c4def5ee7a
There is no more space tab. Either only tabs or only spaces or tabs followed by spaces, but not spaces followed by tabs.
570 lines
13 KiB
C
570 lines
13 KiB
C
/* $NetBSD: lst.c,v 1.73 2020/09/27 21:35:16 rillig Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988, 1989, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Adam de Boor.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "make.h"
|
|
|
|
MAKE_RCSID("$NetBSD: lst.c,v 1.73 2020/09/27 21:35:16 rillig Exp $");
|
|
|
|
/* Allocate and initialize a list node.
|
|
*
|
|
* The fields 'prev' and 'next' must be initialized by the caller.
|
|
*/
|
|
static ListNode *
|
|
LstNodeNew(void *datum)
|
|
{
|
|
ListNode *node = bmake_malloc(sizeof *node);
|
|
node->priv_useCount = 0;
|
|
node->priv_deleted = FALSE;
|
|
node->datum = datum;
|
|
return node;
|
|
}
|
|
|
|
static Boolean
|
|
LstIsEmpty(List *list)
|
|
{
|
|
return list->first == NULL;
|
|
}
|
|
|
|
/* Create and initialize a new, empty list. */
|
|
List *
|
|
Lst_Init(void)
|
|
{
|
|
List *list = bmake_malloc(sizeof *list);
|
|
|
|
list->first = NULL;
|
|
list->last = NULL;
|
|
list->priv_isOpen = FALSE;
|
|
list->priv_lastAccess = Unknown;
|
|
|
|
return list;
|
|
}
|
|
|
|
/* Duplicate an entire list, usually by copying the datum pointers.
|
|
* If copyProc is given, that function is used to create the new datum from the
|
|
* old datum, usually by creating a copy of it. */
|
|
List *
|
|
Lst_Copy(List *list, LstCopyProc copyProc)
|
|
{
|
|
List *newList;
|
|
ListNode *node;
|
|
|
|
assert(list != NULL);
|
|
|
|
newList = Lst_Init();
|
|
|
|
for (node = list->first; node != NULL; node = node->next) {
|
|
void *datum = copyProc != NULL ? copyProc(node->datum) : node->datum;
|
|
Lst_Append(newList, datum);
|
|
}
|
|
|
|
return newList;
|
|
}
|
|
|
|
/* Free a list and all its nodes. The list data itself are not freed though. */
|
|
void
|
|
Lst_Free(List *list)
|
|
{
|
|
ListNode *node;
|
|
ListNode *next;
|
|
|
|
assert(list != NULL);
|
|
|
|
for (node = list->first; node != NULL; node = next) {
|
|
next = node->next;
|
|
free(node);
|
|
}
|
|
|
|
free(list);
|
|
}
|
|
|
|
/* Destroy a list and free all its resources. The freeProc is called with the
|
|
* datum from each node in turn before the node is freed. */
|
|
void
|
|
Lst_Destroy(List *list, LstFreeProc freeProc)
|
|
{
|
|
ListNode *node;
|
|
ListNode *next;
|
|
|
|
assert(list != NULL);
|
|
assert(freeProc != NULL);
|
|
|
|
for (node = list->first; node != NULL; node = next) {
|
|
next = node->next;
|
|
freeProc(node->datum);
|
|
free(node);
|
|
}
|
|
|
|
free(list);
|
|
}
|
|
|
|
/*
|
|
* Functions to modify a list
|
|
*/
|
|
|
|
/* Insert a new node with the given piece of data before the given node in the
|
|
* given list. */
|
|
void
|
|
Lst_InsertBefore(List *list, ListNode *node, void *datum)
|
|
{
|
|
ListNode *newNode;
|
|
|
|
assert(list != NULL);
|
|
assert(!LstIsEmpty(list));
|
|
assert(node != NULL);
|
|
assert(datum != NULL);
|
|
|
|
newNode = LstNodeNew(datum);
|
|
newNode->prev = node->prev;
|
|
newNode->next = node;
|
|
|
|
if (node->prev != NULL) {
|
|
node->prev->next = newNode;
|
|
}
|
|
node->prev = newNode;
|
|
|
|
if (node == list->first) {
|
|
list->first = newNode;
|
|
}
|
|
}
|
|
|
|
/* Add a piece of data at the start of the given list. */
|
|
void
|
|
Lst_Prepend(List *list, void *datum)
|
|
{
|
|
ListNode *node;
|
|
|
|
assert(list != NULL);
|
|
assert(datum != NULL);
|
|
|
|
node = LstNodeNew(datum);
|
|
node->prev = NULL;
|
|
node->next = list->first;
|
|
|
|
if (list->first == NULL) {
|
|
list->first = node;
|
|
list->last = node;
|
|
} else {
|
|
list->first->prev = node;
|
|
list->first = node;
|
|
}
|
|
}
|
|
|
|
/* Add a piece of data at the end of the given list. */
|
|
void
|
|
Lst_Append(List *list, void *datum)
|
|
{
|
|
ListNode *node;
|
|
|
|
assert(list != NULL);
|
|
assert(datum != NULL);
|
|
|
|
node = LstNodeNew(datum);
|
|
node->prev = list->last;
|
|
node->next = NULL;
|
|
|
|
if (list->last == NULL) {
|
|
list->first = node;
|
|
list->last = node;
|
|
} else {
|
|
list->last->next = node;
|
|
list->last = node;
|
|
}
|
|
}
|
|
|
|
/* Remove the given node from the given list.
|
|
* The datum stored in the node must be freed by the caller, if necessary. */
|
|
void
|
|
Lst_Remove(List *list, ListNode *node)
|
|
{
|
|
assert(list != NULL);
|
|
assert(node != NULL);
|
|
|
|
/*
|
|
* unlink it from the list
|
|
*/
|
|
if (node->next != NULL) {
|
|
node->next->prev = node->prev;
|
|
}
|
|
if (node->prev != NULL) {
|
|
node->prev->next = node->next;
|
|
}
|
|
|
|
/*
|
|
* if either the first or last of the list point to this node,
|
|
* adjust them accordingly
|
|
*/
|
|
if (list->first == node) {
|
|
list->first = node->next;
|
|
}
|
|
if (list->last == node) {
|
|
list->last = node->prev;
|
|
}
|
|
|
|
/*
|
|
* Sequential access stuff. If the node we're removing is the current
|
|
* node in the list, reset the current node to the previous one. If the
|
|
* previous one was non-existent (prev == NULL), we set the
|
|
* end to be Unknown, since it is.
|
|
*/
|
|
if (list->priv_isOpen && list->priv_curr == node) {
|
|
list->priv_curr = list->priv_prev;
|
|
if (list->priv_curr == NULL) {
|
|
list->priv_lastAccess = Unknown;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* note that the datum is unmolested. The caller must free it as
|
|
* necessary and as expected.
|
|
*/
|
|
if (node->priv_useCount == 0) {
|
|
free(node);
|
|
} else {
|
|
node->priv_deleted = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Replace the datum in the given node with the new datum. */
|
|
void
|
|
LstNode_Set(ListNode *node, void *datum)
|
|
{
|
|
assert(node != NULL);
|
|
assert(datum != NULL);
|
|
|
|
node->datum = datum;
|
|
}
|
|
|
|
/* Replace the datum in the given node to NULL. */
|
|
void
|
|
LstNode_SetNull(ListNode *node)
|
|
{
|
|
assert(node != NULL);
|
|
|
|
node->datum = NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Functions for entire lists
|
|
*/
|
|
|
|
/* Return the first node from the list for which the match function returns
|
|
* TRUE, or NULL if none of the nodes matched. */
|
|
ListNode *
|
|
Lst_Find(List *list, LstFindProc match, const void *matchArgs)
|
|
{
|
|
return Lst_FindFrom(list, Lst_First(list), match, matchArgs);
|
|
}
|
|
|
|
/* Return the first node from the list, starting at the given node, for which
|
|
* the match function returns TRUE, or NULL if none of the nodes matches.
|
|
*
|
|
* The start node may be NULL, in which case nothing is found. */
|
|
ListNode *
|
|
Lst_FindFrom(List *list, ListNode *node, LstFindProc match, const void *matchArgs)
|
|
{
|
|
ListNode *tln;
|
|
|
|
assert(list != NULL);
|
|
assert(match != NULL);
|
|
|
|
for (tln = node; tln != NULL; tln = tln->next) {
|
|
if (match(tln->datum, matchArgs))
|
|
return tln;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the first node that contains the given datum, or NULL. */
|
|
ListNode *
|
|
Lst_FindDatum(List *list, const void *datum)
|
|
{
|
|
ListNode *node;
|
|
|
|
assert(list != NULL);
|
|
assert(datum != NULL);
|
|
|
|
for (node = list->first; node != NULL; node = node->next) {
|
|
if (node->datum == datum) {
|
|
return node;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
Lst_ForEach(List *list, LstActionProc proc, void *procData)
|
|
{
|
|
ListNode *node;
|
|
for (node = list->first; node != NULL; node = node->next)
|
|
proc(node->datum, procData);
|
|
}
|
|
|
|
/* Apply the given function to each element of the given list. The function
|
|
* should return 0 if traversal should continue and non-zero if it should
|
|
* abort. */
|
|
int
|
|
Lst_ForEachUntil(List *list, LstActionUntilProc proc, void *procData)
|
|
{
|
|
ListNode *tln = list->first;
|
|
int result = 0;
|
|
|
|
while (tln != NULL) {
|
|
/*
|
|
* Take care of having the current element deleted out from under
|
|
* us.
|
|
*/
|
|
ListNode *next = tln->next;
|
|
|
|
/*
|
|
* We're done with the traversal if
|
|
* - the next node to examine doesn't exist and
|
|
* - nothing's been added after the current node (check this
|
|
* after proc() has been called).
|
|
*/
|
|
Boolean done = next == NULL;
|
|
|
|
tln->priv_useCount++;
|
|
result = (*proc)(tln->datum, procData);
|
|
tln->priv_useCount--;
|
|
|
|
/*
|
|
* Now check whether a node has been added.
|
|
* Note: this doesn't work if this node was deleted before
|
|
* the new node was added.
|
|
*/
|
|
if (next != tln->next) {
|
|
next = tln->next;
|
|
done = 0;
|
|
}
|
|
|
|
if (tln->priv_deleted) {
|
|
free((char *)tln);
|
|
}
|
|
tln = next;
|
|
if (result || LstIsEmpty(list) || done)
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Move all nodes from list2 to the end of list1.
|
|
* List2 is destroyed and freed. */
|
|
void
|
|
Lst_MoveAll(List *list1, List *list2)
|
|
{
|
|
assert(list1 != NULL);
|
|
assert(list2 != NULL);
|
|
|
|
if (list2->first != NULL) {
|
|
list2->first->prev = list1->last;
|
|
if (list1->last != NULL) {
|
|
list1->last->next = list2->first;
|
|
} else {
|
|
list1->first = list2->first;
|
|
}
|
|
list1->last = list2->last;
|
|
}
|
|
free(list2);
|
|
}
|
|
|
|
/* Copy the element data from src to the start of dst. */
|
|
void
|
|
Lst_PrependAll(List *dst, List *src)
|
|
{
|
|
ListNode *node;
|
|
for (node = src->last; node != NULL; node = node->prev)
|
|
Lst_Prepend(dst, node->datum);
|
|
}
|
|
|
|
/* Copy the element data from src to the end of dst. */
|
|
void
|
|
Lst_AppendAll(List *dst, List *src)
|
|
{
|
|
ListNode *node;
|
|
for (node = src->first; node != NULL; node = node->next)
|
|
Lst_Append(dst, node->datum);
|
|
}
|
|
|
|
/*
|
|
* these functions are for dealing with a list as a table, of sorts.
|
|
* An idea of the "current element" is kept and used by all the functions
|
|
* between Lst_Open() and Lst_Close().
|
|
*
|
|
* The sequential functions access the list in a slightly different way.
|
|
* CurPtr points to their idea of the current node in the list and they
|
|
* access the list based on it.
|
|
*/
|
|
|
|
/* Open a list for sequential access. A list can still be searched, etc.,
|
|
* without confusing these functions. */
|
|
void
|
|
Lst_Open(List *list)
|
|
{
|
|
assert(list != NULL);
|
|
assert(!list->priv_isOpen);
|
|
|
|
list->priv_isOpen = TRUE;
|
|
list->priv_lastAccess = LstIsEmpty(list) ? Head : Unknown;
|
|
list->priv_curr = NULL;
|
|
}
|
|
|
|
/* Return the next node for the given list, or NULL if the end has been
|
|
* reached. */
|
|
ListNode *
|
|
Lst_Next(List *list)
|
|
{
|
|
ListNode *node;
|
|
|
|
assert(list != NULL);
|
|
assert(list->priv_isOpen);
|
|
|
|
list->priv_prev = list->priv_curr;
|
|
|
|
if (list->priv_curr == NULL) {
|
|
if (list->priv_lastAccess == Unknown) {
|
|
/*
|
|
* If we're just starting out, lastAccess will be Unknown.
|
|
* Then we want to start this thing off in the right
|
|
* direction -- at the start with lastAccess being Middle.
|
|
*/
|
|
list->priv_curr = node = list->first;
|
|
list->priv_lastAccess = Middle;
|
|
} else {
|
|
node = NULL;
|
|
list->priv_lastAccess = Tail;
|
|
}
|
|
} else {
|
|
node = list->priv_curr->next;
|
|
list->priv_curr = node;
|
|
|
|
if (node == list->first || node == NULL) {
|
|
/*
|
|
* If back at the front, then we've hit the end...
|
|
*/
|
|
list->priv_lastAccess = Tail;
|
|
} else {
|
|
/*
|
|
* Reset to Middle if gone past first.
|
|
*/
|
|
list->priv_lastAccess = Middle;
|
|
}
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Close a list which was opened for sequential access. */
|
|
void
|
|
Lst_Close(List *list)
|
|
{
|
|
assert(list != NULL);
|
|
assert(list->priv_isOpen);
|
|
|
|
list->priv_isOpen = FALSE;
|
|
list->priv_lastAccess = Unknown;
|
|
}
|
|
|
|
|
|
/*
|
|
* for using the list as a queue
|
|
*/
|
|
|
|
/* Add the datum to the tail of the given list. */
|
|
void
|
|
Lst_Enqueue(List *list, void *datum)
|
|
{
|
|
Lst_Append(list, datum);
|
|
}
|
|
|
|
/* Remove and return the datum at the head of the given list. */
|
|
void *
|
|
Lst_Dequeue(List *list)
|
|
{
|
|
void *datum;
|
|
|
|
assert(list != NULL);
|
|
assert(!LstIsEmpty(list));
|
|
|
|
datum = list->first->datum;
|
|
Lst_Remove(list, list->first);
|
|
assert(datum != NULL);
|
|
return datum;
|
|
}
|
|
|
|
void
|
|
Stack_Init(Stack *stack)
|
|
{
|
|
stack->len = 0;
|
|
stack->cap = 10;
|
|
stack->items = bmake_malloc(stack->cap * sizeof stack->items[0]);
|
|
}
|
|
|
|
Boolean Stack_IsEmpty(Stack *stack)
|
|
{
|
|
return stack->len == 0;
|
|
}
|
|
|
|
void Stack_Push(Stack *stack, void *datum)
|
|
{
|
|
if (stack->len >= stack->cap) {
|
|
stack->cap *= 2;
|
|
stack->items = bmake_realloc(stack->items,
|
|
stack->cap * sizeof stack->items[0]);
|
|
}
|
|
stack->items[stack->len] = datum;
|
|
stack->len++;
|
|
}
|
|
|
|
void *Stack_Pop(Stack *stack)
|
|
{
|
|
void *datum;
|
|
|
|
assert(stack->len > 0);
|
|
stack->len--;
|
|
datum = stack->items[stack->len];
|
|
#ifdef CLEANUP
|
|
stack->items[stack->len] = NULL;
|
|
#endif
|
|
return datum;
|
|
}
|
|
|
|
void Stack_Done(Stack *stack)
|
|
{
|
|
free(stack->items);
|
|
}
|