f486212a0e
undesired sign-extension. Now EFS works on big endian machines, too.
625 lines
16 KiB
C
625 lines
16 KiB
C
/* $NetBSD: efs_subr.c,v 1.4 2007/07/29 00:56:04 rumble Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2006 Stephen M. Rumble <rumble@ephemeral.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: efs_subr.c,v 1.4 2007/07/29 00:56:04 rumble Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/lwp.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <miscfs/genfs/genfs_node.h>
|
|
|
|
#include <fs/efs/efs.h>
|
|
#include <fs/efs/efs_sb.h>
|
|
#include <fs/efs/efs_dir.h>
|
|
#include <fs/efs/efs_genfs.h>
|
|
#include <fs/efs/efs_mount.h>
|
|
#include <fs/efs/efs_extent.h>
|
|
#include <fs/efs/efs_dinode.h>
|
|
#include <fs/efs/efs_inode.h>
|
|
#include <fs/efs/efs_subr.h>
|
|
|
|
struct pool efs_inode_pool;
|
|
|
|
/*
|
|
* Calculate a checksum for the provided superblock in __host byte order__.
|
|
*
|
|
* At some point SGI changed the checksum algorithm slightly, which can be
|
|
* enabled with the 'new' flag.
|
|
*
|
|
* Presumably this change occured on or before 24 Oct 1988 (around IRIX 3.1),
|
|
* so we're pretty unlikely to ever actually see an old checksum. Further, it
|
|
* means that EFS_NEWMAGIC filesystems (IRIX >= 3.3) must match the new
|
|
* checksum whereas EFS_MAGIC filesystems could potentially use either
|
|
* algorithm.
|
|
*
|
|
* See comp.sys.sgi <1991Aug9.050838.16876@odin.corp.sgi.com>
|
|
*/
|
|
int32_t
|
|
efs_sb_checksum(struct efs_sb *esb, int new)
|
|
{
|
|
int i;
|
|
int32_t cksum;
|
|
uint16_t *sbarray = (uint16_t *)esb;
|
|
|
|
KASSERT((EFS_SB_CHECKSUM_SIZE % 2) == 0);
|
|
|
|
for (i = cksum = 0; i < (EFS_SB_CHECKSUM_SIZE / 2); i++) {
|
|
cksum ^= be16toh(sbarray[i]);
|
|
cksum = (cksum << 1) | (new && cksum < 0);
|
|
}
|
|
|
|
return (cksum);
|
|
}
|
|
|
|
/*
|
|
* Determine if the superblock is valid.
|
|
*
|
|
* Returns 0 if valid, else invalid. If invalid, 'why' is set to an
|
|
* explanation.
|
|
*/
|
|
int
|
|
efs_sb_validate(struct efs_sb *esb, const char **why)
|
|
{
|
|
uint32_t ocksum, ncksum;
|
|
|
|
*why = NULL;
|
|
|
|
if (be32toh(esb->sb_magic) != EFS_SB_MAGIC &&
|
|
be32toh(esb->sb_magic != EFS_SB_NEWMAGIC)) {
|
|
*why = "sb_magic invalid";
|
|
return (1);
|
|
}
|
|
|
|
ocksum = htobe32(efs_sb_checksum(esb, 0));
|
|
ncksum = htobe32(efs_sb_checksum(esb, 1));
|
|
if (esb->sb_checksum != ocksum && esb->sb_checksum != ncksum) {
|
|
*why = "sb_checksum invalid";
|
|
return (1);
|
|
}
|
|
|
|
if (be32toh(esb->sb_size) > EFS_SIZE_MAX) {
|
|
*why = "sb_size > EFS_SIZE_MAX";
|
|
return (1);
|
|
}
|
|
|
|
if (be32toh(esb->sb_firstcg) <= EFS_BB_BITMAP) {
|
|
*why = "sb_firstcg <= EFS_BB_BITMAP";
|
|
return (1);
|
|
}
|
|
|
|
/* XXX - add better sb consistency checks here */
|
|
if (esb->sb_cgfsize == 0 ||
|
|
esb->sb_cgisize == 0 ||
|
|
esb->sb_ncg == 0 ||
|
|
esb->sb_bmsize == 0) {
|
|
*why = "something bad happened";
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine the basic block offset and inode index within that block, given
|
|
* the inode 'ino' and filesystem parameters _in host byte order_. The inode
|
|
* will live at byte address 'bboff' * EFS_BB_SIZE + 'index' * EFS_DINODE_SIZE.
|
|
*/
|
|
void
|
|
efs_locate_inode(ino_t ino, struct efs_sb *sbp, uint32_t *bboff, int *index)
|
|
{
|
|
uint32_t cgfsize, firstcg;
|
|
uint16_t cgisize;
|
|
|
|
cgisize = be16toh(sbp->sb_cgisize);
|
|
cgfsize = be32toh(sbp->sb_cgfsize);
|
|
firstcg = be32toh(sbp->sb_firstcg),
|
|
|
|
*bboff = firstcg + ((ino / (cgisize * EFS_DINODES_PER_BB)) * cgfsize) +
|
|
((ino % (cgisize * EFS_DINODES_PER_BB)) / EFS_DINODES_PER_BB);
|
|
*index = ino & (EFS_DINODES_PER_BB - 1);
|
|
}
|
|
|
|
/*
|
|
* Read in an inode from disk.
|
|
*
|
|
* We actually take in four inodes at a time. Hopefully these will stick
|
|
* around in the buffer cache and get used without going to disk.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
int
|
|
efs_read_inode(struct efs_mount *emp, ino_t ino, struct lwp *l,
|
|
struct efs_dinode *di)
|
|
{
|
|
struct efs_sb *sbp;
|
|
struct buf *bp;
|
|
int index, err;
|
|
uint32_t bboff;
|
|
|
|
sbp = &emp->em_sb;
|
|
efs_locate_inode(ino, sbp, &bboff, &index);
|
|
|
|
err = efs_bread(emp, bboff, l, &bp);
|
|
if (err) {
|
|
brelse(bp);
|
|
return (err);
|
|
}
|
|
memcpy(di, ((struct efs_dinode *)bp->b_data) + index, sizeof(*di));
|
|
brelse(bp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Perform a read from our device handling the potential DEV_BSIZE
|
|
* messiness (although as of 19.2.2006, all ports appear to use 512) as
|
|
* we as EFS block sizing.
|
|
*
|
|
* bboff: basic block offset
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
int
|
|
efs_bread(struct efs_mount *emp, uint32_t bboff, struct lwp *l, struct buf **bp)
|
|
{
|
|
KASSERT(bboff < EFS_SIZE_MAX);
|
|
|
|
return (bread(emp->em_devvp, (daddr_t)bboff * (EFS_BB_SIZE / DEV_BSIZE),
|
|
EFS_BB_SIZE, (l == NULL) ? NOCRED : l->l_cred, bp));
|
|
}
|
|
|
|
/*
|
|
* Synchronise the in-core, host ordered and typed inode fields with their
|
|
* corresponding on-disk, EFS ordered and typed copies.
|
|
*
|
|
* This is the inverse of efs_dinode_sync_inode(), and should be called when
|
|
* an inode is loaded from disk.
|
|
*/
|
|
void
|
|
efs_sync_dinode_to_inode(struct efs_inode *ei)
|
|
{
|
|
|
|
ei->ei_mode = be16toh(ei->ei_di.di_mode); /*same as nbsd*/
|
|
ei->ei_nlink = be16toh(ei->ei_di.di_nlink);
|
|
ei->ei_uid = be16toh(ei->ei_di.di_uid);
|
|
ei->ei_gid = be16toh(ei->ei_di.di_gid);
|
|
ei->ei_size = be32toh(ei->ei_di.di_size);
|
|
ei->ei_atime = be32toh(ei->ei_di.di_atime);
|
|
ei->ei_mtime = be32toh(ei->ei_di.di_mtime);
|
|
ei->ei_ctime = be32toh(ei->ei_di.di_ctime);
|
|
ei->ei_gen = be32toh(ei->ei_di.di_gen);
|
|
ei->ei_numextents = be16toh(ei->ei_di.di_numextents);
|
|
ei->ei_version = ei->ei_di.di_version;
|
|
}
|
|
|
|
/*
|
|
* Synchronise the on-disk, EFS ordered and typed inode fields with their
|
|
* corresponding in-core, host ordered and typed copies.
|
|
*
|
|
* This is the inverse of efs_inode_sync_dinode(), and should be called before
|
|
* an inode is flushed to disk.
|
|
*/
|
|
void
|
|
efs_sync_inode_to_dinode(struct efs_inode *ei)
|
|
{
|
|
|
|
panic("readonly -- no need to call me");
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Ensure that the in-core inode's host cached fields match its on-disk copy.
|
|
*
|
|
* Returns 0 if they match.
|
|
*/
|
|
static int
|
|
efs_is_inode_synced(struct efs_inode *ei)
|
|
{
|
|
int s;
|
|
|
|
s = 0;
|
|
/* XXX -- see above remarks about assumption */
|
|
s += (ei->ei_mode != be16toh(ei->ei_di.di_mode));
|
|
s += (ei->ei_nlink != be16toh(ei->ei_di.di_nlink));
|
|
s += (ei->ei_uid != be16toh(ei->ei_di.di_uid));
|
|
s += (ei->ei_gid != be16toh(ei->ei_di.di_gid));
|
|
s += (ei->ei_size != be32toh(ei->ei_di.di_size));
|
|
s += (ei->ei_atime != be32toh(ei->ei_di.di_atime));
|
|
s += (ei->ei_mtime != be32toh(ei->ei_di.di_mtime));
|
|
s += (ei->ei_ctime != be32toh(ei->ei_di.di_ctime));
|
|
s += (ei->ei_gen != be32toh(ei->ei_di.di_gen));
|
|
s += (ei->ei_numextents != be16toh(ei->ei_di.di_numextents));
|
|
s += (ei->ei_version != ei->ei_di.di_version);
|
|
|
|
return (s);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Given an efs_dirblk structure and a componentname to search for, return the
|
|
* corresponding inode if it is found.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
static int
|
|
efs_dirblk_lookup(struct efs_dirblk *dir, struct componentname *cn,
|
|
ino_t *inode)
|
|
{
|
|
struct efs_dirent *de;
|
|
int i, slot, offset;
|
|
|
|
KASSERT(cn->cn_namelen <= EFS_DIRENT_NAMELEN_MAX);
|
|
|
|
slot = offset = 0;
|
|
|
|
for (i = 0; i < dir->db_slots; i++) {
|
|
offset = EFS_DIRENT_OFF_EXPND(dir->db_space[i]);
|
|
|
|
if (offset == EFS_DIRBLK_SLOT_FREE)
|
|
continue;
|
|
|
|
de = (struct efs_dirent *)((char *)dir + offset);
|
|
if (de->de_namelen == cn->cn_namelen &&
|
|
(strncmp(cn->cn_nameptr, de->de_name, cn->cn_namelen) == 0)){
|
|
slot = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i == dir->db_slots)
|
|
return (ENOENT);
|
|
|
|
KASSERT(slot < offset && offset < EFS_DIRBLK_SPACE_SIZE);
|
|
de = (struct efs_dirent *)((char *)dir + offset);
|
|
*inode = be32toh(de->de_inumber);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given an extent descriptor that represents a directory, look up
|
|
* componentname within its efs_dirblk's. If it is found, return the
|
|
* corresponding inode in 'ino'.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
static int
|
|
efs_extent_lookup(struct efs_mount *emp, struct efs_extent *ex,
|
|
struct componentname *cn, ino_t *ino)
|
|
{
|
|
struct efs_dirblk *db;
|
|
struct buf *bp;
|
|
int i, err;
|
|
|
|
/*
|
|
* Read in each of the dirblks until we find our entry.
|
|
* If we don't, return ENOENT.
|
|
*/
|
|
for (i = 0; i < ex->ex_length; i++) {
|
|
err = efs_bread(emp, ex->ex_bn + i, NULL, &bp);
|
|
if (err) {
|
|
printf("efs: warning: invalid extent descriptor\n");
|
|
brelse(bp);
|
|
return (err);
|
|
}
|
|
|
|
db = (struct efs_dirblk *)bp->b_data;
|
|
if (efs_dirblk_lookup(db, cn, ino) == 0) {
|
|
brelse(bp);
|
|
return (0);
|
|
}
|
|
brelse(bp);
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Given the provided in-core inode, look up the pathname requested. If
|
|
* we find it, 'ino' reflects its corresponding on-disk inode number.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
int
|
|
efs_inode_lookup(struct efs_mount *emp, struct efs_inode *ei,
|
|
struct componentname *cn, ino_t *ino)
|
|
{
|
|
struct efs_extent ex;
|
|
struct efs_extent_iterator exi;
|
|
int ret;
|
|
|
|
KASSERT(VOP_ISLOCKED(ei->ei_vp));
|
|
KASSERT(efs_is_inode_synced(ei) == 0);
|
|
KASSERT((ei->ei_mode & S_IFMT) == S_IFDIR);
|
|
|
|
efs_extent_iterator_init(&exi, ei, 0);
|
|
while ((ret = efs_extent_iterator_next(&exi, &ex)) == 0) {
|
|
if (efs_extent_lookup(emp, &ex, cn, ino) == 0) {
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return ((ret == -1) ? ENOENT : ret);
|
|
}
|
|
|
|
/*
|
|
* Convert on-disk extent structure to in-core format.
|
|
*/
|
|
void
|
|
efs_dextent_to_extent(struct efs_dextent *dex, struct efs_extent *ex)
|
|
{
|
|
|
|
KASSERT(dex != NULL && ex != NULL);
|
|
|
|
ex->ex_magic = dex->ex_bytes[0];
|
|
ex->ex_bn = be32toh(dex->ex_words[0]) & 0x00ffffff;
|
|
ex->ex_length = dex->ex_bytes[4];
|
|
ex->ex_offset = be32toh(dex->ex_words[1]) & 0x00ffffff;
|
|
}
|
|
|
|
/*
|
|
* Convert in-core extent format to on-disk structure.
|
|
*/
|
|
void
|
|
efs_extent_to_dextent(struct efs_extent *ex, struct efs_dextent *dex)
|
|
{
|
|
|
|
KASSERT(ex != NULL && dex != NULL);
|
|
KASSERT(ex->ex_magic == EFS_EXTENT_MAGIC);
|
|
KASSERT((ex->ex_bn & ~EFS_EXTENT_BN_MASK) == 0);
|
|
KASSERT((ex->ex_offset & ~EFS_EXTENT_OFFSET_MASK) == 0);
|
|
|
|
dex->ex_words[0] = htobe32(ex->ex_bn);
|
|
dex->ex_bytes[0] = ex->ex_magic;
|
|
dex->ex_words[1] = htobe32(ex->ex_offset);
|
|
dex->ex_bytes[4] = ex->ex_length;
|
|
}
|
|
|
|
/*
|
|
* Initialise an extent iterator.
|
|
*
|
|
* If start_hint is non-0, attempt to set up the iterator beginning with the
|
|
* extent descriptor in which the start_hint'th byte exists. Callers must not
|
|
* expect success (this is simply an optimisation), so we reserve the right
|
|
* to start from the beginning.
|
|
*/
|
|
void
|
|
efs_extent_iterator_init(struct efs_extent_iterator *exi, struct efs_inode *eip,
|
|
off_t start_hint)
|
|
{
|
|
struct efs_extent ex, ex2;
|
|
struct buf *bp;
|
|
struct efs_mount *emp = VFSTOEFS(eip->ei_vp->v_mount);
|
|
off_t offset, length, next;
|
|
int i, err, numextents, numinextents;
|
|
int hi, lo, mid;
|
|
int indir;
|
|
|
|
exi->exi_eip = eip;
|
|
exi->exi_next = 0;
|
|
exi->exi_dnext = 0;
|
|
exi->exi_innext = 0;
|
|
|
|
if (start_hint == 0)
|
|
return;
|
|
|
|
/* force iterator to end if hint is too big */
|
|
if (start_hint >= eip->ei_size) {
|
|
exi->exi_next = eip->ei_numextents;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Use start_hint to jump to the right extent descriptor. We'll
|
|
* iterate over the 12 indirect extents because it's cheap, then
|
|
* bring the appropriate vector into core and binary search it.
|
|
*/
|
|
|
|
/*
|
|
* Handle the small file case separately first...
|
|
*/
|
|
if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
|
|
for (i = 0; i < eip->ei_numextents; i++) {
|
|
efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
|
|
|
|
offset = ex.ex_offset * EFS_BB_SIZE;
|
|
length = ex.ex_length * EFS_BB_SIZE;
|
|
|
|
if (start_hint >= offset &&
|
|
start_hint < (offset + length)) {
|
|
exi->exi_next = exi->exi_dnext = i;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* shouldn't get here, no? */
|
|
EFS_DPRINTF(("efs_extent_iterator_init: bad direct extents\n"));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now do the large files with indirect extents...
|
|
*
|
|
* The first indirect extent's ex_offset field contains the
|
|
* number of indirect extents used.
|
|
*/
|
|
efs_dextent_to_extent(&eip->ei_di.di_extents[0], &ex);
|
|
|
|
numinextents = ex.ex_offset;
|
|
if (numinextents < 1 || numinextents >= EFS_DIRECTEXTENTS) {
|
|
EFS_DPRINTF(("efs_extent_iterator_init: bad ex.ex_offset\n"));
|
|
return;
|
|
}
|
|
|
|
next = 0;
|
|
indir = -1;
|
|
numextents = 0;
|
|
for (i = 0; i < numinextents; i++) {
|
|
efs_dextent_to_extent(&eip->ei_di.di_extents[i], &ex);
|
|
|
|
err = efs_bread(emp, ex.ex_bn, NULL, &bp);
|
|
if (err) {
|
|
brelse(bp);
|
|
return;
|
|
}
|
|
|
|
efs_dextent_to_extent((struct efs_dextent *)bp->b_data, &ex2);
|
|
brelse(bp);
|
|
|
|
offset = ex2.ex_offset * EFS_BB_SIZE;
|
|
|
|
if (offset > start_hint) {
|
|
indir = MAX(0, i - 1);
|
|
break;
|
|
}
|
|
|
|
/* number of extents prior to this indirect vector of extents */
|
|
next += numextents;
|
|
|
|
/* number of extents within this indirect vector of extents */
|
|
numextents = ex.ex_length * EFS_EXTENTS_PER_BB;
|
|
numextents = MIN(numextents, eip->ei_numextents - next);
|
|
}
|
|
|
|
/*
|
|
* We hit the end, so assume it's in the last extent.
|
|
*/
|
|
if (indir == -1)
|
|
indir = numinextents - 1;
|
|
|
|
/*
|
|
* Binary search to find our desired direct extent.
|
|
*/
|
|
lo = 0;
|
|
mid = 0;
|
|
hi = numextents - 1;
|
|
efs_dextent_to_extent(&eip->ei_di.di_extents[indir], &ex);
|
|
while (lo <= hi) {
|
|
int bboff;
|
|
int index;
|
|
|
|
mid = (lo + hi) / 2;
|
|
|
|
bboff = mid / EFS_EXTENTS_PER_BB;
|
|
index = mid % EFS_EXTENTS_PER_BB;
|
|
|
|
err = efs_bread(emp, ex.ex_bn + bboff, NULL, &bp);
|
|
if (err) {
|
|
brelse(bp);
|
|
EFS_DPRINTF(("efs_extent_iterator_init: bsrch read\n"));
|
|
return;
|
|
}
|
|
|
|
efs_dextent_to_extent((struct efs_dextent *)bp->b_data + index,
|
|
&ex2);
|
|
brelse(bp);
|
|
|
|
offset = ex2.ex_offset * EFS_BB_SIZE;
|
|
length = ex2.ex_length * EFS_BB_SIZE;
|
|
|
|
if (start_hint >= offset && start_hint < (offset + length))
|
|
break;
|
|
|
|
if (start_hint < offset)
|
|
hi = mid - 1;
|
|
else
|
|
lo = mid + 1;
|
|
}
|
|
|
|
/*
|
|
* This is bad. Either the hint is bogus (which shouldn't
|
|
* happen) or the extent list must be screwed up. We
|
|
* have to abort.
|
|
*/
|
|
if (lo > hi) {
|
|
EFS_DPRINTF(("efs_extent_iterator_init: bsearch "
|
|
"failed to find extent\n"));
|
|
return;
|
|
}
|
|
|
|
exi->exi_next = next + mid;
|
|
exi->exi_dnext = indir;
|
|
exi->exi_innext = mid;
|
|
}
|
|
|
|
/*
|
|
* Return the next EFS extent.
|
|
*
|
|
* Returns 0 if another extent was iterated, -1 if we've exhausted all
|
|
* extents, or an error number. If 'exi' is non-NULL, the next extent is
|
|
* written to it (should it exist).
|
|
*/
|
|
int
|
|
efs_extent_iterator_next(struct efs_extent_iterator *exi,
|
|
struct efs_extent *exp)
|
|
{
|
|
struct efs_extent ex;
|
|
struct efs_dextent *dexp;
|
|
struct efs_inode *eip = exi->exi_eip;
|
|
struct buf *bp;
|
|
int err, bboff, index;
|
|
|
|
if (exi->exi_next++ >= eip->ei_numextents)
|
|
return (-1);
|
|
|
|
/* direct or indirect extents? */
|
|
if (eip->ei_numextents <= EFS_DIRECTEXTENTS) {
|
|
if (exp != NULL) {
|
|
dexp = &eip->ei_di.di_extents[exi->exi_dnext++];
|
|
efs_dextent_to_extent(dexp, exp);
|
|
}
|
|
} else {
|
|
efs_dextent_to_extent(
|
|
&eip->ei_di.di_extents[exi->exi_dnext], &ex);
|
|
|
|
bboff = exi->exi_innext / EFS_EXTENTS_PER_BB;
|
|
index = exi->exi_innext % EFS_EXTENTS_PER_BB;
|
|
|
|
err = efs_bread(VFSTOEFS(eip->ei_vp->v_mount),
|
|
ex.ex_bn + bboff, NULL, &bp);
|
|
if (err) {
|
|
EFS_DPRINTF(("efs_extent_iterator_next: "
|
|
"efs_bread failed: %d\n", err));
|
|
brelse(bp);
|
|
return (err);
|
|
}
|
|
|
|
if (exp != NULL) {
|
|
dexp = (struct efs_dextent *)bp->b_data + index;
|
|
efs_dextent_to_extent(dexp, exp);
|
|
}
|
|
brelse(bp);
|
|
|
|
bboff = exi->exi_innext++ / EFS_EXTENTS_PER_BB;
|
|
if (bboff >= ex.ex_length) {
|
|
exi->exi_innext = 0;
|
|
exi->exi_dnext++;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|