NetBSD/lib/libpthread/pthread_mutex.c
2020-06-11 18:41:22 +00:00

774 lines
19 KiB
C

/* $NetBSD: pthread_mutex.c,v 1.81 2020/06/11 18:41:22 ad Exp $ */
/*-
* Copyright (c) 2001, 2003, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* To track threads waiting for mutexes to be released, we use lockless
* lists built on atomic operations and memory barriers.
*
* A simple spinlock would be faster and make the code easier to
* follow, but spinlocks are problematic in userspace. If a thread is
* preempted by the kernel while holding a spinlock, any other thread
* attempting to acquire that spinlock will needlessly busy wait.
*
* There is no good way to know that the holding thread is no longer
* running, nor to request a wake-up once it has begun running again.
* Of more concern, threads in the SCHED_FIFO class do not have a
* limited time quantum and so could spin forever, preventing the
* thread holding the spinlock from getting CPU time: it would never
* be released.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_mutex.c,v 1.81 2020/06/11 18:41:22 ad Exp $");
#include <sys/types.h>
#include <sys/lwpctl.h>
#include <sys/sched.h>
#include <sys/lock.h>
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <stdio.h>
#include "pthread.h"
#include "pthread_int.h"
#include "reentrant.h"
#define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
#define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
#define MUTEX_THREAD ((uintptr_t)~0x0f)
#define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
#define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
#define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
#define MUTEX_GET_TYPE(x) \
((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
#define MUTEX_SET_TYPE(x, t) \
(x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
#define MUTEX_GET_PROTOCOL(x) \
((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
#define MUTEX_SET_PROTOCOL(x, p) \
(x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
#define MUTEX_GET_CEILING(x) \
((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
#define MUTEX_SET_CEILING(x, c) \
(x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
#if __GNUC_PREREQ__(3, 0)
#define NOINLINE __attribute ((noinline))
#else
#define NOINLINE /* nothing */
#endif
struct waiter {
struct waiter *volatile next;
lwpid_t volatile lid;
};
static void pthread__mutex_wakeup(pthread_t, struct pthread__waiter *);
static int pthread__mutex_lock_slow(pthread_mutex_t *,
const struct timespec *);
static void pthread__mutex_pause(void);
int _pthread_mutex_held_np(pthread_mutex_t *);
pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
__weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
__weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
__strong_alias(__libc_mutex_init,pthread_mutex_init)
__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
int
pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
{
uintptr_t type, proto, val, ceil;
#if 0
/*
* Always initialize the mutex structure, maybe be used later
* and the cost should be minimal.
*/
if (__predict_false(__uselibcstub))
return __libc_mutex_init_stub(ptm, attr);
#endif
pthread__error(EINVAL, "Invalid mutes attribute",
attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
if (attr == NULL) {
type = PTHREAD_MUTEX_NORMAL;
proto = PTHREAD_PRIO_NONE;
ceil = 0;
} else {
val = (uintptr_t)attr->ptma_private;
type = MUTEX_GET_TYPE(val);
proto = MUTEX_GET_PROTOCOL(val);
ceil = MUTEX_GET_CEILING(val);
}
switch (type) {
case PTHREAD_MUTEX_ERRORCHECK:
__cpu_simple_lock_set(&ptm->ptm_errorcheck);
ptm->ptm_owner = NULL;
break;
case PTHREAD_MUTEX_RECURSIVE:
__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
break;
default:
__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
ptm->ptm_owner = NULL;
break;
}
switch (proto) {
case PTHREAD_PRIO_PROTECT:
val = (uintptr_t)ptm->ptm_owner;
val |= MUTEX_PROTECT_BIT;
ptm->ptm_owner = (void *)val;
break;
}
ptm->ptm_magic = _PT_MUTEX_MAGIC;
ptm->ptm_waiters = NULL;
ptm->ptm_recursed = 0;
ptm->ptm_ceiling = (unsigned char)ceil;
return 0;
}
int
pthread_mutex_destroy(pthread_mutex_t *ptm)
{
if (__predict_false(__uselibcstub))
return __libc_mutex_destroy_stub(ptm);
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
pthread__error(EBUSY, "Destroying locked mutex",
MUTEX_OWNER(ptm->ptm_owner) == 0);
ptm->ptm_magic = _PT_MUTEX_DEAD;
return 0;
}
int
pthread_mutex_lock(pthread_mutex_t *ptm)
{
pthread_t self;
void *val;
if (__predict_false(__uselibcstub))
return __libc_mutex_lock_stub(ptm);
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
self = pthread__self();
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
return pthread__mutex_lock_slow(ptm, NULL);
}
int
pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
{
pthread_t self;
void *val;
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
self = pthread__self();
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
return pthread__mutex_lock_slow(ptm, ts);
}
/* We want function call overhead. */
NOINLINE static void
pthread__mutex_pause(void)
{
pthread__smt_pause();
}
/*
* Spin while the holder is running. 'lwpctl' gives us the true
* status of the thread.
*/
NOINLINE static void *
pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
{
pthread_t thread;
unsigned int count, i;
for (count = 2;; owner = ptm->ptm_owner) {
thread = (pthread_t)MUTEX_OWNER(owner);
if (thread == NULL)
break;
if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
break;
if (count < 128)
count += count;
for (i = count; i != 0; i--)
pthread__mutex_pause();
}
return owner;
}
NOINLINE static int
pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
{
void *newval, *owner, *next;
struct waiter waiter;
pthread_t self;
int serrno;
int error;
owner = ptm->ptm_owner;
self = pthread__self();
serrno = errno;
pthread__assert(self->pt_lid != 0);
/* Recursive or errorcheck? */
if (MUTEX_OWNER(owner) == (uintptr_t)self) {
if (MUTEX_RECURSIVE(owner)) {
if (ptm->ptm_recursed == INT_MAX)
return EAGAIN;
ptm->ptm_recursed++;
return 0;
}
if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
return EDEADLK;
}
/* priority protect */
if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
error = errno;
errno = serrno;
return error;
}
for (;;) {
/* If it has become free, try to acquire it again. */
if (MUTEX_OWNER(owner) == 0) {
newval = (void *)((uintptr_t)self | (uintptr_t)owner);
next = atomic_cas_ptr(&ptm->ptm_owner, owner, newval);
if (__predict_false(next != owner)) {
owner = next;
continue;
}
errno = serrno;
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
} else if (MUTEX_OWNER(owner) != (uintptr_t)self) {
/* Spin while the owner is running. */
owner = pthread__mutex_spin(ptm, owner);
if (MUTEX_OWNER(owner) == 0) {
continue;
}
}
/*
* Nope, still held. Add thread to the list of waiters.
* Issue a memory barrier to ensure stores to 'waiter'
* are visible before we enter the list.
*/
waiter.next = ptm->ptm_waiters;
waiter.lid = self->pt_lid;
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_producer();
#endif
next = atomic_cas_ptr(&ptm->ptm_waiters, waiter.next, &waiter);
if (next != waiter.next) {
owner = ptm->ptm_owner;
continue;
}
/*
* If the mutex has become free since entering self onto the
* waiters list, need to wake everybody up (including self)
* and retry. It's possible to race with an unlocking
* thread, so self may have already been awoken.
*/
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
if (MUTEX_OWNER(ptm->ptm_owner) == 0) {
pthread__mutex_wakeup(self,
atomic_swap_ptr(&ptm->ptm_waiters, NULL));
}
/*
* We must not proceed until told that we are no longer
* waiting (via waiter.lid being set to zero). Otherwise
* it's unsafe to re-enter "waiter" onto the waiters list.
*/
while (waiter.lid != 0) {
error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
__UNCONST(ts), 0, NULL, NULL);
if (error < 0 && errno == ETIMEDOUT) {
/* Remove self from waiters list */
pthread__mutex_wakeup(self,
atomic_swap_ptr(&ptm->ptm_waiters, NULL));
/*
* Might have raced with another thread to
* do the wakeup. In any case there will be
* a wakeup for sure. Eat it and wait for
* waiter.lid to clear.
*/
while (waiter.lid != 0) {
(void)_lwp_park(CLOCK_MONOTONIC, 0,
NULL, 0, NULL, NULL);
}
/* Priority protect */
if (MUTEX_PROTECT(owner))
(void)_sched_protect(-1);
errno = serrno;
return ETIMEDOUT;
}
}
owner = ptm->ptm_owner;
}
}
int
pthread_mutex_trylock(pthread_mutex_t *ptm)
{
pthread_t self;
void *val, *new, *next;
if (__predict_false(__uselibcstub))
return __libc_mutex_trylock_stub(ptm);
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
self = pthread__self();
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
if (MUTEX_RECURSIVE(val)) {
if (MUTEX_OWNER(val) == 0) {
new = (void *)((uintptr_t)self | (uintptr_t)val);
next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
if (__predict_true(next == val)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
return 0;
}
}
if (MUTEX_OWNER(val) == (uintptr_t)self) {
if (ptm->ptm_recursed == INT_MAX)
return EAGAIN;
ptm->ptm_recursed++;
return 0;
}
}
return EBUSY;
}
int
pthread_mutex_unlock(pthread_mutex_t *ptm)
{
pthread_t self;
void *val, *newval;
int error;
if (__predict_false(__uselibcstub))
return __libc_mutex_unlock_stub(ptm);
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_exit();
#endif
error = 0;
self = pthread__self();
newval = NULL;
val = atomic_cas_ptr(&ptm->ptm_owner, self, newval);
if (__predict_false(val != self)) {
bool weown = (MUTEX_OWNER(val) == (uintptr_t)self);
if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
if (!weown) {
error = EPERM;
newval = val;
} else {
newval = NULL;
}
} else if (MUTEX_RECURSIVE(val)) {
if (!weown) {
error = EPERM;
newval = val;
} else if (ptm->ptm_recursed) {
ptm->ptm_recursed--;
newval = val;
} else {
newval = (pthread_t)MUTEX_RECURSIVE_BIT;
}
} else {
pthread__error(EPERM,
"Unlocking unlocked mutex", (val != NULL));
pthread__error(EPERM,
"Unlocking mutex owned by another thread", weown);
newval = NULL;
}
/*
* Release the mutex. If there appear to be waiters, then
* wake them up.
*/
if (newval != val) {
val = atomic_swap_ptr(&ptm->ptm_owner, newval);
if (__predict_false(MUTEX_PROTECT(val))) {
/* restore elevated priority */
(void)_sched_protect(-1);
}
}
}
/*
* Finally, wake any waiters and return.
*/
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_enter();
#endif
if (MUTEX_OWNER(newval) == 0 && ptm->ptm_waiters != NULL) {
pthread__mutex_wakeup(self,
atomic_swap_ptr(&ptm->ptm_waiters, NULL));
}
return error;
}
/*
* pthread__mutex_wakeup: unpark threads waiting for us
*/
static void
pthread__mutex_wakeup(pthread_t self, struct pthread__waiter *cur)
{
lwpid_t lids[PTHREAD__UNPARK_MAX];
const size_t mlid = pthread__unpark_max;
struct pthread__waiter *next;
size_t nlid;
/*
* Pull waiters from the queue and add to our list. Use a memory
* barrier to ensure that we safely read the value of waiter->next
* before the awoken thread sees waiter->lid being cleared.
*/
membar_datadep_consumer(); /* for alpha */
for (nlid = 0; cur != NULL; cur = next) {
if (nlid == mlid) {
(void)_lwp_unpark_all(lids, nlid, NULL);
nlid = 0;
}
next = cur->next;
pthread__assert(cur->lid != 0);
lids[nlid++] = cur->lid;
membar_exit();
cur->lid = 0;
/* No longer safe to touch 'cur' */
}
if (nlid == 1) {
(void)_lwp_unpark(lids[0], NULL);
} else if (nlid > 1) {
(void)_lwp_unpark_all(lids, nlid, NULL);
}
}
int
pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
#if 0
if (__predict_false(__uselibcstub))
return __libc_mutexattr_init_stub(attr);
#endif
attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
return 0;
}
int
pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (__predict_false(__uselibcstub))
return __libc_mutexattr_destroy_stub(attr);
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
attr->ptma_magic = _PT_MUTEXATTR_DEAD;
return 0;
}
int
pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
*typep = MUTEX_GET_TYPE(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (__predict_false(__uselibcstub))
return __libc_mutexattr_settype_stub(attr, type);
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
switch (type) {
case PTHREAD_MUTEX_NORMAL:
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_RECURSIVE:
MUTEX_SET_TYPE(attr->ptma_private, type);
return 0;
default:
return EINVAL;
}
}
int
pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
switch (proto) {
case PTHREAD_PRIO_NONE:
case PTHREAD_PRIO_PROTECT:
MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
return 0;
case PTHREAD_PRIO_INHERIT:
return ENOTSUP;
default:
return EINVAL;
}
}
int
pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
*ceil = MUTEX_GET_CEILING(attr->ptma_private);
return 0;
}
int
pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
if (ceil & ~0xff)
return EINVAL;
MUTEX_SET_CEILING(attr->ptma_private, ceil);
return 0;
}
#ifdef _PTHREAD_PSHARED
int
pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
int * __restrict pshared)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
*pshared = PTHREAD_PROCESS_PRIVATE;
return 0;
}
int
pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
{
pthread__error(EINVAL, "Invalid mutex attribute",
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
switch(pshared) {
case PTHREAD_PROCESS_PRIVATE:
return 0;
case PTHREAD_PROCESS_SHARED:
return ENOSYS;
}
return EINVAL;
}
#endif
/*
* In order to avoid unnecessary contention on interlocking mutexes, we try
* to defer waking up threads until we unlock the mutex. The threads will
* be woken up when the calling thread (self) releases the mutex.
*/
void
pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm,
struct pthread__waiter *head)
{
struct pthread__waiter *tail, *n, *o;
pthread__assert(head != NULL);
if (__predict_false(ptm == NULL ||
MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
pthread__mutex_wakeup(self, head);
return;
}
/* This is easy if no existing waiters on mutex. */
if (atomic_cas_ptr(&ptm->ptm_waiters, NULL, head) == NULL) {
return;
}
/* Oops need to append. Find the tail of the new queue. */
for (tail = head; tail->next != NULL; tail = tail->next) {
/* nothing */
}
/* Append atomically. */
for (o = ptm->ptm_waiters;; o = n) {
tail->next = o;
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
membar_producer();
#endif
n = atomic_cas_ptr(&ptm->ptm_waiters, o, head);
if (__predict_true(n == o)) {
break;
}
}
}
int
pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
{
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
*ceil = ptm->ptm_ceiling;
return 0;
}
int
pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
{
int error;
pthread__error(EINVAL, "Invalid mutex",
ptm->ptm_magic == _PT_MUTEX_MAGIC);
error = pthread_mutex_lock(ptm);
if (error == 0) {
*old_ceil = ptm->ptm_ceiling;
/*check range*/
ptm->ptm_ceiling = ceil;
pthread_mutex_unlock(ptm);
}
return error;
}
int
_pthread_mutex_held_np(pthread_mutex_t *ptm)
{
return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
}
pthread_t
_pthread_mutex_owner_np(pthread_mutex_t *ptm)
{
return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
}