NetBSD/sys/dev/pci/if_bge.c

3920 lines
105 KiB
C

/* $NetBSD: if_bge.c,v 1.73 2004/05/25 04:38:36 atatat Exp $ */
/*
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2001
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
*/
/*
* Broadcom BCM570x family gigabit ethernet driver for NetBSD.
*
* NetBSD version by:
*
* Frank van der Linden <fvdl@wasabisystems.com>
* Jason Thorpe <thorpej@wasabisystems.com>
* Jonathan Stone <jonathan@dsg.stanford.edu>
*
* Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
* Senior Engineer, Wind River Systems
*/
/*
* The Broadcom BCM5700 is based on technology originally developed by
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
* MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
* frames, highly configurable RX filtering, and 16 RX and TX queues
* (which, along with RX filter rules, can be used for QOS applications).
* Other features, such as TCP segmentation, may be available as part
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
* firmware images can be stored in hardware and need not be compiled
* into the driver.
*
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
* function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
*
* The BCM5701 is a single-chip solution incorporating both the BCM5700
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
* does not support external SSRAM.
*
* Broadcom also produces a variation of the BCM5700 under the "Altima"
* brand name, which is functionally similar but lacks PCI-X support.
*
* Without external SSRAM, you can only have at most 4 TX rings,
* and the use of the mini RX ring is disabled. This seems to imply
* that these features are simply not available on the BCM5701. As a
* result, this driver does not implement any support for the mini RX
* ring.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.73 2004/05/25 04:38:36 atatat Exp $");
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/miidevs.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/if_bgereg.h>
#include <uvm/uvm_extern.h>
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
/*
* Tunable thresholds for rx-side bge interrupt mitigation.
*/
/*
* The pairs of values below were obtained from empirical measurement
* on bcm5700 rev B2; they ar designed to give roughly 1 receive
* interrupt for every N packets received, where N is, approximately,
* the second value (rx_max_bds) in each pair. The values are chosen
* such that moving from one pair to the succeeding pair was observed
* to roughly halve interrupt rate under sustained input packet load.
* The values were empirically chosen to avoid overflowing internal
* limits on the bcm5700: inreasing rx_ticks much beyond 600
* results in internal wrapping and higher interrupt rates.
* The limit of 46 frames was chosen to match NFS workloads.
*
* These values also work well on bcm5701, bcm5704C, and (less
* tested) bcm5703. On other chipsets, (including the Altima chip
* family), the larger values may overflow internal chip limits,
* leading to increasing interrupt rates rather than lower interrupt
* rates.
*
* Applications using heavy interrupt mitigation (interrupting every
* 32 or 46 frames) in both directions may need to increase the TCP
* windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
* full link bandwidth, due to ACKs and window updates lingering
* in the RX queue during the 30-to-40-frame interrupt-mitigation window.
*/
struct bge_load_rx_thresh {
int rx_ticks;
int rx_max_bds; }
bge_rx_threshes[] = {
{ 32, 2 },
{ 50, 4 },
{ 100, 8 },
{ 192, 16 },
{ 416, 32 },
{ 598, 46 }
};
#define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
/* XXX patchable; should be sysctl'able */
static int bge_auto_thresh = 1;
static int bge_rx_thresh_lvl;
#ifdef __NetBSD__
static int bge_rxthresh_nodenum;
#endif /* __NetBSD__ */
int bge_probe(struct device *, struct cfdata *, void *);
void bge_attach(struct device *, struct device *, void *);
void bge_release_resources(struct bge_softc *);
void bge_txeof(struct bge_softc *);
void bge_rxeof(struct bge_softc *);
void bge_tick(void *);
void bge_stats_update(struct bge_softc *);
int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
static __inline int bge_cksum_pad(struct mbuf *pkt);
static __inline int bge_compact_dma_runt(struct mbuf *pkt);
int bge_intr(void *);
void bge_start(struct ifnet *);
int bge_ioctl(struct ifnet *, u_long, caddr_t);
int bge_init(struct ifnet *);
void bge_stop(struct bge_softc *);
void bge_watchdog(struct ifnet *);
void bge_shutdown(void *);
int bge_ifmedia_upd(struct ifnet *);
void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
void bge_setmulti(struct bge_softc *);
void bge_handle_events(struct bge_softc *);
int bge_alloc_jumbo_mem(struct bge_softc *);
void bge_free_jumbo_mem(struct bge_softc *);
void *bge_jalloc(struct bge_softc *);
void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
int bge_init_rx_ring_std(struct bge_softc *);
void bge_free_rx_ring_std(struct bge_softc *);
int bge_init_rx_ring_jumbo(struct bge_softc *);
void bge_free_rx_ring_jumbo(struct bge_softc *);
void bge_free_tx_ring(struct bge_softc *);
int bge_init_tx_ring(struct bge_softc *);
int bge_chipinit(struct bge_softc *);
int bge_blockinit(struct bge_softc *);
int bge_setpowerstate(struct bge_softc *, int);
#ifdef notdef
u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
void bge_vpd_read(struct bge_softc *);
#endif
u_int32_t bge_readmem_ind(struct bge_softc *, int);
void bge_writemem_ind(struct bge_softc *, int, int);
#ifdef notdef
u_int32_t bge_readreg_ind(struct bge_softc *, int);
#endif
void bge_writereg_ind(struct bge_softc *, int, int);
int bge_miibus_readreg(struct device *, int, int);
void bge_miibus_writereg(struct device *, int, int, int);
void bge_miibus_statchg(struct device *);
void bge_reset(struct bge_softc *);
void bge_set_thresh(struct ifnet * /*ifp*/, int /*lvl*/);
void bge_update_all_threshes(int /*lvl*/);
void bge_dump_status(struct bge_softc *);
void bge_dump_rxbd(struct bge_rx_bd *);
#define BGE_DEBUG
#ifdef BGE_DEBUG
#define DPRINTF(x) if (bgedebug) printf x
#define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
int bgedebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#ifdef BGE_EVENT_COUNTERS
#define BGE_EVCNT_INCR(ev) (ev).ev_count++
#define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
#define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
#else
#define BGE_EVCNT_INCR(ev) /* nothing */
#define BGE_EVCNT_ADD(ev, val) /* nothing */
#define BGE_EVCNT_UPD(ev, val) /* nothing */
#endif
/* Various chip quirks. */
#define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
#define BGE_QUIRK_CSUM_BROKEN 0x00000002
#define BGE_QUIRK_ONLY_PHY_1 0x00000004
#define BGE_QUIRK_5700_SMALLDMA 0x00000008
#define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
#define BGE_QUIRK_PRODUCER_BUG 0x00000020
#define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
#define BGE_QUIRK_5705_CORE 0x00000080
#define BGE_QUIRK_FEWER_MBUFS 0x00000100
/* following bugs are common to bcm5700 rev B, all flavours */
#define BGE_QUIRK_5700_COMMON \
(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
CFATTACH_DECL(bge, sizeof(struct bge_softc),
bge_probe, bge_attach, NULL, NULL);
u_int32_t
bge_readmem_ind(sc, off)
struct bge_softc *sc;
int off;
{
struct pci_attach_args *pa = &(sc->bge_pa);
pcireg_t val;
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
return val;
}
void
bge_writemem_ind(sc, off, val)
struct bge_softc *sc;
int off, val;
{
struct pci_attach_args *pa = &(sc->bge_pa);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
}
#ifdef notdef
u_int32_t
bge_readreg_ind(sc, off)
struct bge_softc *sc;
int off;
{
struct pci_attach_args *pa = &(sc->bge_pa);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
}
#endif
void
bge_writereg_ind(sc, off, val)
struct bge_softc *sc;
int off, val;
{
struct pci_attach_args *pa = &(sc->bge_pa);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
}
#ifdef notdef
u_int8_t
bge_vpd_readbyte(sc, addr)
struct bge_softc *sc;
int addr;
{
int i;
u_int32_t val;
struct pci_attach_args *pa = &(sc->bge_pa);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
BGE_VPD_FLAG)
break;
}
if (i == BGE_TIMEOUT) {
printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
return(0);
}
val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
return((val >> ((addr % 4) * 8)) & 0xFF);
}
void
bge_vpd_read_res(sc, res, addr)
struct bge_softc *sc;
struct vpd_res *res;
int addr;
{
int i;
u_int8_t *ptr;
ptr = (u_int8_t *)res;
for (i = 0; i < sizeof(struct vpd_res); i++)
ptr[i] = bge_vpd_readbyte(sc, i + addr);
}
void
bge_vpd_read(sc)
struct bge_softc *sc;
{
int pos = 0, i;
struct vpd_res res;
if (sc->bge_vpd_prodname != NULL)
free(sc->bge_vpd_prodname, M_DEVBUF);
if (sc->bge_vpd_readonly != NULL)
free(sc->bge_vpd_readonly, M_DEVBUF);
sc->bge_vpd_prodname = NULL;
sc->bge_vpd_readonly = NULL;
bge_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_ID) {
printf("%s: bad VPD resource id: expected %x got %x\n",
sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
return;
}
pos += sizeof(res);
sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
if (sc->bge_vpd_prodname == NULL)
panic("bge_vpd_read");
for (i = 0; i < res.vr_len; i++)
sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
sc->bge_vpd_prodname[i] = '\0';
pos += i;
bge_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_READ) {
printf("%s: bad VPD resource id: expected %x got %x\n",
sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
return;
}
pos += sizeof(res);
sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
if (sc->bge_vpd_readonly == NULL)
panic("bge_vpd_read");
for (i = 0; i < res.vr_len + 1; i++)
sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
}
#endif
/*
* Read a byte of data stored in the EEPROM at address 'addr.' The
* BCM570x supports both the traditional bitbang interface and an
* auto access interface for reading the EEPROM. We use the auto
* access method.
*/
u_int8_t
bge_eeprom_getbyte(sc, addr, dest)
struct bge_softc *sc;
int addr;
u_int8_t *dest;
{
int i;
u_int32_t byte = 0;
/*
* Enable use of auto EEPROM access so we can avoid
* having to use the bitbang method.
*/
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
/* Reset the EEPROM, load the clock period. */
CSR_WRITE_4(sc, BGE_EE_ADDR,
BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
DELAY(20);
/* Issue the read EEPROM command. */
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
/* Wait for completion */
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
break;
}
if (i == BGE_TIMEOUT) {
printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
return(0);
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_EE_DATA);
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
return(0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
int
bge_read_eeprom(sc, dest, off, cnt)
struct bge_softc *sc;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = bge_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
int
bge_miibus_readreg(dev, phy, reg)
struct device *dev;
int phy, reg;
{
struct bge_softc *sc = (struct bge_softc *)dev;
u_int32_t val;
u_int32_t saved_autopoll;
int i;
/*
* Several chips with builtin PHYs will incorrectly answer to
* other PHY instances than the builtin PHY at id 1.
*/
if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
return(0);
/* Reading with autopolling on may trigger PCI errors */
saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
CSR_WRITE_4(sc, BGE_MI_MODE,
saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
DELAY(40);
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg));
for (i = 0; i < BGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, BGE_MI_COMM);
if (!(val & BGE_MICOMM_BUSY))
break;
delay(10);
}
if (i == BGE_TIMEOUT) {
printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
val = 0;
goto done;
}
val = CSR_READ_4(sc, BGE_MI_COMM);
done:
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
DELAY(40);
}
if (val & BGE_MICOMM_READFAIL)
return(0);
return(val & 0xFFFF);
}
void
bge_miibus_writereg(dev, phy, reg, val)
struct device *dev;
int phy, reg, val;
{
struct bge_softc *sc = (struct bge_softc *)dev;
u_int32_t saved_autopoll;
int i;
/* Touching the PHY while autopolling is on may trigger PCI errors */
saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
delay(40);
CSR_WRITE_4(sc, BGE_MI_MODE,
saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
delay(10); /* 40 usec is supposed to be adequate */
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
for (i = 0; i < BGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
break;
delay(10);
}
if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
delay(40);
}
if (i == BGE_TIMEOUT) {
printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
}
}
void
bge_miibus_statchg(dev)
struct device *dev;
{
struct bge_softc *sc = (struct bge_softc *)dev;
struct mii_data *mii = &sc->bge_mii;
/*
* Get flow control negotiation result.
*/
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
(mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
mii->mii_media_active &= ~IFM_ETH_FMASK;
}
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
}
/*
* 802.3x flow control
*/
if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
} else {
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
}
if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
} else {
BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
}
}
/*
* Update rx threshold levels to values in a particular slot
* of the interrupt-mitigation table bge_rx_threshes.
*/
void
bge_set_thresh(struct ifnet *ifp, int lvl)
{
struct bge_softc *sc = ifp->if_softc;
int s;
/* For now, just save the new Rx-intr thresholds and record
* that a threshold update is pending. Updating the hardware
* registers here (even at splhigh()) is observed to
* occasionaly cause glitches where Rx-interrupts are not
* honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
*/
s = splnet();
sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
sc->bge_pending_rxintr_change = 1;
splx(s);
return;
}
/*
* Update Rx thresholds of all bge devices
*/
void
bge_update_all_threshes(int lvl)
{
struct ifnet *ifp;
const char * const namebuf = "bge";
int namelen;
if (lvl < 0)
lvl = 0;
else if( lvl >= NBGE_RX_THRESH)
lvl = NBGE_RX_THRESH - 1;
namelen = strlen(namebuf);
/*
* Now search all the interfaces for this name/number
*/
TAILQ_FOREACH(ifp, &ifnet, if_list) {
if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
continue;
/* We got a match: update if doing auto-threshold-tuning */
if (bge_auto_thresh)
bge_set_thresh(ifp, lvl);
}
}
/*
* Handle events that have triggered interrupts.
*/
void
bge_handle_events(sc)
struct bge_softc *sc;
{
return;
}
/*
* Memory management for jumbo frames.
*/
int
bge_alloc_jumbo_mem(sc)
struct bge_softc *sc;
{
caddr_t ptr, kva;
bus_dma_segment_t seg;
int i, rseg, state, error;
struct bge_jpool_entry *entry;
state = error = 0;
/* Grab a big chunk o' storage. */
if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
return ENOBUFS;
}
state = 1;
if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
BUS_DMA_NOWAIT)) {
printf("%s: can't map DMA buffers (%d bytes)\n",
sc->bge_dev.dv_xname, (int)BGE_JMEM);
error = ENOBUFS;
goto out;
}
state = 2;
if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
error = ENOBUFS;
goto out;
}
state = 3;
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
error = ENOBUFS;
goto out;
}
state = 4;
sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
SLIST_INIT(&sc->bge_jfree_listhead);
SLIST_INIT(&sc->bge_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc->bge_cdata.bge_jumbo_buf;
for (i = 0; i < BGE_JSLOTS; i++) {
sc->bge_cdata.bge_jslots[i] = ptr;
ptr += BGE_JLEN;
entry = malloc(sizeof(struct bge_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
printf("%s: no memory for jumbo buffer queue!\n",
sc->bge_dev.dv_xname);
error = ENOBUFS;
goto out;
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
entry, jpool_entries);
}
out:
if (error != 0) {
switch (state) {
case 4:
bus_dmamap_unload(sc->bge_dmatag,
sc->bge_cdata.bge_rx_jumbo_map);
case 3:
bus_dmamap_destroy(sc->bge_dmatag,
sc->bge_cdata.bge_rx_jumbo_map);
case 2:
bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
case 1:
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
break;
default:
break;
}
}
return error;
}
/*
* Allocate a jumbo buffer.
*/
void *
bge_jalloc(sc)
struct bge_softc *sc;
{
struct bge_jpool_entry *entry;
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
if (entry == NULL) {
printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
return(NULL);
}
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
return(sc->bge_cdata.bge_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
void
bge_jfree(m, buf, size, arg)
struct mbuf *m;
caddr_t buf;
size_t size;
void *arg;
{
struct bge_jpool_entry *entry;
struct bge_softc *sc;
int i, s;
/* Extract the softc struct pointer. */
sc = (struct bge_softc *)arg;
if (sc == NULL)
panic("bge_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((caddr_t)buf
- (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
if ((i < 0) || (i >= BGE_JSLOTS))
panic("bge_jfree: asked to free buffer that we don't manage!");
s = splvm();
entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
if (entry == NULL)
panic("bge_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
if (__predict_true(m != NULL))
pool_cache_put(&mbpool_cache, m);
splx(s);
}
/*
* Intialize a standard receive ring descriptor.
*/
int
bge_newbuf_std(sc, i, m, dmamap)
struct bge_softc *sc;
int i;
struct mbuf *m;
bus_dmamap_t dmamap;
{
struct mbuf *m_new = NULL;
struct bge_rx_bd *r;
int error;
if (dmamap == NULL) {
error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
if (error != 0)
return error;
}
sc->bge_cdata.bge_rx_std_map[i] = dmamap;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
if (!sc->bge_rx_alignment_bug)
m_adj(m_new, ETHER_ALIGN);
if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
BUS_DMA_READ|BUS_DMA_NOWAIT))
return(ENOBUFS);
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
if (!sc->bge_rx_alignment_bug)
m_adj(m_new, ETHER_ALIGN);
}
sc->bge_cdata.bge_rx_std_chain[i] = m_new;
r = &sc->bge_rdata->bge_rx_std_ring[i];
bge_set_hostaddr(&r->bge_addr,
dmamap->dm_segs[0].ds_addr);
r->bge_flags = BGE_RXBDFLAG_END;
r->bge_len = m_new->m_len;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_std_ring) +
i * sizeof (struct bge_rx_bd),
sizeof (struct bge_rx_bd),
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
return(0);
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
int
bge_newbuf_jumbo(sc, i, m)
struct bge_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct bge_rx_bd *r;
if (m == NULL) {
caddr_t *buf = NULL;
/* Allocate the mbuf. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
return(ENOBUFS);
}
/* Allocate the jumbo buffer */
buf = bge_jalloc(sc);
if (buf == NULL) {
m_freem(m_new);
printf("%s: jumbo allocation failed "
"-- packet dropped!\n", sc->bge_dev.dv_xname);
return(ENOBUFS);
}
/* Attach the buffer to the mbuf. */
m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
bge_jfree, sc);
} else {
m_new = m;
m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
}
if (!sc->bge_rx_alignment_bug)
m_adj(m_new, ETHER_ALIGN);
/* Set up the descriptor. */
r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
r->bge_len = m_new->m_len;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
i * sizeof (struct bge_rx_bd),
sizeof (struct bge_rx_bd),
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
return(0);
}
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
int
bge_init_rx_ring_std(sc)
struct bge_softc *sc;
{
int i;
if (sc->bge_flags & BGE_RXRING_VALID)
return 0;
for (i = 0; i < BGE_SSLOTS; i++) {
if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
return(ENOBUFS);
}
sc->bge_std = i - 1;
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
sc->bge_flags |= BGE_RXRING_VALID;
return(0);
}
void
bge_free_rx_ring_std(sc)
struct bge_softc *sc;
{
int i;
if (!(sc->bge_flags & BGE_RXRING_VALID))
return;
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
bus_dmamap_destroy(sc->bge_dmatag,
sc->bge_cdata.bge_rx_std_map[i]);
}
memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
sizeof(struct bge_rx_bd));
}
sc->bge_flags &= ~BGE_RXRING_VALID;
}
int
bge_init_rx_ring_jumbo(sc)
struct bge_softc *sc;
{
int i;
volatile struct bge_rcb *rcb;
if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
return 0;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
sc->bge_jumbo = i - 1;
sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
rcb->bge_maxlen_flags = 0;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
return(0);
}
void
bge_free_rx_ring_jumbo(sc)
struct bge_softc *sc;
{
int i;
if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
return;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
}
memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
sizeof(struct bge_rx_bd));
}
sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
}
void
bge_free_tx_ring(sc)
struct bge_softc *sc;
{
int i, freed;
struct txdmamap_pool_entry *dma;
if (!(sc->bge_flags & BGE_TXRING_VALID))
return;
freed = 0;
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
freed++;
m_freem(sc->bge_cdata.bge_tx_chain[i]);
sc->bge_cdata.bge_tx_chain[i] = NULL;
SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
link);
sc->txdma[i] = 0;
}
memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
sizeof(struct bge_tx_bd));
}
while ((dma = SLIST_FIRST(&sc->txdma_list))) {
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
free(dma, M_DEVBUF);
}
sc->bge_flags &= ~BGE_TXRING_VALID;
}
int
bge_init_tx_ring(sc)
struct bge_softc *sc;
{
int i;
bus_dmamap_t dmamap;
struct txdmamap_pool_entry *dma;
if (sc->bge_flags & BGE_TXRING_VALID)
return 0;
sc->bge_txcnt = 0;
sc->bge_tx_saved_considx = 0;
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
SLIST_INIT(&sc->txdma_list);
for (i = 0; i < BGE_RSLOTS; i++) {
if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
&dmamap))
return(ENOBUFS);
if (dmamap == NULL)
panic("dmamap NULL in bge_init_tx_ring");
dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
if (dma == NULL) {
printf("%s: can't alloc txdmamap_pool_entry\n",
sc->bge_dev.dv_xname);
bus_dmamap_destroy(sc->bge_dmatag, dmamap);
return (ENOMEM);
}
dma->dmamap = dmamap;
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
}
sc->bge_flags |= BGE_TXRING_VALID;
return(0);
}
void
bge_setmulti(sc)
struct bge_softc *sc;
{
struct ethercom *ac = &sc->ethercom;
struct ifnet *ifp = &ac->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
u_int32_t hashes[4] = { 0, 0, 0, 0 };
u_int32_t h;
int i;
if (ifp->if_flags & IFF_PROMISC)
goto allmulti;
/* Now program new ones. */
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 7 least-significant bits. */
h &= 0x7f;
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
setit:
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
}
const int bge_swapbits[] = {
0,
BGE_MODECTL_BYTESWAP_DATA,
BGE_MODECTL_WORDSWAP_DATA,
BGE_MODECTL_BYTESWAP_NONFRAME,
BGE_MODECTL_WORDSWAP_NONFRAME,
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
BGE_MODECTL_BYTESWAP_NONFRAME,
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
BGE_MODECTL_WORDSWAP_NONFRAME,
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
BGE_MODECTL_WORDSWAP_NONFRAME,
BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
BGE_MODECTL_WORDSWAP_NONFRAME,
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
};
int bge_swapindex = 0;
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
int
bge_chipinit(sc)
struct bge_softc *sc;
{
u_int32_t cachesize;
int i;
u_int32_t dma_rw_ctl;
struct pci_attach_args *pa = &(sc->bge_pa);
/* Set endianness before we access any non-PCI registers. */
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
BGE_INIT);
/* Set power state to D0. */
bge_setpowerstate(sc, 0);
/*
* Check the 'ROM failed' bit on the RX CPU to see if
* self-tests passed.
*/
if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
printf("%s: RX CPU self-diagnostics failed!\n",
sc->bge_dev.dv_xname);
return(ENODEV);
}
/* Clear the MAC control register */
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
/*
* Clear the MAC statistics block in the NIC's
* internal memory.
*/
for (i = BGE_STATS_BLOCK;
i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
for (i = BGE_STATUS_BLOCK;
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
/* Set up the PCI DMA control register. */
if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
BGE_PCISTATE_PCI_BUSMODE) {
/* Conventional PCI bus */
DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
(0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
dma_rw_ctl |= 0x0F;
}
} else {
DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
/* PCI-X bus */
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
(0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
(0x0F);
/*
* 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
* for hardware bugs, which means we should also clear
* the low-order MINDMA bits. In addition, the 5704
* uses a different encoding of read/write watermarks.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
/* should be 0x1f0000 */
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
}
else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
dma_rw_ctl &= 0xfffffff0;
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
}
}
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
/*
* Set up general mode register.
*/
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
/* Get cache line size. */
cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
/*
* Avoid violating PCI spec on certain chip revs.
*/
if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
PCIM_CMD_MWIEN) {
switch(cachesize) {
case 1:
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_WRITE_BNDRY_16BYTES);
break;
case 2:
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_WRITE_BNDRY_32BYTES);
break;
case 4:
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_WRITE_BNDRY_64BYTES);
break;
case 8:
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_WRITE_BNDRY_128BYTES);
break;
case 16:
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_WRITE_BNDRY_256BYTES);
break;
case 32:
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_WRITE_BNDRY_512BYTES);
break;
case 64:
PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
BGE_PCI_WRITE_BNDRY_1024BYTES);
break;
default:
/* Disable PCI memory write and invalidate. */
#if 0
if (bootverbose)
printf("%s: cache line size %d not "
"supported; disabling PCI MWI\n",
sc->bge_dev.dv_xname, cachesize);
#endif
PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
PCIM_CMD_MWIEN);
break;
}
}
/*
* Disable memory write invalidate. Apparently it is not supported
* properly by these devices.
*/
PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
#ifdef __brokenalpha__
/*
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
#endif
/* Set the timer prescaler (always 66MHz) */
CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
return(0);
}
int
bge_blockinit(sc)
struct bge_softc *sc;
{
volatile struct bge_rcb *rcb;
bus_size_t rcb_addr;
int i;
struct ifnet *ifp = &sc->ethercom.ec_if;
bge_hostaddr taddr;
/*
* Initialize the memory window pointer register so that
* we can access the first 32K of internal NIC RAM. This will
* allow us to set up the TX send ring RCBs and the RX return
* ring RCBs, plus other things which live in NIC memory.
*/
pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
BGE_PCI_MEMWIN_BASEADDR, 0);
/* Configure mbuf memory pool */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
if (sc->bge_extram) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
BGE_EXT_SSRAM);
if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
else
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
BGE_BUFFPOOL_1);
if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
else
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
}
/* Configure DMA resource pool */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
BGE_DMA_DESCRIPTORS);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
}
/* Configure mbuf pool watermarks */
#ifdef ORIG_WPAUL_VALUES
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
#else
/* new broadcom docs strongly recommend these: */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
if (ifp->if_mtu > ETHER_MAX_LEN) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
} else {
/* Values from Linux driver... */
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
}
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
}
#endif
/* Configure DMA resource watermarks */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
/* Enable buffer manager */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
CSR_WRITE_4(sc, BGE_BMAN_MODE,
BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
/* Poll for buffer manager start indication */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("%s: buffer manager failed to start\n",
sc->bge_dev.dv_xname);
return(ENXIO);
}
}
/* Enable flow-through queues */
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
/* Wait until queue initialization is complete */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("%s: flow-through queue init failed\n",
sc->bge_dev.dv_xname);
return(ENXIO);
}
/* Initialize the standard RX ring control block */
rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
bge_set_hostaddr(&rcb->bge_hostaddr,
BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
} else {
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
}
if (sc->bge_extram)
rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
else
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
} else {
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
}
/*
* Initialize the jumbo RX ring control block
* We set the 'ring disabled' bit in the flags
* field until we're actually ready to start
* using this ring (i.e. once we set the MTU
* high enough to require it).
*/
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
bge_set_hostaddr(&rcb->bge_hostaddr,
BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
BGE_RCB_FLAG_RING_DISABLED);
if (sc->bge_extram)
rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
else
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
/* Set up dummy disabled mini ring RCB */
rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
BGE_RCB_FLAG_RING_DISABLED);
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_info),
sizeof (struct bge_gib),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
/*
* Set the BD ring replentish thresholds. The recommended
* values are 1/8th the number of descriptors allocated to
* each ring.
*/
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
/*
* Disable all unused send rings by setting the 'ring disabled'
* bit in the flags field of all the TX send ring control blocks.
* These are located in NIC memory.
*/
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
rcb_addr += sizeof(struct bge_rcb);
}
/* Configure TX RCB 0 (we use only the first ring) */
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
}
/* Disable all unused RX return rings */
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
(i * (sizeof(u_int64_t))), 0);
rcb_addr += sizeof(struct bge_rcb);
}
/* Initialize RX ring indexes */
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
/*
* Set up RX return ring 0
* Note that the NIC address for RX return rings is 0x00000000.
* The return rings live entirely within the host, so the
* nicaddr field in the RCB isn't used.
*/
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
/* Set random backoff seed for TX */
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
BGE_TX_BACKOFF_SEED_MASK);
/* Set inter-packet gap */
CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
/*
* Specify which ring to use for packets that don't match
* any RX rules.
*/
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
/*
* Configure number of RX lists. One interrupt distribution
* list, sixteen active lists, one bad frames class.
*/
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
/* Inialize RX list placement stats mask. */
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
/* Disable host coalescing until we get it set up */
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
/* Poll to make sure it's shut down. */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("%s: host coalescing engine failed to idle\n",
sc->bge_dev.dv_xname);
return(ENXIO);
}
/* Set up host coalescing defaults */
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
}
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
/* Set up address of statistics block */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
bge_set_hostaddr(&taddr,
BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
}
/* Set up address of status block */
bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
/* Turn on host coalescing state machine */
CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
/* Turn on RX BD completion state machine and enable attentions */
CSR_WRITE_4(sc, BGE_RBDC_MODE,
BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
/* Turn on RX list placement state machine */
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
/* Turn on RX list selector state machine. */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
}
/* Turn on DMA, clear stats */
CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
(sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
/* Set misc. local control, enable interrupts on attentions */
sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
#ifdef notdef
/* Assert GPIO pins for PHY reset */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
#endif
#if defined(not_quite_yet)
/* Linux driver enables enable gpio pin #1 on 5700s */
if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
sc->bge_local_ctrl_reg |=
(BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
}
#endif
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
/* Turn on DMA completion state machine */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
}
/* Turn on write DMA state machine */
CSR_WRITE_4(sc, BGE_WDMA_MODE,
BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
/* Turn on read DMA state machine */
CSR_WRITE_4(sc, BGE_RDMA_MODE,
BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
/* Turn on RX data completion state machine */
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
/* Turn on RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
/* Turn on RX data and RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
/* Turn on Mbuf cluster free state machine */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
}
/* Turn on send BD completion state machine */
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/* Turn on send data completion state machine */
CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
/* Turn on send data initiator state machine */
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
/* Turn on send BD initiator state machine */
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
/* Turn on send BD selector state machine */
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
/* ack/clear link change events */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED);
CSR_WRITE_4(sc, BGE_MI_STS, 0);
/* Enable PHY auto polling (for MII/GMII only) */
if (sc->bge_tbi) {
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
} else {
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
}
/* Enable link state change attentions. */
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
return(0);
}
static const struct bge_revision {
uint32_t br_chipid;
uint32_t br_quirks;
const char *br_name;
} bge_revisions[] = {
{ BGE_CHIPID_BCM5700_A0,
BGE_QUIRK_LINK_STATE_BROKEN,
"BCM5700 A0" },
{ BGE_CHIPID_BCM5700_A1,
BGE_QUIRK_LINK_STATE_BROKEN,
"BCM5700 A1" },
{ BGE_CHIPID_BCM5700_B0,
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
"BCM5700 B0" },
{ BGE_CHIPID_BCM5700_B1,
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
"BCM5700 B1" },
{ BGE_CHIPID_BCM5700_B2,
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
"BCM5700 B2" },
/* This is treated like a BCM5700 Bx */
{ BGE_CHIPID_BCM5700_ALTIMA,
BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
"BCM5700 Altima" },
{ BGE_CHIPID_BCM5700_C0,
0,
"BCM5700 C0" },
{ BGE_CHIPID_BCM5701_A0,
0, /*XXX really, just not known */
"BCM5701 A0" },
{ BGE_CHIPID_BCM5701_B0,
BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
"BCM5701 B0" },
{ BGE_CHIPID_BCM5701_B2,
BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
"BCM5701 B2" },
{ BGE_CHIPID_BCM5701_B5,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
"BCM5701 B5" },
{ BGE_CHIPID_BCM5703_A0,
0,
"BCM5703 A0" },
{ BGE_CHIPID_BCM5703_A1,
0,
"BCM5703 A1" },
{ BGE_CHIPID_BCM5703_A2,
BGE_QUIRK_ONLY_PHY_1,
"BCM5703 A2" },
{ BGE_CHIPID_BCM5703_A3,
BGE_QUIRK_ONLY_PHY_1,
"BCM5703 A3" },
{ BGE_CHIPID_BCM5704_A0,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
"BCM5704 A0" },
{ BGE_CHIPID_BCM5704_A1,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
"BCM5704 A1" },
{ BGE_CHIPID_BCM5704_A2,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
"BCM5704 A2" },
{ BGE_CHIPID_BCM5704_A3,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
"BCM5704 A3" },
{ BGE_CHIPID_BCM5705_A0,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
"BCM5705 A0" },
{ BGE_CHIPID_BCM5705_A1,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
"BCM5705 A1" },
{ BGE_CHIPID_BCM5705_A2,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
"BCM5705 A2" },
{ BGE_CHIPID_BCM5705_A3,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
"BCM5705 A3" },
{ 0, 0, NULL }
};
/*
* Some defaults for major revisions, so that newer steppings
* that we don't know about have a shot at working.
*/
static const struct bge_revision bge_majorrevs[] = {
{ BGE_ASICREV_BCM5700,
BGE_QUIRK_LINK_STATE_BROKEN,
"unknown BCM5700" },
{ BGE_ASICREV_BCM5701,
BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
"unknown BCM5701" },
{ BGE_ASICREV_BCM5703,
0,
"unknown BCM5703" },
{ BGE_ASICREV_BCM5704,
BGE_QUIRK_ONLY_PHY_1,
"unknown BCM5704" },
{ BGE_ASICREV_BCM5705,
BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
"unknown BCM5705" },
{ 0,
0,
NULL }
};
static const struct bge_revision *
bge_lookup_rev(uint32_t chipid)
{
const struct bge_revision *br;
for (br = bge_revisions; br->br_name != NULL; br++) {
if (br->br_chipid == chipid)
return (br);
}
for (br = bge_majorrevs; br->br_name != NULL; br++) {
if (br->br_chipid == BGE_ASICREV(chipid))
return (br);
}
return (NULL);
}
static const struct bge_product {
pci_vendor_id_t bp_vendor;
pci_product_id_t bp_product;
const char *bp_name;
} bge_products[] = {
/*
* The BCM5700 documentation seems to indicate that the hardware
* still has the Alteon vendor ID burned into it, though it
* should always be overridden by the value in the EEPROM. We'll
* check for it anyway.
*/
{ PCI_VENDOR_ALTEON,
PCI_PRODUCT_ALTEON_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTEON,
PCI_PRODUCT_ALTEON_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTIMA,
PCI_PRODUCT_ALTIMA_AC1000,
"Altima AC1000 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTIMA,
PCI_PRODUCT_ALTIMA_AC1001,
"Altima AC1001 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTIMA,
PCI_PRODUCT_ALTIMA_AC9100,
"Altima AC9100 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5702,
"Broadcom BCM5702 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5702X,
"Broadcom BCM5702X Gigabit Ethernet" },
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5703,
"Broadcom BCM5703 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5703X,
"Broadcom BCM5703X Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5703A3,
"Broadcom BCM5703A3 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5704C,
"Broadcom BCM5704C Dual Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5704S,
"Broadcom BCM5704S Dual Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705,
"Broadcom BCM5705 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705_ALT,
"Broadcom BCM5705 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705M,
"Broadcom BCM5705M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5782,
"Broadcom BCM5782 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5788,
"Broadcom BCM5788 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5901,
"Broadcom BCM5901 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5901A2,
"Broadcom BCM5901A2 Fast Ethernet",
},
{ PCI_VENDOR_SCHNEIDERKOCH,
PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
"SysKonnect SK-9Dx1 Gigabit Ethernet",
},
{ PCI_VENDOR_3COM,
PCI_PRODUCT_3COM_3C996,
"3Com 3c996 Gigabit Ethernet",
},
{ 0,
0,
NULL },
};
static const struct bge_product *
bge_lookup(const struct pci_attach_args *pa)
{
const struct bge_product *bp;
for (bp = bge_products; bp->bp_name != NULL; bp++) {
if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
PCI_PRODUCT(pa->pa_id) == bp->bp_product)
return (bp);
}
return (NULL);
}
int
bge_setpowerstate(sc, powerlevel)
struct bge_softc *sc;
int powerlevel;
{
#ifdef NOTYET
u_int32_t pm_ctl = 0;
/* XXX FIXME: make sure indirect accesses enabled? */
pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
/* clear the PME_assert bit and power state bits, enable PME */
pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
pm_ctl &= ~PCIM_PSTAT_DMASK;
pm_ctl |= (1 << 8);
if (powerlevel == 0) {
pm_ctl |= PCIM_PSTAT_D0;
pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
pm_ctl, 2);
DELAY(10000);
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
DELAY(10000);
#ifdef NOTYET
/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
#endif
DELAY(40); DELAY(40); DELAY(40);
DELAY(10000); /* above not quite adequate on 5700 */
return 0;
}
/*
* Entering ACPI power states D1-D3 is achieved by wiggling
* GMII gpio pins. Example code assumes all hardware vendors
* followed Broadom's sample pcb layout. Until we verify that
* for all supported OEM cards, states D1-D3 are unsupported.
*/
printf("%s: power state %d unimplemented; check GPIO pins\n",
sc->bge_dev.dv_xname, powerlevel);
#endif
return EOPNOTSUPP;
}
/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match. Note
* that since the Broadcom controller contains VPD support, we
* can get the device name string from the controller itself instead
* of the compiled-in string. This is a little slow, but it guarantees
* we'll always announce the right product name.
*/
int
bge_probe(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (bge_lookup(pa) != NULL)
return (1);
return (0);
}
void
bge_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct bge_softc *sc = (struct bge_softc *)self;
struct pci_attach_args *pa = aux;
const struct bge_product *bp;
const struct bge_revision *br;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_dma_segment_t seg;
int rseg;
u_int32_t hwcfg = 0;
u_int32_t mac_addr = 0;
u_int32_t command;
struct ifnet *ifp;
caddr_t kva;
u_char eaddr[ETHER_ADDR_LEN];
pcireg_t memtype;
bus_addr_t memaddr;
bus_size_t memsize;
u_int32_t pm_ctl;
bp = bge_lookup(pa);
KASSERT(bp != NULL);
sc->bge_pa = *pa;
aprint_naive(": Ethernet controller\n");
aprint_normal(": %s\n", bp->bp_name);
/*
* Map control/status registers.
*/
DPRINTFN(5, ("Map control/status regs\n"));
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
aprint_error("%s: failed to enable memory mapping!\n",
sc->bge_dev.dv_xname);
return;
}
DPRINTFN(5, ("pci_mem_find\n"));
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, BGE_PCI_BAR0,
memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
&memaddr, &memsize) == 0)
break;
default:
aprint_error("%s: can't find mem space\n",
sc->bge_dev.dv_xname);
return;
}
DPRINTFN(5, ("pci_intr_map\n"));
if (pci_intr_map(pa, &ih)) {
aprint_error("%s: couldn't map interrupt\n",
sc->bge_dev.dv_xname);
return;
}
DPRINTFN(5, ("pci_intr_string\n"));
intrstr = pci_intr_string(pc, ih);
DPRINTFN(5, ("pci_intr_establish\n"));
sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
if (sc->bge_intrhand == NULL) {
aprint_error("%s: couldn't establish interrupt",
sc->bge_dev.dv_xname);
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
aprint_normal("\n");
return;
}
aprint_normal("%s: interrupting at %s\n",
sc->bge_dev.dv_xname, intrstr);
/*
* Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
* can clobber the chip's PCI config-space power control registers,
* leaving the card in D3 powersave state.
* We do not have memory-mapped registers in this state,
* so force device into D0 state before starting initialization.
*/
pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
DELAY(1000); /* 27 usec is allegedly sufficent */
/* Try to reset the chip. */
DPRINTFN(5, ("bge_reset\n"));
bge_reset(sc);
if (bge_chipinit(sc)) {
aprint_error("%s: chip initialization failed\n",
sc->bge_dev.dv_xname);
bge_release_resources(sc);
return;
}
/*
* Get station address from the EEPROM.
*/
mac_addr = bge_readmem_ind(sc, 0x0c14);
if ((mac_addr >> 16) == 0x484b) {
eaddr[0] = (u_char)(mac_addr >> 8);
eaddr[1] = (u_char)(mac_addr >> 0);
mac_addr = bge_readmem_ind(sc, 0x0c18);
eaddr[2] = (u_char)(mac_addr >> 24);
eaddr[3] = (u_char)(mac_addr >> 16);
eaddr[4] = (u_char)(mac_addr >> 8);
eaddr[5] = (u_char)(mac_addr >> 0);
} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
aprint_error("%s: failed to read station address\n",
sc->bge_dev.dv_xname);
bge_release_resources(sc);
return;
}
/*
* Save ASIC rev. Look up any quirks associated with this
* ASIC.
*/
sc->bge_chipid =
pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
BGE_PCIMISCCTL_ASICREV;
br = bge_lookup_rev(sc->bge_chipid);
aprint_normal("%s: ", sc->bge_dev.dv_xname);
if (br == NULL) {
aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
sc->bge_quirks = 0;
} else {
aprint_normal("ASIC %s (0x%04x)",
br->br_name, sc->bge_chipid >> 16);
sc->bge_quirks |= br->br_quirks;
}
aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
/* Allocate the general information block and ring buffers. */
if (pci_dma64_available(pa))
sc->bge_dmatag = pa->pa_dmat64;
else
sc->bge_dmatag = pa->pa_dmat;
DPRINTFN(5, ("bus_dmamem_alloc\n"));
if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error("%s: can't alloc rx buffers\n",
sc->bge_dev.dv_xname);
return;
}
DPRINTFN(5, ("bus_dmamem_map\n"));
if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
sizeof(struct bge_ring_data), &kva,
BUS_DMA_NOWAIT)) {
aprint_error("%s: can't map DMA buffers (%d bytes)\n",
sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
return;
}
DPRINTFN(5, ("bus_dmamem_create\n"));
if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
sizeof(struct bge_ring_data), 0,
BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
aprint_error("%s: can't create DMA map\n",
sc->bge_dev.dv_xname);
bus_dmamem_unmap(sc->bge_dmatag, kva,
sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
return;
}
DPRINTFN(5, ("bus_dmamem_load\n"));
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
sizeof(struct bge_ring_data), NULL,
BUS_DMA_NOWAIT)) {
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
bus_dmamem_unmap(sc->bge_dmatag, kva,
sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
return;
}
DPRINTFN(5, ("bzero\n"));
sc->bge_rdata = (struct bge_ring_data *)kva;
memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
/* Try to allocate memory for jumbo buffers. */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
if (bge_alloc_jumbo_mem(sc)) {
aprint_error("%s: jumbo buffer allocation failed\n",
sc->bge_dev.dv_xname);
} else
sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
}
/* Set default tuneable values. */
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
sc->bge_rx_coal_ticks = 150;
sc->bge_rx_max_coal_bds = 64;
#ifdef ORIG_WPAUL_VALUES
sc->bge_tx_coal_ticks = 150;
sc->bge_tx_max_coal_bds = 128;
#else
sc->bge_tx_coal_ticks = 300;
sc->bge_tx_max_coal_bds = 400;
#endif
/* Set up ifnet structure */
ifp = &sc->ethercom.ec_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bge_ioctl;
ifp->if_start = bge_start;
ifp->if_init = bge_init;
ifp->if_watchdog = bge_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
IFQ_SET_READY(&ifp->if_snd);
DPRINTFN(5, ("bcopy\n"));
strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
sc->ethercom.ec_if.if_capabilities |=
IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
sc->ethercom.ec_capabilities |=
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
/*
* Do MII setup.
*/
DPRINTFN(5, ("mii setup\n"));
sc->bge_mii.mii_ifp = ifp;
sc->bge_mii.mii_readreg = bge_miibus_readreg;
sc->bge_mii.mii_writereg = bge_miibus_writereg;
sc->bge_mii.mii_statchg = bge_miibus_statchg;
/*
* Figure out what sort of media we have by checking the
* hardware config word in the first 32k of NIC internal memory,
* or fall back to the config word in the EEPROM. Note: on some BCM5700
* cards, this value appears to be unset. If that's the
* case, we have to rely on identifying the NIC by its PCI
* subsystem ID, as we do below for the SysKonnect SK-9D41.
*/
if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
} else {
bge_read_eeprom(sc, (caddr_t)&hwcfg,
BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
hwcfg = be32toh(hwcfg);
}
if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
sc->bge_tbi = 1;
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
SK_SUBSYSID_9D41)
sc->bge_tbi = 1;
if (sc->bge_tbi) {
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
bge_ifmedia_sts);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
} else {
/*
* Do transceiver setup.
*/
ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
bge_ifmedia_sts);
mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY,
MIIF_FORCEANEG|MIIF_DOPAUSE);
if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
ifmedia_add(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_MANUAL);
} else
ifmedia_set(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_AUTO);
}
/*
* When using the BCM5701 in PCI-X mode, data corruption has
* been observed in the first few bytes of some received packets.
* Aligning the packet buffer in memory eliminates the corruption.
* Unfortunately, this misaligns the packet payloads. On platforms
* which do not support unaligned accesses, we will realign the
* payloads by copying the received packets.
*/
if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
/* If in PCI-X mode, work around the alignment bug. */
if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
(BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
BGE_PCISTATE_PCI_BUSSPEED)
sc->bge_rx_alignment_bug = 1;
}
/*
* Call MI attach routine.
*/
DPRINTFN(5, ("if_attach\n"));
if_attach(ifp);
DPRINTFN(5, ("ether_ifattach\n"));
ether_ifattach(ifp, eaddr);
#ifdef BGE_EVENT_COUNTERS
/*
* Attach event counters.
*/
evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
NULL, sc->bge_dev.dv_xname, "intr");
evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
NULL, sc->bge_dev.dv_xname, "tx_xoff");
evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
NULL, sc->bge_dev.dv_xname, "tx_xon");
evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
NULL, sc->bge_dev.dv_xname, "rx_xoff");
evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
NULL, sc->bge_dev.dv_xname, "rx_xon");
evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
NULL, sc->bge_dev.dv_xname, "rx_macctl");
evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
NULL, sc->bge_dev.dv_xname, "xoffentered");
#endif /* BGE_EVENT_COUNTERS */
DPRINTFN(5, ("callout_init\n"));
callout_init(&sc->bge_timeout);
}
void
bge_release_resources(sc)
struct bge_softc *sc;
{
if (sc->bge_vpd_prodname != NULL)
free(sc->bge_vpd_prodname, M_DEVBUF);
if (sc->bge_vpd_readonly != NULL)
free(sc->bge_vpd_readonly, M_DEVBUF);
}
void
bge_reset(sc)
struct bge_softc *sc;
{
struct pci_attach_args *pa = &sc->bge_pa;
u_int32_t cachesize, command, pcistate, new_pcistate;
int i, val = 0;
/* Save some important PCI state. */
cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
/* Issue global reset */
bge_writereg_ind(sc, BGE_MISC_CFG,
BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
DELAY(1000);
/* Reset some of the PCI state that got zapped by reset */
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
/* Enable memory arbiter. */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
}
/*
* Prevent PXE restart: write a magic number to the
* general communications memory at 0xB50.
*/
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
/*
* Poll the value location we just wrote until
* we see the 1's complement of the magic number.
* This indicates that the firmware initialization
* is complete.
*/
for (i = 0; i < 750; i++) {
val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
if (val == ~BGE_MAGIC_NUMBER)
break;
DELAY(1000);
}
if (i == 750) {
printf("%s: firmware handshake timed out, val = %x\n",
sc->bge_dev.dv_xname, val);
return;
}
/*
* XXX Wait for the value of the PCISTATE register to
* return to its original pre-reset state. This is a
* fairly good indicator of reset completion. If we don't
* wait for the reset to fully complete, trying to read
* from the device's non-PCI registers may yield garbage
* results.
*/
for (i = 0; i < BGE_TIMEOUT; i++) {
new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
BGE_PCI_PCISTATE);
if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
(pcistate & ~BGE_PCISTATE_RESERVED))
break;
DELAY(10);
}
if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
(pcistate & ~BGE_PCISTATE_RESERVED)) {
printf("%s: pcistate failed to revert\n",
sc->bge_dev.dv_xname);
}
/* Enable memory arbiter. */
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
}
/* Fix up byte swapping */
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
DELAY(10000);
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle two possibilities here:
* 1) the frame is from the jumbo recieve ring
* 2) the frame is from the standard receive ring
*/
void
bge_rxeof(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
int stdcnt = 0, jumbocnt = 0;
int have_tag = 0;
u_int16_t vlan_tag = 0;
bus_dmamap_t dmamap;
bus_addr_t offset, toff;
bus_size_t tlen;
int tosync;
ifp = &sc->ethercom.ec_if;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD);
offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
sc->bge_rx_saved_considx;
toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
if (tosync < 0) {
tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
sizeof (struct bge_rx_bd);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
toff, tlen, BUS_DMASYNC_POSTREAD);
tosync = -tosync;
}
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offset, tosync * sizeof (struct bge_rx_bd),
BUS_DMASYNC_POSTREAD);
while(sc->bge_rx_saved_considx !=
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
struct bge_rx_bd *cur_rx;
u_int32_t rxidx;
struct mbuf *m = NULL;
cur_rx = &sc->bge_rdata->
bge_rx_return_ring[sc->bge_rx_saved_considx];
rxidx = cur_rx->bge_idx;
BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->bge_vlan_tag;
}
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
jumbocnt++;
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
NULL)== ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
} else {
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
stdcnt++;
dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
continue;
}
if (bge_newbuf_std(sc, sc->bge_std,
NULL, dmamap) == ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
continue;
}
}
ifp->if_ipackets++;
#ifndef __NO_STRICT_ALIGNMENT
/*
* XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
* the Rx buffer has the layer-2 header unaligned.
* If our CPU requires alignment, re-align by copying.
*/
if (sc->bge_rx_alignment_bug) {
memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
cur_rx->bge_len);
m->m_data += ETHER_ALIGN;
}
#endif
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
m->m_pkthdr.csum_flags = M_CSUM_IPv4;
if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
/*
* Rx transport checksum-offload may also
* have bugs with packets which, when transmitted,
* were `runts' requiring padding.
*/
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
(/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
m->m_pkthdr.csum_data =
cur_rx->bge_tcp_udp_csum;
m->m_pkthdr.csum_flags |=
(M_CSUM_TCPv4|M_CSUM_UDPv4|
M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
}
/*
* If we received a packet with a vlan tag, pass it
* to vlan_input() instead of ether_input().
*/
if (have_tag) {
struct m_tag *mtag;
mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
M_NOWAIT);
if (mtag != NULL) {
*(u_int *)(mtag + 1) = vlan_tag;
m_tag_prepend(m, mtag);
have_tag = vlan_tag = 0;
} else {
printf("%s: no mbuf for tag\n", ifp->if_xname);
m_freem(m);
have_tag = vlan_tag = 0;
continue;
}
}
(*ifp->if_input)(ifp, m);
}
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
if (stdcnt)
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
if (jumbocnt)
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
}
void
bge_txeof(sc)
struct bge_softc *sc;
{
struct bge_tx_bd *cur_tx = NULL;
struct ifnet *ifp;
struct txdmamap_pool_entry *dma;
bus_addr_t offset, toff;
bus_size_t tlen;
int tosync;
struct mbuf *m;
ifp = &sc->ethercom.ec_if;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD);
offset = offsetof(struct bge_ring_data, bge_tx_ring);
tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
sc->bge_tx_saved_considx;
toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
if (tosync < 0) {
tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
sizeof (struct bge_tx_bd);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
tosync = -tosync;
}
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offset, tosync * sizeof (struct bge_tx_bd),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->bge_tx_saved_considx !=
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
u_int32_t idx = 0;
idx = sc->bge_tx_saved_considx;
cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
ifp->if_opackets++;
m = sc->bge_cdata.bge_tx_chain[idx];
if (m != NULL) {
sc->bge_cdata.bge_tx_chain[idx] = NULL;
dma = sc->txdma[idx];
bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
sc->txdma[idx] = NULL;
m_freem(m);
}
sc->bge_txcnt--;
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
ifp->if_timer = 0;
}
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
}
int
bge_intr(xsc)
void *xsc;
{
struct bge_softc *sc;
struct ifnet *ifp;
sc = xsc;
ifp = &sc->ethercom.ec_if;
#ifdef notdef
/* Avoid this for now -- checking this register is expensive. */
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
return (0);
#endif
/* Ack interrupt and stop others from occuring. */
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
BGE_EVCNT_INCR(sc->bge_ev_intr);
/*
* Process link state changes.
* Grrr. The link status word in the status block does
* not work correctly on the BCM5700 rev AX and BX chips,
* according to all avaibable information. Hence, we have
* to enable MII interrupts in order to properly obtain
* async link changes. Unfortunately, this also means that
* we have to read the MAC status register to detect link
* changes, thereby adding an additional register access to
* the interrupt handler.
*/
if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
u_int32_t status;
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_MI_INTERRUPT) {
sc->bge_link = 0;
callout_stop(&sc->bge_timeout);
bge_tick(sc);
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
BRGPHY_INTRS);
}
} else {
if (sc->bge_rdata->bge_status_block.bge_status &
BGE_STATFLAG_LINKSTATE_CHANGED) {
sc->bge_link = 0;
callout_stop(&sc->bge_timeout);
bge_tick(sc);
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
BGE_MACSTAT_LINK_CHANGED);
}
}
if (ifp->if_flags & IFF_RUNNING) {
/* Check RX return ring producer/consumer */
bge_rxeof(sc);
/* Check TX ring producer/consumer */
bge_txeof(sc);
}
if (sc->bge_pending_rxintr_change) {
uint32_t rx_ticks = sc->bge_rx_coal_ticks;
uint32_t rx_bds = sc->bge_rx_max_coal_bds;
uint32_t junk;
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
DELAY(10);
junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
DELAY(10);
junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
sc->bge_pending_rxintr_change = 0;
}
bge_handle_events(sc);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
bge_start(ifp);
return (1);
}
void
bge_tick(xsc)
void *xsc;
{
struct bge_softc *sc = xsc;
struct mii_data *mii = &sc->bge_mii;
struct ifmedia *ifm = NULL;
struct ifnet *ifp = &sc->ethercom.ec_if;
int s;
s = splnet();
bge_stats_update(sc);
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
if (sc->bge_link) {
splx(s);
return;
}
if (sc->bge_tbi) {
ifm = &sc->bge_ifmedia;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED) {
sc->bge_link++;
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
bge_start(ifp);
}
splx(s);
return;
}
mii_tick(mii);
if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->bge_link++;
if (!IFQ_IS_EMPTY(&ifp->if_snd))
bge_start(ifp);
}
splx(s);
}
void
bge_stats_update(sc)
struct bge_softc *sc;
{
struct ifnet *ifp = &sc->ethercom.ec_if;
bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
bus_size_t rstats = BGE_RX_STATS;
#define READ_RSTAT(sc, stats, stat) \
CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
ifp->if_collisions +=
READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
READ_RSTAT(sc, rstats, outXoffSent));
BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
READ_RSTAT(sc, rstats, outXonSent));
BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
READ_RSTAT(sc, rstats, xonPauseFramesReceived));
BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
READ_RSTAT(sc, rstats, macControlFramesReceived));
BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
READ_RSTAT(sc, rstats, xoffStateEntered));
return;
}
#undef READ_RSTAT
#define READ_STAT(sc, stats, stat) \
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
ifp->if_collisions +=
(READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
ifp->if_collisions;
BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
READ_STAT(sc, stats, outXonSent.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
READ_STAT(sc, stats,
xoffPauseFramesReceived.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
READ_STAT(sc, stats,
macControlFramesReceived.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
#undef READ_STAT
#ifdef notdef
ifp->if_collisions +=
(sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
ifp->if_collisions;
#endif
}
/*
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
* but when such padded frames employ the bge IP/TCP checksum offload,
* the hardware checksum assist gives incorrect results (possibly
* from incorporating its own padding into the UDP/TCP checksum; who knows).
* If we pad such runts with zeros, the onboard checksum comes out correct.
*/
static __inline int
bge_cksum_pad(struct mbuf *pkt)
{
struct mbuf *last = NULL;
int padlen;
padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
/* if there's only the packet-header and we can pad there, use it. */
if (pkt->m_pkthdr.len == pkt->m_len &&
!M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
last = pkt;
} else {
/*
* Walk packet chain to find last mbuf. We will either
* pad there, or append a new mbuf and pad it
* (thus perhaps avoiding the bcm5700 dma-min bug).
*/
for (last = pkt; last->m_next != NULL; last = last->m_next) {
(void) 0; /* do nothing*/
}
/* `last' now points to last in chain. */
if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
(void) 0; /* we can pad here, in-place. */
} else {
/* Allocate new empty mbuf, pad it. Compact later. */
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
n->m_len = 0;
last->m_next = n;
last = n;
}
}
#ifdef DEBUG
/*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
#endif
/* Now zero the pad area, to avoid the bge cksum-assist bug */
memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
last->m_len += padlen;
pkt->m_pkthdr.len += padlen;
return 0;
}
/*
* Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
*/
static __inline int
bge_compact_dma_runt(struct mbuf *pkt)
{
struct mbuf *m, *prev;
int totlen, prevlen;
prev = NULL;
totlen = 0;
prevlen = -1;
for (m = pkt; m != NULL; prev = m,m = m->m_next) {
int mlen = m->m_len;
int shortfall = 8 - mlen ;
totlen += mlen;
if (mlen == 0) {
continue;
}
if (mlen >= 8)
continue;
/* If we get here, mbuf data is too small for DMA engine.
* Try to fix by shuffling data to prev or next in chain.
* If that fails, do a compacting deep-copy of the whole chain.
*/
/* Internal frag. If fits in prev, copy it there. */
if (prev && !M_READONLY(prev) &&
M_TRAILINGSPACE(prev) >= m->m_len) {
bcopy(m->m_data,
prev->m_data+prev->m_len,
mlen);
prev->m_len += mlen;
m->m_len = 0;
/* XXX stitch chain */
prev->m_next = m_free(m);
m = prev;
continue;
}
else if (m->m_next != NULL && !M_READONLY(m) &&
M_TRAILINGSPACE(m) >= shortfall &&
m->m_next->m_len >= (8 + shortfall)) {
/* m is writable and have enough data in next, pull up. */
bcopy(m->m_next->m_data,
m->m_data+m->m_len,
shortfall);
m->m_len += shortfall;
m->m_next->m_len -= shortfall;
m->m_next->m_data += shortfall;
}
else if (m->m_next == NULL || 1) {
/* Got a runt at the very end of the packet.
* borrow data from the tail of the preceding mbuf and
* update its length in-place. (The original data is still
* valid, so we can do this even if prev is not writable.)
*/
/* if we'd make prev a runt, just move all of its data. */
#ifdef DEBUG
KASSERT(prev != NULL /*, ("runt but null PREV")*/);
KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
#endif
if ((prev->m_len - shortfall) < 8)
shortfall = prev->m_len;
#ifdef notyet /* just do the safe slow thing for now */
if (!M_READONLY(m)) {
if (M_LEADINGSPACE(m) < shorfall) {
void *m_dat;
m_dat = (m->m_flags & M_PKTHDR) ?
m->m_pktdat : m->dat;
memmove(m_dat, mtod(m, void*), m->m_len);
m->m_data = m_dat;
}
} else
#endif /* just do the safe slow thing */
{
struct mbuf * n = NULL;
int newprevlen = prev->m_len - shortfall;
MGET(n, M_NOWAIT, MT_DATA);
if (n == NULL)
return ENOBUFS;
KASSERT(m->m_len + shortfall < MLEN
/*,
("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
/* first copy the data we're stealing from prev */
bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
/* update prev->m_len accordingly */
prev->m_len -= shortfall;
/* copy data from runt m */
bcopy(m->m_data, n->m_data + shortfall, m->m_len);
/* n holds what we stole from prev, plus m */
n->m_len = shortfall + m->m_len;
/* stitch n into chain and free m */
n->m_next = m->m_next;
prev->m_next = n;
/* KASSERT(m->m_next == NULL); */
m->m_next = NULL;
m_free(m);
m = n; /* for continuing loop */
}
}
prevlen = m->m_len;
}
return 0;
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
int
bge_encap(sc, m_head, txidx)
struct bge_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct bge_tx_bd *f = NULL;
u_int32_t frag, cur, cnt = 0;
u_int16_t csum_flags = 0;
struct txdmamap_pool_entry *dma;
bus_dmamap_t dmamap;
int i = 0;
struct m_tag *mtag;
cur = frag = *txidx;
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
}
/*
* If we were asked to do an outboard checksum, and the NIC
* has the bug where it sometimes adds in the Ethernet padding,
* explicitly pad with zeros so the cksum will be correct either way.
* (For now, do this for all chip versions, until newer
* are confirmed to not require the workaround.)
*/
if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
#ifdef notyet
(sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
#endif
m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
goto check_dma_bug;
if (bge_cksum_pad(m_head) != 0)
return ENOBUFS;
check_dma_bug:
if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
goto doit;
/*
* bcm5700 Revision B silicon cannot handle DMA descriptors with
* less than eight bytes. If we encounter a teeny mbuf
* at the end of a chain, we can pad. Otherwise, copy.
*/
if (bge_compact_dma_runt(m_head) != 0)
return ENOBUFS;
doit:
dma = SLIST_FIRST(&sc->txdma_list);
if (dma == NULL)
return ENOBUFS;
dmamap = dma->dmamap;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
BUS_DMA_NOWAIT))
return(ENOBUFS);
mtag = sc->ethercom.ec_nvlans ?
m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
for (i = 0; i < dmamap->dm_nsegs; i++) {
f = &sc->bge_rdata->bge_tx_ring[frag];
if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
break;
bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
f->bge_len = dmamap->dm_segs[i].ds_len;
f->bge_flags = csum_flags;
if (mtag != NULL) {
f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
f->bge_vlan_tag = *(u_int *)(mtag + 1);
} else {
f->bge_vlan_tag = 0;
}
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
return(ENOBUFS);
cur = frag;
BGE_INC(frag, BGE_TX_RING_CNT);
cnt++;
}
if (i < dmamap->dm_nsegs)
return ENOBUFS;
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if (frag == sc->bge_tx_saved_considx)
return(ENOBUFS);
sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
sc->bge_cdata.bge_tx_chain[cur] = m_head;
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
sc->txdma[cur] = dma;
sc->bge_txcnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
void
bge_start(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t prodidx = 0;
int pkts = 0;
sc = ifp->if_softc;
if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
return;
prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
#if 0
/*
* XXX
* safety overkill. If this is a fragmented packet chain
* with delayed TCP/UDP checksums, then only encapsulate
* it if we have enough descriptors to handle the entire
* chain at once.
* (paranoia -- may not actually be needed)
*/
if (m_head->m_flags & M_FIRSTFRAG &&
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
m_head->m_pkthdr.csum_data + 16) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
#endif
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (bge_encap(sc, m_head, &prodidx)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* now we are committed to transmit the packet */
IFQ_DEQUEUE(&ifp->if_snd, m_head);
pkts++;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m_head);
#endif
}
if (pkts == 0)
return;
/* Transmit */
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
int
bge_init(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc = ifp->if_softc;
u_int16_t *m;
int s, error;
s = splnet();
ifp = &sc->ethercom.ec_if;
/* Cancel pending I/O and flush buffers. */
bge_stop(sc);
bge_reset(sc);
bge_chipinit(sc);
/*
* Init the various state machines, ring
* control blocks and firmware.
*/
error = bge_blockinit(sc);
if (error != 0) {
printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
error);
splx(s);
return error;
}
ifp = &sc->ethercom.ec_if;
/* Specify MTU. */
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN);
/* Load our MAC address. */
m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC) {
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
} else {
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
}
/* Program multicast filter. */
bge_setmulti(sc);
/* Init RX ring. */
bge_init_rx_ring_std(sc);
/* Init jumbo RX ring. */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
bge_init_rx_ring_jumbo(sc);
/* Init our RX return ring index */
sc->bge_rx_saved_considx = 0;
/* Init TX ring. */
bge_init_tx_ring(sc);
/* Turn on transmitter */
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
/* Turn on receiver */
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
/* Tell firmware we're alive. */
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Enable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
bge_ifmedia_upd(ifp);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
return 0;
}
/*
* Set media options.
*/
int
bge_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bge_mii;
struct ifmedia *ifm = &sc->bge_ifmedia;
/* If this is a 1000baseX NIC, enable the TBI port. */
if (sc->bge_tbi) {
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
break;
case IFM_1000_SX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
}
break;
default:
return(EINVAL);
}
/* XXX 802.3x flow control for 1000BASE-SX */
return(0);
}
sc->bge_link = 0;
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
void
bge_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bge_mii;
if (sc->bge_tbi) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED)
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_1000_SX;
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
return;
}
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
sc->bge_flowflags;
}
int
bge_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct bge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
struct mii_data *mii;
s = splnet();
switch(command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->bge_if_flags & IFF_PROMISC)) {
BGE_SETBIT(sc, BGE_RX_MODE,
BGE_RXMODE_RX_PROMISC);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->bge_if_flags & IFF_PROMISC) {
BGE_CLRBIT(sc, BGE_RX_MODE,
BGE_RXMODE_RX_PROMISC);
} else
bge_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING) {
bge_stop(sc);
}
}
sc->bge_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCSIFMEDIA:
/* XXX Flow control is not supported for 1000BASE-SX */
if (sc->bge_tbi) {
ifr->ifr_media &= ~IFM_ETH_FMASK;
sc->bge_flowflags = 0;
}
/* Flow control requires full-duplex mode. */
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
(ifr->ifr_media & IFM_FDX) == 0) {
ifr->ifr_media &= ~IFM_ETH_FMASK;
}
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
/* We an do both TXPAUSE and RXPAUSE. */
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
}
sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
}
/* FALLTHROUGH */
case SIOCGIFMEDIA:
if (sc->bge_tbi) {
error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
command);
} else {
mii = &sc->bge_mii;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
}
break;
default:
error = ether_ioctl(ifp, command, data);
if (error == ENETRESET) {
bge_setmulti(sc);
error = 0;
}
break;
}
splx(s);
return(error);
}
void
bge_watchdog(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
sc = ifp->if_softc;
printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
ifp->if_flags &= ~IFF_RUNNING;
bge_init(ifp);
ifp->if_oerrors++;
}
static void
bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
{
int i;
BGE_CLRBIT(sc, reg, bit);
for (i = 0; i < BGE_TIMEOUT; i++) {
if ((CSR_READ_4(sc, reg) & bit) == 0)
return;
delay(100);
}
printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
sc->bge_dev.dv_xname, (u_long) reg, bit);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
bge_stop(sc)
struct bge_softc *sc;
{
struct ifnet *ifp = &sc->ethercom.ec_if;
callout_stop(&sc->bge_timeout);
/*
* Disable all of the receiver blocks
*/
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
}
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
/*
* Disable all of the transmit blocks
*/
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
}
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/*
* Shut down all of the memory managers and related
* state machines.
*/
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
}
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
}
/* Disable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
/*
* Tell firmware we're shutting down.
*/
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Free the RX lists. */
bge_free_rx_ring_std(sc);
/* Free jumbo RX list. */
bge_free_rx_ring_jumbo(sc);
/* Free TX buffers. */
bge_free_tx_ring(sc);
/*
* Isolate/power down the PHY.
*/
if (!sc->bge_tbi)
mii_down(&sc->bge_mii);
sc->bge_link = 0;
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
void
bge_shutdown(xsc)
void *xsc;
{
struct bge_softc *sc = (struct bge_softc *)xsc;
bge_stop(sc);
bge_reset(sc);
}
static int
sysctl_bge_verify(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
node = *rnode;
t = *(int*)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
#if 0
DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
node.sysctl_num, rnode->sysctl_num));
#endif
if (node.sysctl_num == bge_rxthresh_nodenum) {
if (t < 0 || t >= NBGE_RX_THRESH)
return (EINVAL);
bge_update_all_threshes(t);
} else
return (EINVAL);
*(int*)rnode->sysctl_data = t;
return (0);
}
/*
* Set up sysctl(3) MIB, hw.bge.*.
*
* TBD condition SYSCTL_PERMANENT on being an LKM or not
*/
SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
{
int rc, bge_root_num;
struct sysctlnode *node;
if ((rc = sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
goto err;
}
if ((rc = sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
SYSCTL_DESCR("BGE interface controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
bge_root_num = node->sysctl_num;
/* BGE Rx interrupt mitigation level */
if ((rc = sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "rx_lvl",
SYSCTL_DESCR("BGE receive interrupt mitigation level"),
sysctl_bge_verify, 0,
&bge_rx_thresh_lvl,
0, CTL_HW, bge_root_num, CTL_CREATE,
CTL_EOL)) != 0) {
goto err;
}
bge_rxthresh_nodenum = node->sysctl_num;
return;
err:
printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}