much data to copy up. OP is
|
||
the opcode of the jump to insert.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
insert_jump_n (op, from, to, current_end, n)
|
||
char op;
|
||
char *from, *to, *current_end;
|
||
unsigned n;
|
||
{
|
||
register char *pfrom = current_end; /* Copy from here... */
|
||
register char *pto = current_end + 5; /* ...to here. */
|
||
|
||
while (pfrom != from)
|
||
*--pto = *--pfrom;
|
||
store_jump_n (from, op, to, n);
|
||
}
|
||
|
||
|
||
/* Open up space at location THERE, and insert operation OP followed by
|
||
NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so
|
||
we know how much data to copy up.
|
||
|
||
If you call this function, you must zero out pending_exact. */
|
||
|
||
static void
|
||
insert_op_2 (op, there, current_end, num_1, num_2)
|
||
char op;
|
||
char *there, *current_end;
|
||
int num_1, num_2;
|
||
{
|
||
register char *pfrom = current_end; /* Copy from here... */
|
||
register char *pto = current_end + 5; /* ...to here. */
|
||
|
||
while (pfrom != there)
|
||
*--pto = *--pfrom;
|
||
|
||
there[0] = op;
|
||
STORE_NUMBER (there + 1, num_1);
|
||
STORE_NUMBER (there + 3, num_2);
|
||
}
|
||
|
||
|
||
|
||
/* Given a pattern, compute a fastmap from it. The fastmap records
|
||
which of the (1 << BYTEWIDTH) possible characters can start a string
|
||
that matches the pattern. This fastmap is used by re_search to skip
|
||
quickly over totally implausible text.
|
||
|
||
The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
||
area as bufp->fastmap.
|
||
The other components of bufp describe the pattern to be used. */
|
||
|
||
void
|
||
re_compile_fastmap (bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
unsigned char *pattern = (unsigned char *) bufp->buffer;
|
||
int size = bufp->used;
|
||
register char *fastmap = bufp->fastmap;
|
||
register unsigned char *p = pattern;
|
||
register unsigned char *pend = pattern + size;
|
||
register int j, k;
|
||
unsigned char *translate = (unsigned char *) bufp->translate;
|
||
|
||
unsigned char *stackb[NFAILURES];
|
||
unsigned char **stackp = stackb;
|
||
|
||
unsigned is_a_succeed_n;
|
||
|
||
bzero (fastmap, (1 << BYTEWIDTH));
|
||
bufp->fastmap_accurate = 1;
|
||
bufp->can_be_null = 0;
|
||
|
||
while (p)
|
||
{
|
||
is_a_succeed_n = 0;
|
||
if (p == pend)
|
||
{
|
||
bufp->can_be_null = 1;
|
||
break;
|
||
}
|
||
#ifdef SWITCH_ENUM_BUG
|
||
switch ((int) ((enum regexpcode) *p++))
|
||
#else
|
||
switch ((enum regexpcode) *p++)
|
||
#endif
|
||
{
|
||
case exactn:
|
||
if (translate)
|
||
fastmap[translate[p[1]]] = 1;
|
||
else
|
||
fastmap[p[1]] = 1;
|
||
break;
|
||
|
||
case begline:
|
||
case before_dot:
|
||
case at_dot:
|
||
case after_dot:
|
||
case begbuf:
|
||
case endbuf:
|
||
case wordbound:
|
||
case notwordbound:
|
||
case wordbeg:
|
||
case wordend:
|
||
continue;
|
||
|
||
case endline:
|
||
if (translate)
|
||
fastmap[translate['\n']] = 1;
|
||
else
|
||
fastmap['\n'] = 1;
|
||
|
||
if (bufp->can_be_null != 1)
|
||
bufp->can_be_null = 2;
|
||
break;
|
||
|
||
case jump_n:
|
||
case finalize_jump:
|
||
case maybe_finalize_jump:
|
||
case jump:
|
||
case dummy_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR (j, p);
|
||
p += j;
|
||
if (j > 0)
|
||
continue;
|
||
/* Jump backward reached implies we just went through
|
||
the body of a loop and matched nothing.
|
||
Opcode jumped to should be an on_failure_jump.
|
||
Just treat it like an ordinary jump.
|
||
For a * loop, it has pushed its failure point already;
|
||
If so, discard that as redundant. */
|
||
|
||
if ((enum regexpcode) *p != on_failure_jump
|
||
&& (enum regexpcode) *p != succeed_n)
|
||
continue;
|
||
p++;
|
||
EXTRACT_NUMBER_AND_INCR (j, p);
|
||
p += j;
|
||
if (stackp != stackb && *stackp == p)
|
||
stackp--;
|
||
continue;
|
||
|
||
case on_failure_jump:
|
||
handle_on_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR (j, p);
|
||
*++stackp = p + j;
|
||
if (is_a_succeed_n)
|
||
EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
|
||
continue;
|
||
|
||
case succeed_n:
|
||
is_a_succeed_n = 1;
|
||
/* Get to the number of times to succeed. */
|
||
p += 2;
|
||
/* Increment p past the n for when k != 0. */
|
||
EXTRACT_NUMBER_AND_INCR (k, p);
|
||
if (k == 0)
|
||
{
|
||
p -= 4;
|
||
goto handle_on_failure_jump;
|
||
}
|
||
continue;
|
||
|
||
case set_number_at:
|
||
p += 4;
|
||
continue;
|
||
|
||
case start_memory:
|
||
case stop_memory:
|
||
p++;
|
||
continue;
|
||
|
||
case duplicate:
|
||
bufp->can_be_null = 1;
|
||
fastmap['\n'] = 1;
|
||
case anychar:
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
||
if (j != '\n')
|
||
fastmap[j] = 1;
|
||
if (bufp->can_be_null)
|
||
return;
|
||
/* Don't return; check the alternative paths
|
||
so we can set can_be_null if appropriate. */
|
||
break;
|
||
|
||
case wordchar:
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
||
if (SYNTAX (j) == Sword)
|
||
fastmap[j] = 1;
|
||
break;
|
||
|
||
case notwordchar:
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
||
if (SYNTAX (j) != Sword)
|
||
fastmap[j] = 1;
|
||
break;
|
||
|
||
#ifdef emacs
|
||
case syntaxspec:
|
||
k = *p++;
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
||
if (SYNTAX (j) == (enum syntaxcode) k)
|
||
fastmap[j] = 1;
|
||
break;
|
||
|
||
case notsyntaxspec:
|
||
k = *p++;
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
||
if (SYNTAX (j) != (enum syntaxcode) k)
|
||
fastmap[j] = 1;
|
||
break;
|
||
#endif /* not emacs */
|
||
|
||
case charset:
|
||
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
||
if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
|
||
{
|
||
if (translate)
|
||
fastmap[translate[j]] = 1;
|
||
else
|
||
fastmap[j] = 1;
|
||
}
|
||
break;
|
||
|
||
case charset_not:
|
||
/* Chars beyond end of map must be allowed */
|
||
for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
|
||
if (translate)
|
||
fastmap[translate[j]] = 1;
|
||
else
|
||
fastmap[j] = 1;
|
||
|
||
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
||
if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
|
||
{
|
||
if (translate)
|
||
fastmap[translate[j]] = 1;
|
||
else
|
||
fastmap[j] = 1;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Get here means we have successfully found the possible starting
|
||
characters of one path of the pattern. We need not follow this
|
||
path any farther. Instead, look at the next alternative
|
||
remembered in the stack. */
|
||
if (stackp != stackb)
|
||
p = *stackp--;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Like re_search_2, below, but only one string is specified, and
|
||
doesn't let you say where to stop matching. */
|
||
|
||
int
|
||
re_search (pbufp, string, size, startpos, range, regs)
|
||
struct re_pattern_buffer *pbufp;
|
||
char *string;
|
||
int size, startpos, range;
|
||
struct re_registers *regs;
|
||
{
|
||
return re_search_2 (pbufp, (char *) 0, 0, string, size, startpos, range,
|
||
regs, size);
|
||
}
|
||
|
||
|
||
/* Using the compiled pattern in PBUFP->buffer, first tries to match the
|
||
virtual concatenation of STRING1 and STRING2, starting first at index
|
||
STARTPOS, then at STARTPOS + 1, and so on. RANGE is the number of
|
||
places to try before giving up. If RANGE is negative, it searches
|
||
backwards, i.e., the starting positions tried are STARTPOS, STARTPOS
|
||
- 1, etc. STRING1 and STRING2 are of SIZE1 and SIZE2, respectively.
|
||
In REGS, return the indices of the virtual concatenation of STRING1
|
||
and STRING2 that matched the entire PBUFP->buffer and its contained
|
||
subexpressions. Do not consider matching one past the index MSTOP in
|
||
the virtual concatenation of STRING1 and STRING2.
|
||
|
||
The value returned is the position in the strings at which the match
|
||
was found, or -1 if no match was found, or -2 if error (such as
|
||
failure stack overflow). */
|
||
|
||
int
|
||
re_search_2 (pbufp, string1, size1, string2, size2, startpos, range,
|
||
regs, mstop)
|
||
struct re_pattern_buffer *pbufp;
|
||
char *string1, *string2;
|
||
int size1, size2;
|
||
int startpos;
|
||
register int range;
|
||
struct re_registers *regs;
|
||
int mstop;
|
||
{
|
||
register char *fastmap = pbufp->fastmap;
|
||
register unsigned char *translate = (unsigned char *) pbufp->translate;
|
||
int total_size = size1 + size2;
|
||
int endpos = startpos + range;
|
||
int val;
|
||
|
||
/* Check for out-of-range starting position. */
|
||
if (startpos < 0 || startpos > total_size)
|
||
return -1;
|
||
|
||
/* Fix up range if it would eventually take startpos outside of the
|
||
virtual concatenation of string1 and string2. */
|
||
if (endpos < -1)
|
||
range = -1 - startpos;
|
||
else if (endpos > total_size)
|
||
range = total_size - startpos;
|
||
|
||
/* Update the fastmap now if not correct already. */
|
||
if (fastmap && !pbufp->fastmap_accurate)
|
||
re_compile_fastmap (pbufp);
|
||
|
||
/* If the search isn't to be a backwards one, don't waste time in a
|
||
long search for a pattern that says it is anchored. */
|
||
if (pbufp->used > 0 && (enum regexpcode) pbufp->buffer[0] == begbuf
|
||
&& range > 0)
|
||
{
|
||
if (startpos > 0)
|
||
return -1;
|
||
else
|
||
range = 1;
|
||
}
|
||
|
||
while (1)
|
||
{
|
||
/* If a fastmap is supplied, skip quickly over characters that
|
||
cannot possibly be the start of a match. Note, however, that
|
||
if the pattern can possibly match the null string, we must
|
||
test it at each starting point so that we take the first null
|
||
string we get. */
|
||
|
||
if (fastmap && startpos < total_size && pbufp->can_be_null != 1)
|
||
{
|
||
if (range > 0) /* Searching forwards. */
|
||
{
|
||
register int lim = 0;
|
||
register unsigned char *p;
|
||
int irange = range;
|
||
if (startpos < size1 && startpos + range >= size1)
|
||
lim = range - (size1 - startpos);
|
||
|
||
p = ((unsigned char *)
|
||
&(startpos >= size1 ? string2 - size1 : string1)[startpos]);
|
||
|
||
while (range > lim && !fastmap[translate
|
||
? translate[*p++]
|
||
: *p++])
|
||
range--;
|
||
startpos += irange - range;
|
||
}
|
||
else /* Searching backwards. */
|
||
{
|
||
register unsigned char c;
|
||
|
||
if (string1 == 0 || startpos >= size1)
|
||
c = string2[startpos - size1];
|
||
else
|
||
c = string1[startpos];
|
||
|
||
c &= 0xff;
|
||
if (translate ? !fastmap[translate[c]] : !fastmap[c])
|
||
goto advance;
|
||
}
|
||
}
|
||
|
||
if (range >= 0 && startpos == total_size
|
||
&& fastmap && pbufp->can_be_null == 0)
|
||
return -1;
|
||
|
||
val = re_match_2 (pbufp, string1, size1, string2, size2, startpos,
|
||
regs, mstop);
|
||
if (val >= 0)
|
||
return startpos;
|
||
if (val == -2)
|
||
return -2;
|
||
|
||
#ifdef C_ALLOCA
|
||
alloca (0);
|
||
#endif /* C_ALLOCA */
|
||
|
||
advance:
|
||
if (!range)
|
||
break;
|
||
else if (range > 0)
|
||
{
|
||
range--;
|
||
startpos++;
|
||
}
|
||
else
|
||
{
|
||
range++;
|
||
startpos--;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
|
||
|
||
#ifndef emacs /* emacs never uses this. */
|
||
int
|
||
re_match (pbufp, string, size, pos, regs)
|
||
struct re_pattern_buffer *pbufp;
|
||
char *string;
|
||
int size, pos;
|
||
struct re_registers *regs;
|
||
{
|
||
return re_match_2 (pbufp, (char *) 0, 0, string, size, pos, regs, size);
|
||
}
|
||
#endif /* not emacs */
|
||
|
||
|
||
/* The following are used for re_match_2, defined below: */
|
||
|
||
/* Roughly the maximum number of failure points on the stack. Would be
|
||
exactly that if always pushed MAX_NUM_FAILURE_ITEMS each time we failed. */
|
||
|
||
int re_max_failures = 2000;
|
||
|
||
/* Routine used by re_match_2. */
|
||
static int bcmp_translate ();
|
||
|
||
|
||
/* Structure and accessing macros used in re_match_2: */
|
||
|
||
struct register_info
|
||
{
|
||
unsigned is_active : 1;
|
||
unsigned matched_something : 1;
|
||
};
|
||
|
||
#define IS_ACTIVE(R) ((R).is_active)
|
||
#define MATCHED_SOMETHING(R) ((R).matched_something)
|
||
|
||
|
||
/* Macros used by re_match_2: */
|
||
|
||
|
||
/* I.e., regstart, regend, and reg_info. */
|
||
|
||
#define NUM_REG_ITEMS 3
|
||
|
||
/* We push at most this many things on the stack whenever we
|
||
fail. The `+ 2' refers to PATTERN_PLACE and STRING_PLACE, which are
|
||
arguments to the PUSH_FAILURE_POINT macro. */
|
||
|
||
#define MAX_NUM_FAILURE_ITEMS (RE_NREGS * NUM_REG_ITEMS + 2)
|
||
|
||
|
||
/* We push this many things on the stack whenever we fail. */
|
||
|
||
#define NUM_FAILURE_ITEMS (last_used_reg * NUM_REG_ITEMS + 2)
|
||
|
||
|
||
/* This pushes most of the information about the current state we will want
|
||
if we ever fail back to it. */
|
||
|
||
#define PUSH_FAILURE_POINT(pattern_place, string_place) \
|
||
{ \
|
||
short last_used_reg, this_reg; \
|
||
\
|
||
/* Find out how many registers are active or have been matched. \
|
||
(Aside from register zero, which is only set at the end.) */ \
|
||
for (last_used_reg = RE_NREGS - 1; last_used_reg > 0; last_used_reg--)\
|
||
if (regstart[last_used_reg] != (unsigned char *) -1) \
|
||
break; \
|
||
\
|
||
if (stacke - stackp < NUM_FAILURE_ITEMS) \
|
||
{ \
|
||
unsigned char **stackx; \
|
||
unsigned int len = stacke - stackb; \
|
||
if (len > re_max_failures * MAX_NUM_FAILURE_ITEMS) \
|
||
return -2; \
|
||
\
|
||
/* Roughly double the size of the stack. */ \
|
||
stackx = (unsigned char **) alloca (2 * len \
|
||
* sizeof (unsigned char *));\
|
||
/* Only copy what is in use. */ \
|
||
bcopy (stackb, stackx, len * sizeof (char *)); \
|
||
stackp = stackx + (stackp - stackb); \
|
||
stackb = stackx; \
|
||
stacke = stackb + 2 * len; \
|
||
} \
|
||
\
|
||
/* Now push the info for each of those registers. */ \
|
||
for (this_reg = 1; this_reg <= last_used_reg; this_reg++) \
|
||
{ \
|
||
*stackp++ = regstart[this_reg]; \
|
||
*stackp++ = regend[this_reg]; \
|
||
*stackp++ = (unsigned char *) ®_info[this_reg]; \
|
||
} \
|
||
\
|
||
/* Push how many registers we saved. */ \
|
||
*stackp++ = (unsigned char *) last_used_reg; \
|
||
\
|
||
*stackp++ = pattern_place; \
|
||
*stackp++ = string_place; \
|
||
}
|
||
|
||
|
||
/* This pops what PUSH_FAILURE_POINT pushes. */
|
||
|
||
#define POP_FAILURE_POINT() \
|
||
{ \
|
||
int temp; \
|
||
stackp -= 2; /* Remove failure points. */ \
|
||
temp = (int) *--stackp; /* How many regs pushed. */ \
|
||
temp *= NUM_REG_ITEMS; /* How much to take off the stack. */ \
|
||
stackp -= temp; /* Remove the register info. */ \
|
||
}
|
||
|
||
|
||
#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
|
||
|
||
/* Is true if there is a first string and if PTR is pointing anywhere
|
||
inside it or just past the end. */
|
||
|
||
#define IS_IN_FIRST_STRING(ptr) \
|
||
(size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
|
||
|
||
/* Call before fetching a character with *d. This switches over to
|
||
string2 if necessary. */
|
||
|
||
#define PREFETCH \
|
||
while (d == dend) \
|
||
{ \
|
||
/* end of string2 => fail. */ \
|
||
if (dend == end_match_2) \
|
||
goto fail; \
|
||
/* end of string1 => advance to string2. */ \
|
||
d = string2; \
|
||
dend = end_match_2; \
|
||
}
|
||
|
||
|
||
/* Call this when have matched something; it sets `matched' flags for the
|
||
registers corresponding to the subexpressions of which we currently
|
||
are inside. */
|
||
#define SET_REGS_MATCHED \
|
||
{ unsigned this_reg; \
|
||
for (this_reg = 0; this_reg < RE_NREGS; this_reg++) \
|
||
{ \
|
||
if (IS_ACTIVE(reg_info[this_reg])) \
|
||
MATCHED_SOMETHING(reg_info[this_reg]) = 1; \
|
||
else \
|
||
MATCHED_SOMETHING(reg_info[this_reg]) = 0; \
|
||
} \
|
||
}
|
||
|
||
/* Test if at very beginning or at very end of the virtual concatenation
|
||
of string1 and string2. If there is only one string, we've put it in
|
||
string2. */
|
||
|
||
#define AT_STRINGS_BEG (d == (size1 ? string1 : string2) || !size2)
|
||
#define AT_STRINGS_END (d == end2)
|
||
|
||
#define AT_WORD_BOUNDARY \
|
||
(AT_STRINGS_BEG || AT_STRINGS_END || IS_A_LETTER (d - 1) != IS_A_LETTER (d))
|
||
|
||
/* We have two special cases to check for:
|
||
1) if we're past the end of string1, we have to look at the first
|
||
character in string2;
|
||
2) if we're before the beginning of string2, we have to look at the
|
||
last character in string1; we assume there is a string1, so use
|
||
this in conjunction with AT_STRINGS_BEG. */
|
||
#define IS_A_LETTER(d) \
|
||
(SYNTAX ((d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d))\
|
||
== Sword)
|
||
|
||
|
||
/* Match the pattern described by PBUFP against the virtual
|
||
concatenation of STRING1 and STRING2, which are of SIZE1 and SIZE2,
|
||
respectively. Start the match at index POS in the virtual
|
||
concatenation of STRING1 and STRING2. In REGS, return the indices of
|
||
the virtual concatenation of STRING1 and STRING2 that matched the
|
||
entire PBUFP->buffer and its contained subexpressions. Do not
|
||
consider matching one past the index MSTOP in the virtual
|
||
concatenation of STRING1 and STRING2.
|
||
|
||
If pbufp->fastmap is nonzero, then it had better be up to date.
|
||
|
||
The reason that the data to match are specified as two components
|
||
which are to be regarded as concatenated is so this function can be
|
||
used directly on the contents of an Emacs buffer.
|
||
|
||
-1 is returned if there is no match. -2 is returned if there is an
|
||
error (such as match stack overflow). Otherwise the value is the
|
||
length of the substring which was matched. */
|
||
|
||
int
|
||
re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
|
||
struct re_pattern_buffer *pbufp;
|
||
char *string1_arg, *string2_arg;
|
||
int size1, size2;
|
||
int pos;
|
||
struct re_registers *regs;
|
||
int mstop;
|
||
{
|
||
register unsigned char *p = (unsigned char *) pbufp->buffer;
|
||
|
||
/* Pointer to beyond end of buffer. */
|
||
register unsigned char *pend = p + pbufp->used;
|
||
|
||
unsigned char *string1 = (unsigned char *) string1_arg;
|
||
unsigned char *string2 = (unsigned char *) string2_arg;
|
||
unsigned char *end1; /* Just past end of first string. */
|
||
unsigned char *end2; /* Just past end of second string. */
|
||
|
||
/* Pointers into string1 and string2, just past the last characters in
|
||
each to consider matching. */
|
||
unsigned char *end_match_1, *end_match_2;
|
||
|
||
register unsigned char *d, *dend;
|
||
register int mcnt; /* Multipurpose. */
|
||
unsigned char *translate = (unsigned char *) pbufp->translate;
|
||
unsigned is_a_jump_n = 0;
|
||
|
||
/* Failure point stack. Each place that can handle a failure further
|
||
down the line pushes a failure point on this stack. It consists of
|
||
restart, regend, and reg_info for all registers corresponding to the
|
||
subexpressions we're currently inside, plus the number of such
|
||
registers, and, finally, two char *'s. The first char * is where to
|
||
resume scanning the pattern; the second one is where to resume
|
||
scanning the strings. If the latter is zero, the failure point is a
|
||
``dummy''; if a failure happens and the failure point is a dummy, it
|
||
gets discarded and the next next one is tried. */
|
||
|
||
unsigned char *initial_stack[MAX_NUM_FAILURE_ITEMS * NFAILURES];
|
||
unsigned char **stackb = initial_stack;
|
||
unsigned char **stackp = stackb;
|
||
unsigned char **stacke = &stackb[MAX_NUM_FAILURE_ITEMS * NFAILURES];
|
||
|
||
|
||
/* Information on the contents of registers. These are pointers into
|
||
the input strings; they record just what was matched (on this
|
||
attempt) by a subexpression part of the pattern, that is, the
|
||
regnum-th regstart pointer points to where in the pattern we began
|
||
matching and the regnum-th regend points to right after where we
|
||
stopped matching the regnum-th subexpression. (The zeroth register
|
||
keeps track of what the whole pattern matches.) */
|
||
|
||
unsigned char *regstart[RE_NREGS];
|
||
unsigned char *regend[RE_NREGS];
|
||
|
||
/* The is_active field of reg_info helps us keep track of which (possibly
|
||
nested) subexpressions we are currently in. The matched_something
|
||
field of reg_info[reg_num] helps us tell whether or not we have
|
||
matched any of the pattern so far this time through the reg_num-th
|
||
subexpression. These two fields get reset each time through any
|
||
loop their register is in. */
|
||
|
||
struct register_info reg_info[RE_NREGS];
|
||
|
||
|
||
/* The following record the register info as found in the above
|
||
variables when we find a match better than any we've seen before.
|
||
This happens as we backtrack through the failure points, which in
|
||
turn happens only if we have not yet matched the entire string. */
|
||
|
||
unsigned best_regs_set = 0;
|
||
unsigned char *best_regstart[RE_NREGS];
|
||
unsigned char *best_regend[RE_NREGS];
|
||
|
||
/* Initialize subexpression text positions to -1 to mark ones that no
|
||
\( or ( and \) or ) has been seen for. Also set all registers to
|
||
inactive and mark them as not having matched anything or ever
|
||
failed. */
|
||
for (mcnt = 0; mcnt < RE_NREGS; mcnt++)
|
||
{
|
||
regstart[mcnt] = regend[mcnt] = (unsigned char *) -1;
|
||
IS_ACTIVE (reg_info[mcnt]) = 0;
|
||
MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
||
}
|
||
|
||
if (regs)
|
||
for (mcnt = 0; mcnt < RE_NREGS; mcnt++)
|
||
regs->start[mcnt] = regs->end[mcnt] = -1;
|
||
|
||
/* Set up pointers to ends of strings.
|
||
Don't allow the second string to be empty unless both are empty. */
|
||
if (size2 == 0)
|
||
{
|
||
string2 = string1;
|
||
size2 = size1;
|
||
string1 = 0;
|
||
size1 = 0;
|
||
}
|
||
end1 = string1 + size1;
|
||
end2 = string2 + size2;
|
||
|
||
/* Compute where to stop matching, within the two strings. */
|
||
if (mstop <= size1)
|
||
{
|
||
end_match_1 = string1 + mstop;
|
||
end_match_2 = string2;
|
||
}
|
||
else
|
||
{
|
||
end_match_1 = end1;
|
||
end_match_2 = string2 + mstop - size1;
|
||
}
|
||
|
||
/* `p' scans through the pattern as `d' scans through the data. `dend'
|
||
is the end of the input string that `d' points within. `d' is
|
||
advanced into the following input string whenever necessary, but
|
||
this happens before fetching; therefore, at the beginning of the
|
||
loop, `d' can be pointing at the end of a string, but it cannot
|
||
equal string2. */
|
||
|
||
if (size1 != 0 && pos <= size1)
|
||
d = string1 + pos, dend = end_match_1;
|
||
else
|
||
d = string2 + pos - size1, dend = end_match_2;
|
||
|
||
|
||
/* This loops over pattern commands. It exits by returning from the
|
||
function if match is complete, or it drops through if match fails
|
||
at this starting point in the input data. */
|
||
|
||
while (1)
|
||
{
|
||
is_a_jump_n = 0;
|
||
/* End of pattern means we might have succeeded. */
|
||
if (p == pend)
|
||
{
|
||
/* If not end of string, try backtracking. Otherwise done. */
|
||
if (d != end_match_2)
|
||
{
|
||
if (stackp != stackb)
|
||
{
|
||
/* More failure points to try. */
|
||
|
||
unsigned in_same_string =
|
||
IS_IN_FIRST_STRING (best_regend[0])
|
||
== MATCHING_IN_FIRST_STRING;
|
||
|
||
/* If exceeds best match so far, save it. */
|
||
if (! best_regs_set
|
||
|| (in_same_string && d > best_regend[0])
|
||
|| (! in_same_string && ! MATCHING_IN_FIRST_STRING))
|
||
{
|
||
best_regs_set = 1;
|
||
best_regend[0] = d; /* Never use regstart[0]. */
|
||
|
||
for (mcnt = 1; mcnt < RE_NREGS; mcnt++)
|
||
{
|
||
best_regstart[mcnt] = regstart[mcnt];
|
||
best_regend[mcnt] = regend[mcnt];
|
||
}
|
||
}
|
||
goto fail;
|
||
}
|
||
/* If no failure points, don't restore garbage. */
|
||
else if (best_regs_set)
|
||
{
|
||
restore_best_regs:
|
||
/* Restore best match. */
|
||
d = best_regend[0];
|
||
|
||
for (mcnt = 0; mcnt < RE_NREGS; mcnt++)
|
||
{
|
||
regstart[mcnt] = best_regstart[mcnt];
|
||
regend[mcnt] = best_regend[mcnt];
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If caller wants register contents data back, convert it
|
||
to indices. */
|
||
if (regs)
|
||
{
|
||
regs->start[0] = pos;
|
||
if (MATCHING_IN_FIRST_STRING)
|
||
regs->end[0] = d - string1;
|
||
else
|
||
regs->end[0] = d - string2 + size1;
|
||
for (mcnt = 1; mcnt < RE_NREGS; mcnt++)
|
||
{
|
||
if (regend[mcnt] == (unsigned char *) -1)
|
||
{
|
||
regs->start[mcnt] = -1;
|
||
regs->end[mcnt] = -1;
|
||
continue;
|
||
}
|
||
if (IS_IN_FIRST_STRING (regstart[mcnt]))
|
||
regs->start[mcnt] = regstart[mcnt] - string1;
|
||
else
|
||
regs->start[mcnt] = regstart[mcnt] - string2 + size1;
|
||
|
||
if (IS_IN_FIRST_STRING (regend[mcnt]))
|
||
regs->end[mcnt] = regend[mcnt] - string1;
|
||
else
|
||
regs->end[mcnt] = regend[mcnt] - string2 + size1;
|
||
}
|
||
}
|
||
return d - pos - (MATCHING_IN_FIRST_STRING
|
||
? string1
|
||
: string2 - size1);
|
||
}
|
||
|
||
/* Otherwise match next pattern command. */
|
||
#ifdef SWITCH_ENUM_BUG
|
||
switch ((int) ((enum regexpcode) *p++))
|
||
#else
|
||
switch ((enum regexpcode) *p++)
|
||
#endif
|
||
{
|
||
|
||
/* \( [or `(', as appropriate] is represented by start_memory,
|
||
\) by stop_memory. Both of those commands are followed by
|
||
a register number in the next byte. The text matched
|
||
within the \( and \) is recorded under that number. */
|
||
case start_memory:
|
||
regstart[*p] = d;
|
||
IS_ACTIVE (reg_info[*p]) = 1;
|
||
MATCHED_SOMETHING (reg_info[*p]) = 0;
|
||
p++;
|
||
break;
|
||
|
||
case stop_memory:
|
||
regend[*p] = d;
|
||
IS_ACTIVE (reg_info[*p]) = 0;
|
||
|
||
/* If just failed to match something this time around with a sub-
|
||
expression that's in a loop, try to force exit from the loop. */
|
||
if ((! MATCHED_SOMETHING (reg_info[*p])
|
||
|| (enum regexpcode) p[-3] == start_memory)
|
||
&& (p + 1) != pend)
|
||
{
|
||
register unsigned char *p2 = p + 1;
|
||
mcnt = 0;
|
||
switch (*p2++)
|
||
{
|
||
case jump_n:
|
||
is_a_jump_n = 1;
|
||
case finalize_jump:
|
||
case maybe_finalize_jump:
|
||
case jump:
|
||
case dummy_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p2);
|
||
if (is_a_jump_n)
|
||
p2 += 2;
|
||
break;
|
||
}
|
||
p2 += mcnt;
|
||
|
||
/* If the next operation is a jump backwards in the pattern
|
||
to an on_failure_jump, exit from the loop by forcing a
|
||
failure after pushing on the stack the on_failure_jump's
|
||
jump in the pattern, and d. */
|
||
if (mcnt < 0 && (enum regexpcode) *p2++ == on_failure_jump)
|
||
{
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p2);
|
||
PUSH_FAILURE_POINT (p2 + mcnt, d);
|
||
goto fail;
|
||
}
|
||
}
|
||
p++;
|
||
break;
|
||
|
||
/* \<digit> has been turned into a `duplicate' command which is
|
||
followed by the numeric value of <digit> as the register number. */
|
||
case duplicate:
|
||
{
|
||
int regno = *p++; /* Get which register to match against */
|
||
register unsigned char *d2, *dend2;
|
||
|
||
/* Where in input to try to start matching. */
|
||
d2 = regstart[regno];
|
||
|
||
/* Where to stop matching; if both the place to start and
|
||
the place to stop matching are in the same string, then
|
||
set to the place to stop, otherwise, for now have to use
|
||
the end of the first string. */
|
||
|
||
dend2 = ((IS_IN_FIRST_STRING (regstart[regno])
|
||
== IS_IN_FIRST_STRING (regend[regno]))
|
||
? regend[regno] : end_match_1);
|
||
while (1)
|
||
{
|
||
/* If necessary, advance to next segment in register
|
||
contents. */
|
||
while (d2 == dend2)
|
||
{
|
||
if (dend2 == end_match_2) break;
|
||
if (dend2 == regend[regno]) break;
|
||
d2 = string2, dend2 = regend[regno]; /* end of string1 => advance to string2. */
|
||
}
|
||
/* At end of register contents => success */
|
||
if (d2 == dend2) break;
|
||
|
||
/* If necessary, advance to next segment in data. */
|
||
PREFETCH;
|
||
|
||
/* How many characters left in this segment to match. */
|
||
mcnt = dend - d;
|
||
|
||
/* Want how many consecutive characters we can match in
|
||
one shot, so, if necessary, adjust the count. */
|
||
if (mcnt > dend2 - d2)
|
||
mcnt = dend2 - d2;
|
||
|
||
/* Compare that many; failure if mismatch, else move
|
||
past them. */
|
||
if (translate
|
||
? bcmp_translate (d, d2, mcnt, translate)
|
||
: bcmp (d, d2, mcnt))
|
||
goto fail;
|
||
d += mcnt, d2 += mcnt;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case anychar:
|
||
PREFETCH; /* Fetch a data character. */
|
||
/* Match anything but a newline, maybe even a null. */
|
||
if ((translate ? translate[*d] : *d) == '\n'
|
||
|| ((obscure_syntax & RE_DOT_NOT_NULL)
|
||
&& (translate ? translate[*d] : *d) == '\000'))
|
||
goto fail;
|
||
SET_REGS_MATCHED;
|
||
d++;
|
||
break;
|
||
|
||
case charset:
|
||
case charset_not:
|
||
{
|
||
int not = 0; /* Nonzero for charset_not. */
|
||
register int c;
|
||
if (*(p - 1) == (unsigned char) charset_not)
|
||
not = 1;
|
||
|
||
PREFETCH; /* Fetch a data character. */
|
||
|
||
if (translate)
|
||
c = translate[*d];
|
||
else
|
||
c = *d;
|
||
|
||
if (c < *p * BYTEWIDTH
|
||
&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
||
not = !not;
|
||
|
||
p += 1 + *p;
|
||
|
||
if (!not) goto fail;
|
||
SET_REGS_MATCHED;
|
||
d++;
|
||
break;
|
||
}
|
||
|
||
case begline:
|
||
if ((size1 != 0 && d == string1)
|
||
|| (size1 == 0 && size2 != 0 && d == string2)
|
||
|| (d && d[-1] == '\n')
|
||
|| (size1 == 0 && size2 == 0))
|
||
break;
|
||
else
|
||
goto fail;
|
||
|
||
case endline:
|
||
if (d == end2
|
||
|| (d == end1 ? (size2 == 0 || *string2 == '\n') : *d == '\n'))
|
||
break;
|
||
goto fail;
|
||
|
||
/* `or' constructs are handled by starting each alternative with
|
||
an on_failure_jump that points to the start of the next
|
||
alternative. Each alternative except the last ends with a
|
||
jump to the joining point. (Actually, each jump except for
|
||
the last one really jumps to the following jump, because
|
||
tensioning the jumps is a hassle.) */
|
||
|
||
/* The start of a stupid repeat has an on_failure_jump that points
|
||
past the end of the repeat text. This makes a failure point so
|
||
that on failure to match a repetition, matching restarts past
|
||
as many repetitions have been found with no way to fail and
|
||
look for another one. */
|
||
|
||
/* A smart repeat is similar but loops back to the on_failure_jump
|
||
so that each repetition makes another failure point. */
|
||
|
||
case on_failure_jump:
|
||
on_failure:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
PUSH_FAILURE_POINT (p + mcnt, d);
|
||
break;
|
||
|
||
/* The end of a smart repeat has a maybe_finalize_jump back.
|
||
Change it either to a finalize_jump or an ordinary jump. */
|
||
case maybe_finalize_jump:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
{
|
||
register unsigned char *p2 = p;
|
||
/* Compare what follows with the beginning of the repeat.
|
||
If we can establish that there is nothing that they would
|
||
both match, we can change to finalize_jump. */
|
||
while (p2 + 1 != pend
|
||
&& (*p2 == (unsigned char) stop_memory
|
||
|| *p2 == (unsigned char) start_memory))
|
||
p2 += 2; /* Skip over reg number. */
|
||
if (p2 == pend)
|
||
p[-3] = (unsigned char) finalize_jump;
|
||
else if (*p2 == (unsigned char) exactn
|
||
|| *p2 == (unsigned char) endline)
|
||
{
|
||
register int c = *p2 == (unsigned char) endline ? '\n' : p2[2];
|
||
register unsigned char *p1 = p + mcnt;
|
||
/* p1[0] ... p1[2] are an on_failure_jump.
|
||
Examine what follows that. */
|
||
if (p1[3] == (unsigned char) exactn && p1[5] != c)
|
||
p[-3] = (unsigned char) finalize_jump;
|
||
else if (p1[3] == (unsigned char) charset
|
||
|| p1[3] == (unsigned char) charset_not)
|
||
{
|
||
int not = p1[3] == (unsigned char) charset_not;
|
||
if (c < p1[4] * BYTEWIDTH
|
||
&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
||
not = !not;
|
||
/* `not' is 1 if c would match. */
|
||
/* That means it is not safe to finalize. */
|
||
if (!not)
|
||
p[-3] = (unsigned char) finalize_jump;
|
||
}
|
||
}
|
||
}
|
||
p -= 2; /* Point at relative address again. */
|
||
if (p[-1] != (unsigned char) finalize_jump)
|
||
{
|
||
p[-1] = (unsigned char) jump;
|
||
goto nofinalize;
|
||
}
|
||
/* Note fall through. */
|
||
|
||
/* The end of a stupid repeat has a finalize_jump back to the
|
||
start, where another failure point will be made which will
|
||
point to after all the repetitions found so far. */
|
||
|
||
/* Take off failure points put on by matching on_failure_jump
|
||
because didn't fail. Also remove the register information
|
||
put on by the on_failure_jump. */
|
||
case finalize_jump:
|
||
POP_FAILURE_POINT ();
|
||
/* Note fall through. */
|
||
|
||
/* Jump without taking off any failure points. */
|
||
case jump:
|
||
nofinalize:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
p += mcnt;
|
||
break;
|
||
|
||
case dummy_failure_jump:
|
||
/* Normally, the on_failure_jump pushes a failure point, which
|
||
then gets popped at finalize_jump. We will end up at
|
||
finalize_jump, also, and with a pattern of, say, `a+', we
|
||
are skipping over the on_failure_jump, so we have to push
|
||
something meaningless for finalize_jump to pop. */
|
||
PUSH_FAILURE_POINT (0, 0);
|
||
goto nofinalize;
|
||
|
||
|
||
/* Have to succeed matching what follows at least n times. Then
|
||
just handle like an on_failure_jump. */
|
||
case succeed_n:
|
||
EXTRACT_NUMBER (mcnt, p + 2);
|
||
/* Originally, this is how many times we HAVE to succeed. */
|
||
if (mcnt)
|
||
{
|
||
mcnt--;
|
||
p += 2;
|
||
STORE_NUMBER_AND_INCR (p, mcnt);
|
||
}
|
||
else if (mcnt == 0)
|
||
{
|
||
p[2] = unused;
|
||
p[3] = unused;
|
||
goto on_failure;
|
||
}
|
||
else
|
||
{
|
||
fprintf (stderr, "regex: the succeed_n's n is not set.\n");
|
||
exit (1);
|
||
}
|
||
break;
|
||
|
||
case jump_n:
|
||
EXTRACT_NUMBER (mcnt, p + 2);
|
||
/* Originally, this is how many times we CAN jump. */
|
||
if (mcnt)
|
||
{
|
||
mcnt--;
|
||
STORE_NUMBER(p + 2, mcnt);
|
||
goto nofinalize; /* Do the jump without taking off
|
||
any failure points. */
|
||
}
|
||
/* If don't have to jump any more, skip over the rest of command. */
|
||
else
|
||
p += 4;
|
||
break;
|
||
|
||
case set_number_at:
|
||
{
|
||
register unsigned char *p1;
|
||
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
p1 = p + mcnt;
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
STORE_NUMBER (p1, mcnt);
|
||
break;
|
||
}
|
||
|
||
/* Ignore these. Used to ignore the n of succeed_n's which
|
||
currently have n == 0. */
|
||
case unused:
|
||
break;
|
||
|
||
case wordbound:
|
||
if (AT_WORD_BOUNDARY)
|
||
break;
|
||
goto fail;
|
||
|
||
case notwordbound:
|
||
if (AT_WORD_BOUNDARY)
|
||
goto fail;
|
||
break;
|
||
|
||
case wordbeg:
|
||
/* Have to check if AT_STRINGS_BEG before looking at d - 1. */
|
||
if (IS_A_LETTER (d) && (AT_STRINGS_BEG || !IS_A_LETTER (d - 1)))
|
||
break;
|
||
goto fail;
|
||
|
||
case wordend:
|
||
/* Have to check if AT_STRINGS_BEG before looking at d - 1. */
|
||
if (!AT_STRINGS_BEG && IS_A_LETTER (d - 1)
|
||
&& (!IS_A_LETTER (d) || AT_STRINGS_END))
|
||
break;
|
||
goto fail;
|
||
|
||
#ifdef emacs
|
||
case before_dot:
|
||
if (PTR_CHAR_POS (d) >= point)
|
||
goto fail;
|
||
break;
|
||
|
||
case at_dot:
|
||
if (PTR_CHAR_POS (d) != point)
|
||
goto fail;
|
||
break;
|
||
|
||
case after_dot:
|
||
if (PTR_CHAR_POS (d) <= point)
|
||
goto fail;
|
||
break;
|
||
|
||
case wordchar:
|
||
mcnt = (int) Sword;
|
||
goto matchsyntax;
|
||
|
||
case syntaxspec:
|
||
mcnt = *p++;
|
||
matchsyntax:
|
||
PREFETCH;
|
||
if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
|
||
case notwordchar:
|
||
mcnt = (int) Sword;
|
||
goto matchnotsyntax;
|
||
|
||
case notsyntaxspec:
|
||
mcnt = *p++;
|
||
matchnotsyntax:
|
||
PREFETCH;
|
||
if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
|
||
#else /* not emacs */
|
||
|
||
case wordchar:
|
||
PREFETCH;
|
||
if (!IS_A_LETTER (d))
|
||
goto fail;
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
|
||
case notwordchar:
|
||
PREFETCH;
|
||
if (IS_A_LETTER (d))
|
||
goto fail;
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
|
||
#endif /* not emacs */
|
||
|
||
case begbuf:
|
||
if (AT_STRINGS_BEG)
|
||
break;
|
||
goto fail;
|
||
|
||
case endbuf:
|
||
if (AT_STRINGS_END)
|
||
break;
|
||
goto fail;
|
||
|
||
case exactn:
|
||
/* Match the next few pattern characters exactly.
|
||
mcnt is how many characters to match. */
|
||
mcnt = *p++;
|
||
/* This is written out as an if-else so we don't waste time
|
||
testing `translate' inside the loop. */
|
||
if (translate)
|
||
{
|
||
do
|
||
{
|
||
PREFETCH;
|
||
if (translate[*d++] != *p++) goto fail;
|
||
}
|
||
while (--mcnt);
|
||
}
|
||
else
|
||
{
|
||
do
|
||
{
|
||
PREFETCH;
|
||
if (*d++ != *p++) goto fail;
|
||
}
|
||
while (--mcnt);
|
||
}
|
||
SET_REGS_MATCHED;
|
||
break;
|
||
}
|
||
continue; /* Successfully executed one pattern command; keep going. */
|
||
|
||
/* Jump here if any matching operation fails. */
|
||
fail:
|
||
if (stackp != stackb)
|
||
/* A restart point is known. Restart there and pop it. */
|
||
{
|
||
short last_used_reg, this_reg;
|
||
|
||
/* If this failure point is from a dummy_failure_point, just
|
||
skip it. */
|
||
if (!stackp[-2])
|
||
{
|
||
POP_FAILURE_POINT ();
|
||
goto fail;
|
||
}
|
||
|
||
d = *--stackp;
|
||
p = *--stackp;
|
||
if (d >= string1 && d <= end1)
|
||
dend = end_match_1;
|
||
/* Restore register info. */
|
||
last_used_reg = (short) *--stackp;
|
||
|
||
/* Make the ones that weren't saved -1 or 0 again. */
|
||
for (this_reg = RE_NREGS - 1; this_reg > last_used_reg; this_reg--)
|
||
{
|
||
regend[this_reg] = (unsigned char *) -1;
|
||
regstart[this_reg] = (unsigned char *) -1;
|
||
IS_ACTIVE (reg_info[this_reg]) = 0;
|
||
MATCHED_SOMETHING (reg_info[this_reg]) = 0;
|
||
}
|
||
|
||
/* And restore the rest from the stack. */
|
||
for ( ; this_reg > 0; this_reg--)
|
||
{
|
||
reg_info[this_reg] = *(struct register_info *) *--stackp;
|
||
regend[this_reg] = *--stackp;
|
||
regstart[this_reg] = *--stackp;
|
||
}
|
||
}
|
||
else
|
||
break; /* Matching at this starting point really fails. */
|
||
}
|
||
|
||
if (best_regs_set)
|
||
goto restore_best_regs;
|
||
return -1; /* Failure to match. */
|
||
}
|
||
|
||
|
||
static int
|
||
bcmp_translate (s1, s2, len, translate)
|
||
unsigned char *s1, *s2;
|
||
register int len;
|
||
unsigned char *translate;
|
||
{
|
||
register unsigned char *p1 = s1, *p2 = s2;
|
||
while (len)
|
||
{
|
||
if (translate [*p1++] != translate [*p2++]) return 1;
|
||
len--;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* Entry points compatible with 4.2 BSD regex library. */
|
||
|
||
#ifndef emacs
|
||
|
||
static struct re_pattern_buffer re_comp_buf;
|
||
|
||
char *
|
||
re_comp (s)
|
||
char *s;
|
||
{
|
||
if (!s)
|
||
{
|
||
if (!re_comp_buf.buffer)
|
||
return "No previous regular expression";
|
||
return 0;
|
||
}
|
||
|
||
if (!re_comp_buf.buffer)
|
||
{
|
||
if (!(re_comp_buf.buffer = (char *) malloc (200)))
|
||
return "Memory exhausted";
|
||
re_comp_buf.allocated = 200;
|
||
if (!(re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH)))
|
||
return "Memory exhausted";
|
||
}
|
||
return re_compile_pattern (s, strlen (s), &re_comp_buf);
|
||
}
|
||
|
||
int
|
||
re_exec (s)
|
||
char *s;
|
||
{
|
||
int len = strlen (s);
|
||
return 0 <= re_search (&re_comp_buf, s, len, 0, len,
|
||
(struct re_registers *) 0);
|
||
}
|
||
#endif /* not emacs */
|
||
|
||
|
||
|
||
#ifdef test
|
||
|
||
#include <stdio.h>
|
||
|
||
/* Indexed by a character, gives the upper case equivalent of the
|
||
character. */
|
||
|
||
char upcase[0400] =
|
||
{ 000, 001, 002, 003, 004, 005, 006, 007,
|
||
010, 011, 012, 013, 014, 015, 016, 017,
|
||
020, 021, 022, 023, 024, 025, 026, 027,
|
||
030, 031, 032, 033, 034, 035, 036, 037,
|
||
040, 041, 042, 043, 044, 045, 046, 047,
|
||
050, 051, 052, 053, 054, 055, 056, 057,
|
||
060, 061, 062, 063, 064, 065, 066, 067,
|
||
070, 071, 072, 073, 074, 075, 076, 077,
|
||
0100, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
|
||
0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
|
||
0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
|
||
0130, 0131, 0132, 0133, 0134, 0135, 0136, 0137,
|
||
0140, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
|
||
0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
|
||
0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
|
||
0130, 0131, 0132, 0173, 0174, 0175, 0176, 0177,
|
||
0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
|
||
0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
|
||
0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
|
||
0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
|
||
0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
|
||
0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
|
||
0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
|
||
0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
|
||
0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
|
||
0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
|
||
0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
|
||
0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
|
||
0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
|
||
0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
|
||
0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
|
||
0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
|
||
};
|
||
|
||
#ifdef canned
|
||
|
||
#include "tests.h"
|
||
|
||
typedef enum { extended_test, basic_test } test_type;
|
||
|
||
/* Use this to run the tests we've thought of. */
|
||
|
||
void
|
||
main ()
|
||
{
|
||
test_type t = extended_test;
|
||
|
||
if (t == basic_test)
|
||
{
|
||
printf ("Running basic tests:\n\n");
|
||
test_posix_basic ();
|
||
}
|
||
else if (t == extended_test)
|
||
{
|
||
printf ("Running extended tests:\n\n");
|
||
test_posix_extended ();
|
||
}
|
||
}
|
||
|
||
#else /* not canned */
|
||
|
||
/* Use this to run interactive tests. */
|
||
|
||
void
|
||
main (argc, argv)
|
||
int argc;
|
||
char **argv;
|
||
{
|
||
char pat[80];
|
||
struct re_pattern_buffer buf;
|
||
int i;
|
||
char c;
|
||
char fastmap[(1 << BYTEWIDTH)];
|
||
|
||
/* Allow a command argument to specify the style of syntax. */
|
||
if (argc > 1)
|
||
obscure_syntax = atoi (argv[1]);
|
||
|
||
buf.allocated = 40;
|
||
buf.buffer = (char *) malloc (buf.allocated);
|
||
buf.fastmap = fastmap;
|
||
buf.translate = upcase;
|
||
|
||
while (1)
|
||
{
|
||
gets (pat);
|
||
|
||
if (*pat)
|
||
{
|
||
re_compile_pattern (pat, strlen(pat), &buf);
|
||
|
||
for (i = 0; i < buf.used; i++)
|
||
printchar (buf.buffer[i]);
|
||
|
||
putchar ('\n');
|
||
|
||
printf ("%d allocated, %d used.\n", buf.allocated, buf.used);
|
||
|
||
re_compile_fastmap (&buf);
|
||
printf ("Allowed by fastmap: ");
|
||
for (i = 0; i < (1 << BYTEWIDTH); i++)
|
||
if (fastmap[i]) printchar (i);
|
||
putchar ('\n');
|
||
}
|
||
|
||
gets (pat); /* Now read the string to match against */
|
||
|
||
i = re_match (&buf, pat, strlen (pat), 0, 0);
|
||
printf ("Match value %d.\n", i);
|
||
}
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
#ifdef NOTDEF
|
||
print_buf (bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
int i;
|
||
|
||
printf ("buf is :\n----------------\n");
|
||
for (i = 0; i < bufp->used; i++)
|
||
printchar (bufp->buffer[i]);
|
||
|
||
printf ("\n%d allocated, %d used.\n", bufp->allocated, bufp->used);
|
||
|
||
printf ("Allowed by fastmap: ");
|
||
for (i = 0; i < (1 << BYTEWIDTH); i++)
|
||
if (bufp->fastmap[i])
|
||
printchar (i);
|
||
printf ("\nAllowed by translate: ");
|
||
if (bufp->translate)
|
||
for (i = 0; i < (1 << BYTEWIDTH); i++)
|
||
if (bufp->translate[i])
|
||
printchar (i);
|
||
printf ("\nfastmap is%s accurate\n", bufp->fastmap_accurate ? "" : "n't");
|
||
printf ("can %s be null\n----------", bufp->can_be_null ? "" : "not");
|
||
}
|
||
#endif /* NOTDEF */
|
||
|
||
printchar (c)
|
||
char c;
|
||
{
|
||
if (c < 040 || c >= 0177)
|
||
{
|
||
putchar ('\\');
|
||
putchar (((c >> 6) & 3) + '0');
|
||
putchar (((c >> 3) & 7) + '0');
|
||
putchar ((c & 7) + '0');
|
||
}
|
||
else
|
||
putchar (c);
|
||
}
|
||
|
||
error (string)
|
||
char *string;
|
||
{
|
||
puts (string);
|
||
exit (1);
|
||
}
|
||
#endif /* test */
|