NetBSD/sys/net/bpfjit.c

1754 lines
37 KiB
C

/*-
* Copyright (c) 2011-2012 Alexander Nasonov.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifdef _KERNEL
__KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.2 2012/11/10 22:12:31 alnsn Exp $");
#else
__RCSID("$NetBSD: bpfjit.c,v 1.2 2012/11/10 22:12:31 alnsn Exp $");
#endif
#include <net/bpfjit.h>
#ifndef _KERNEL
#include <assert.h>
#define BPFJIT_ASSERT(c) assert(c)
#else
#define BPFJIT_ASSERT(c) KASSERT(c)
#endif
#ifndef _KERNEL
#include <stdlib.h>
#define BPFJIT_MALLOC(sz) malloc(sz)
#define BPFJIT_FREE(p) free(p)
#else
#include <sys/malloc.h>
#define BPFJIT_MALLOC(sz) kern_malloc(sz, M_WAITOK)
#define BPFJIT_FREE(p) kern_free(p)
#endif
#ifndef _KERNEL
#include <limits.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#else
#include <machine/limits.h>
#include <sys/null.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/module.h>
#endif
#include <sys/queue.h>
#include <sys/types.h>
#include <sljitLir.h>
#if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
#include <stdio.h> /* for stderr */
#endif
#define BPFJIT_A SLJIT_TEMPORARY_REG1
#define BPFJIT_X SLJIT_TEMPORARY_EREG1
#define BPFJIT_TMP1 SLJIT_TEMPORARY_REG2
#define BPFJIT_TMP2 SLJIT_TEMPORARY_REG3
#define BPFJIT_BUF SLJIT_SAVED_REG1
#define BPFJIT_WIRELEN SLJIT_SAVED_REG2
#define BPFJIT_BUFLEN SLJIT_SAVED_REG3
#define BPFJIT_KERN_TMP SLJIT_TEMPORARY_EREG2
/*
* Flags for bpfjit_optimization_hints().
*/
#define BPFJIT_INIT_X 0x10000
#define BPFJIT_INIT_A 0x20000
/*
* Node of bj_jumps list.
*/
struct bpfjit_jump
{
struct sljit_jump *bj_jump;
SLIST_ENTRY(bpfjit_jump) bj_entries;
uint32_t bj_safe_length;
};
/*
* Data for BPF_JMP instruction.
*/
struct bpfjit_jump_data
{
/*
* These entries make up bj_jumps list:
* bj_jtf[0] - when coming from jt path,
* bj_jtf[1] - when coming from jf path.
*/
struct bpfjit_jump bj_jtf[2];
};
/*
* Data for "read from packet" instructions.
* See also read_pkt_insn() function below.
*/
struct bpfjit_read_pkt_data
{
/*
* If positive, emit "if (buflen < bj_check_length) return 0".
* We assume that buflen is never equal to UINT32_MAX (otherwise,
* we need a special bool variable to emit unconditional "return 0").
*/
uint32_t bj_check_length;
};
/*
* Additional (optimization-related) data for bpf_insn.
*/
struct bpfjit_insn_data
{
/* List of jumps to this insn. */
SLIST_HEAD(, bpfjit_jump) bj_jumps;
union {
struct bpfjit_jump_data bj_jdata;
struct bpfjit_read_pkt_data bj_rdata;
} bj_aux;
bool bj_unreachable;
};
#ifdef _KERNEL
uint32_t m_xword(const struct mbuf *, uint32_t, int *);
uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
static int
bpfjit_modcmd(modcmd_t cmd, void *arg)
{
switch (cmd) {
case MODULE_CMD_INIT:
bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
membar_producer();
bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
membar_producer();
return 0;
case MODULE_CMD_FINI:
return EOPNOTSUPP;
default:
return ENOTTY;
}
}
#endif
static uint32_t
read_width(struct bpf_insn *pc)
{
switch (BPF_SIZE(pc->code)) {
case BPF_W:
return 4;
case BPF_H:
return 2;
case BPF_B:
return 1;
default:
BPFJIT_ASSERT(false);
return 0;
}
}
/*
* Get offset of M[k] on the stack.
*/
static size_t
mem_local_offset(uint32_t k, unsigned int minm)
{
size_t moff = (k - minm) * sizeof(uint32_t);
#ifdef _KERNEL
/*
* 4 bytes for the third argument of m_xword/m_xhalf/m_xbyte.
*/
return sizeof(uint32_t) + moff;
#else
return moff;
#endif
}
/*
* Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
*/
static int
emit_read8(struct sljit_compiler* compiler, uint32_t k)
{
return sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_A, 0,
SLJIT_MEM1(BPFJIT_BUF), k);
}
/*
* Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
*/
static int
emit_read16(struct sljit_compiler* compiler, uint32_t k)
{
int status;
/* tmp1 = buf[k]; */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_TMP1, 0,
SLJIT_MEM1(BPFJIT_BUF), k);
if (status != SLJIT_SUCCESS)
return status;
/* A = buf[k+1]; */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_A, 0,
SLJIT_MEM1(BPFJIT_BUF), k+1);
if (status != SLJIT_SUCCESS)
return status;
/* tmp1 = tmp1 << 8; */
status = sljit_emit_op2(compiler,
SLJIT_SHL,
BPFJIT_TMP1, 0,
BPFJIT_TMP1, 0,
SLJIT_IMM, 8);
if (status != SLJIT_SUCCESS)
return status;
/* A = A + tmp1; */
status = sljit_emit_op2(compiler,
SLJIT_ADD,
BPFJIT_A, 0,
BPFJIT_A, 0,
BPFJIT_TMP1, 0);
return status;
}
/*
* Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
*/
static int
emit_read32(struct sljit_compiler* compiler, uint32_t k)
{
int status;
/* tmp1 = buf[k]; */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_TMP1, 0,
SLJIT_MEM1(BPFJIT_BUF), k);
if (status != SLJIT_SUCCESS)
return status;
/* tmp2 = buf[k+1]; */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_TMP2, 0,
SLJIT_MEM1(BPFJIT_BUF), k+1);
if (status != SLJIT_SUCCESS)
return status;
/* A = buf[k+3]; */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_A, 0,
SLJIT_MEM1(BPFJIT_BUF), k+3);
if (status != SLJIT_SUCCESS)
return status;
/* tmp1 = tmp1 << 24; */
status = sljit_emit_op2(compiler,
SLJIT_SHL,
BPFJIT_TMP1, 0,
BPFJIT_TMP1, 0,
SLJIT_IMM, 24);
if (status != SLJIT_SUCCESS)
return status;
/* A = A + tmp1; */
status = sljit_emit_op2(compiler,
SLJIT_ADD,
BPFJIT_A, 0,
BPFJIT_A, 0,
BPFJIT_TMP1, 0);
if (status != SLJIT_SUCCESS)
return status;
/* tmp1 = buf[k+2]; */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_TMP1, 0,
SLJIT_MEM1(BPFJIT_BUF), k+2);
if (status != SLJIT_SUCCESS)
return status;
/* tmp2 = tmp2 << 16; */
status = sljit_emit_op2(compiler,
SLJIT_SHL,
BPFJIT_TMP2, 0,
BPFJIT_TMP2, 0,
SLJIT_IMM, 16);
if (status != SLJIT_SUCCESS)
return status;
/* A = A + tmp2; */
status = sljit_emit_op2(compiler,
SLJIT_ADD,
BPFJIT_A, 0,
BPFJIT_A, 0,
BPFJIT_TMP2, 0);
if (status != SLJIT_SUCCESS)
return status;
/* tmp1 = tmp1 << 8; */
status = sljit_emit_op2(compiler,
SLJIT_SHL,
BPFJIT_TMP1, 0,
BPFJIT_TMP1, 0,
SLJIT_IMM, 8);
if (status != SLJIT_SUCCESS)
return status;
/* A = A + tmp1; */
status = sljit_emit_op2(compiler,
SLJIT_ADD,
BPFJIT_A, 0,
BPFJIT_A, 0,
BPFJIT_TMP1, 0);
return status;
}
#ifdef _KERNEL
/*
* Generate m_xword/m_xhalf/m_xbyte call.
*
* pc is one of:
* BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
* BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
* BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
* BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
* BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
* BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
*
* dst must be BPFJIT_A for BPF_LD instructions and BPFJIT_X
* or any of BPFJIT_TMP* registrers for BPF_MSH instruction.
*/
static int
emit_xcall(struct sljit_compiler* compiler, struct bpf_insn *pc,
int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
{
#if BPFJIT_X != SLJIT_TEMPORARY_EREG1 || \
BPFJIT_X == SLJIT_RETURN_REG
#error "Not supported assignment of registers."
#endif
int status;
/*
* The third argument of fn is an address on stack.
*/
const int arg3_offset = 0;
if (BPF_CLASS(pc->code) == BPF_LDX) {
/* save A */
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_KERN_TMP, 0,
BPFJIT_A, 0);
if (status != SLJIT_SUCCESS)
return status;
}
/*
* Prepare registers for fn(buf, k, &err) call.
*/
status = sljit_emit_op1(compiler,
SLJIT_MOV,
SLJIT_TEMPORARY_REG1, 0,
BPFJIT_BUF, 0);
if (status != SLJIT_SUCCESS)
return status;
if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
status = sljit_emit_op2(compiler,
SLJIT_ADD,
SLJIT_TEMPORARY_REG2, 0,
BPFJIT_X, 0,
SLJIT_IMM, (uint32_t)pc->k);
} else {
status = sljit_emit_op1(compiler,
SLJIT_MOV,
SLJIT_TEMPORARY_REG2, 0,
SLJIT_IMM, (uint32_t)pc->k);
}
if (status != SLJIT_SUCCESS)
return status;
status = sljit_get_local_base(compiler,
SLJIT_TEMPORARY_REG3, 0, arg3_offset);
if (status != SLJIT_SUCCESS)
return status;
/* fn(buf, k, &err); */
status = sljit_emit_ijump(compiler,
SLJIT_CALL3,
SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
if (BPF_CLASS(pc->code) == BPF_LDX) {
/* move return value to dst */
BPFJIT_ASSERT(dst != SLJIT_RETURN_REG);
status = sljit_emit_op1(compiler,
SLJIT_MOV,
dst, dstw,
SLJIT_RETURN_REG, 0);
if (status != SLJIT_SUCCESS)
return status;
/* restore A */
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
BPFJIT_KERN_TMP, 0);
if (status != SLJIT_SUCCESS)
return status;
} else if (dst != SLJIT_RETURN_REG) {
status = sljit_emit_op1(compiler,
SLJIT_MOV,
dst, dstw,
SLJIT_RETURN_REG, 0);
if (status != SLJIT_SUCCESS)
return status;
}
/* tmp3 = *err; */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UI,
SLJIT_TEMPORARY_REG3, 0,
SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
if (status != SLJIT_SUCCESS)
return status;
/* if (tmp3 != 0) return 0; */
*ret0_jump = sljit_emit_cmp(compiler,
SLJIT_C_NOT_EQUAL,
SLJIT_TEMPORARY_REG3, 0,
SLJIT_IMM, 0);
if (*ret0_jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
return status;
}
#endif
/*
* Generate code for
* BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
* BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
* BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
* BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
* BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
* BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
*/
static int
emit_pkt_read(struct sljit_compiler* compiler,
struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
struct sljit_jump **ret0, size_t *ret0_size)
{
int status;
uint32_t width;
struct sljit_jump *jump;
#ifdef _KERNEL
struct sljit_label *label;
struct sljit_jump *over_mchain_jump;
const bool check_zero_buflen = (to_mchain_jump != NULL);
#endif
const uint32_t k = pc->k;
#ifdef _KERNEL
if (to_mchain_jump == NULL) {
to_mchain_jump = sljit_emit_cmp(compiler,
SLJIT_C_EQUAL,
BPFJIT_BUFLEN, 0,
SLJIT_IMM, 0);
if (to_mchain_jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
}
#endif
width = read_width(pc);
if (BPF_MODE(pc->code) == BPF_IND) {
/* tmp1 = buflen - (pc->k + width); */
status = sljit_emit_op2(compiler,
SLJIT_SUB,
BPFJIT_TMP1, 0,
BPFJIT_BUFLEN, 0,
SLJIT_IMM, k + width);
if (status != SLJIT_SUCCESS)
return status;
/* buf += X; */
status = sljit_emit_op2(compiler,
SLJIT_ADD,
BPFJIT_BUF, 0,
BPFJIT_BUF, 0,
BPFJIT_X, 0);
if (status != SLJIT_SUCCESS)
return status;
/* if (tmp1 < X) return 0; */
jump = sljit_emit_cmp(compiler,
SLJIT_C_LESS,
BPFJIT_TMP1, 0,
BPFJIT_X, 0);
if (jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
ret0[(*ret0_size)++] = jump;
}
switch (width) {
case 4:
status = emit_read32(compiler, k);
break;
case 2:
status = emit_read16(compiler, k);
break;
case 1:
status = emit_read8(compiler, k);
break;
}
if (status != SLJIT_SUCCESS)
return status;
if (BPF_MODE(pc->code) == BPF_IND) {
/* buf -= X; */
status = sljit_emit_op2(compiler,
SLJIT_SUB,
BPFJIT_BUF, 0,
BPFJIT_BUF, 0,
BPFJIT_X, 0);
if (status != SLJIT_SUCCESS)
return status;
}
#ifdef _KERNEL
over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
if (over_mchain_jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
/* entry point to mchain handler */
label = sljit_emit_label(compiler);
if (label == NULL)
return SLJIT_ERR_ALLOC_FAILED;
sljit_set_label(to_mchain_jump, label);
if (check_zero_buflen) {
/* if (buflen != 0) return 0; */
jump = sljit_emit_cmp(compiler,
SLJIT_C_NOT_EQUAL,
BPFJIT_BUFLEN, 0,
SLJIT_IMM, 0);
if (jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
ret0[(*ret0_size)++] = jump;
}
switch (width) {
case 4:
status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xword);
break;
case 2:
status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xhalf);
break;
case 1:
status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xbyte);
break;
}
if (status != SLJIT_SUCCESS)
return status;
ret0[(*ret0_size)++] = jump;
label = sljit_emit_label(compiler);
if (label == NULL)
return SLJIT_ERR_ALLOC_FAILED;
sljit_set_label(over_mchain_jump, label);
#endif
return status;
}
/*
* Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
*/
static int
emit_msh(struct sljit_compiler* compiler,
struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
struct sljit_jump **ret0, size_t *ret0_size)
{
int status;
#ifdef _KERNEL
struct sljit_label *label;
struct sljit_jump *jump, *over_mchain_jump;
const bool check_zero_buflen = (to_mchain_jump != NULL);
#endif
const uint32_t k = pc->k;
#ifdef _KERNEL
if (to_mchain_jump == NULL) {
to_mchain_jump = sljit_emit_cmp(compiler,
SLJIT_C_EQUAL,
BPFJIT_BUFLEN, 0,
SLJIT_IMM, 0);
if (to_mchain_jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
}
#endif
/* tmp1 = buf[k] */
status = sljit_emit_op1(compiler,
SLJIT_MOV_UB,
BPFJIT_TMP1, 0,
SLJIT_MEM1(BPFJIT_BUF), k);
if (status != SLJIT_SUCCESS)
return status;
/* tmp1 &= 0xf */
status = sljit_emit_op2(compiler,
SLJIT_AND,
BPFJIT_TMP1, 0,
BPFJIT_TMP1, 0,
SLJIT_IMM, 0xf);
if (status != SLJIT_SUCCESS)
return status;
/* tmp1 = tmp1 << 2 */
status = sljit_emit_op2(compiler,
SLJIT_SHL,
BPFJIT_X, 0,
BPFJIT_TMP1, 0,
SLJIT_IMM, 2);
if (status != SLJIT_SUCCESS)
return status;
#ifdef _KERNEL
over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
if (over_mchain_jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
/* entry point to mchain handler */
label = sljit_emit_label(compiler);
if (label == NULL)
return SLJIT_ERR_ALLOC_FAILED;
sljit_set_label(to_mchain_jump, label);
if (check_zero_buflen) {
/* if (buflen != 0) return 0; */
jump = sljit_emit_cmp(compiler,
SLJIT_C_NOT_EQUAL,
BPFJIT_BUFLEN, 0,
SLJIT_IMM, 0);
if (jump == NULL)
return SLJIT_ERR_ALLOC_FAILED;
ret0[(*ret0_size)++] = jump;
}
status = emit_xcall(compiler, pc, BPFJIT_TMP1, 0, &jump, &m_xbyte);
if (status != SLJIT_SUCCESS)
return status;
ret0[(*ret0_size)++] = jump;
/* tmp1 &= 0xf */
status = sljit_emit_op2(compiler,
SLJIT_AND,
BPFJIT_TMP1, 0,
BPFJIT_TMP1, 0,
SLJIT_IMM, 0xf);
if (status != SLJIT_SUCCESS)
return status;
/* tmp1 = tmp1 << 2 */
status = sljit_emit_op2(compiler,
SLJIT_SHL,
BPFJIT_X, 0,
BPFJIT_TMP1, 0,
SLJIT_IMM, 2);
if (status != SLJIT_SUCCESS)
return status;
label = sljit_emit_label(compiler);
if (label == NULL)
return SLJIT_ERR_ALLOC_FAILED;
sljit_set_label(over_mchain_jump, label);
#endif
return status;
}
static int
emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
{
int shift = 0;
int status = SLJIT_SUCCESS;
while (k > 1) {
k >>= 1;
shift++;
}
BPFJIT_ASSERT(k == 1 && shift < 32);
if (shift != 0) {
status = sljit_emit_op2(compiler,
SLJIT_LSHR|SLJIT_INT_OP,
BPFJIT_A, 0,
BPFJIT_A, 0,
SLJIT_IMM, shift);
}
return status;
}
#if !defined(BPFJIT_USE_UDIV)
static sljit_uw
divide(sljit_uw x, sljit_uw y)
{
return (uint32_t)x / (uint32_t)y;
}
#endif
/*
* Generate A = A / div.
* divt,divw are either SLJIT_IMM,pc->k or BPFJIT_X,0.
*/
static int
emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
{
int status;
#if BPFJIT_X == SLJIT_TEMPORARY_REG1 || \
BPFJIT_X == SLJIT_RETURN_REG || \
BPFJIT_X == SLJIT_TEMPORARY_REG2 || \
BPFJIT_A == SLJIT_TEMPORARY_REG2
#error "Not supported assignment of registers."
#endif
#if BPFJIT_A != SLJIT_TEMPORARY_REG1
status = sljit_emit_op1(compiler,
SLJIT_MOV,
SLJIT_TEMPORARY_REG1, 0,
BPFJIT_A, 0);
if (status != SLJIT_SUCCESS)
return status;
#endif
status = sljit_emit_op1(compiler,
SLJIT_MOV,
SLJIT_TEMPORARY_REG2, 0,
divt, divw);
if (status != SLJIT_SUCCESS)
return status;
#if defined(BPFJIT_USE_UDIV)
status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
#if BPFJIT_A != SLJIT_TEMPORARY_REG1
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
SLJIT_TEMPORARY_REG1, 0);
if (status != SLJIT_SUCCESS)
return status;
#endif
#else
status = sljit_emit_ijump(compiler,
SLJIT_CALL2,
SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
#if BPFJIT_A != SLJIT_RETURN_REG
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
SLJIT_RETURN_REG, 0);
if (status != SLJIT_SUCCESS)
return status;
#endif
#endif
return status;
}
/*
* Count BPF_RET instructions.
*/
static size_t
count_returns(struct bpf_insn *insns, size_t insn_count)
{
size_t i;
size_t rv;
rv = 0;
for (i = 0; i < insn_count; i++) {
if (BPF_CLASS(insns[i].code) == BPF_RET)
rv++;
}
return rv;
}
/*
* Return true if pc is a "read from packet" instruction.
* If length is not NULL and return value is true, *length will
* be set to a safe length required to read a packet.
*/
static bool
read_pkt_insn(struct bpf_insn *pc, uint32_t *length)
{
bool rv;
uint32_t width;
switch (BPF_CLASS(pc->code)) {
default:
rv = false;
break;
case BPF_LD:
rv = BPF_MODE(pc->code) == BPF_ABS ||
BPF_MODE(pc->code) == BPF_IND;
if (rv)
width = read_width(pc);
break;
case BPF_LDX:
rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
width = 1;
break;
}
if (rv && length != NULL) {
*length = (pc->k > UINT32_MAX - width) ?
UINT32_MAX : pc->k + width;
}
return rv;
}
/*
* Set bj_check_length for all "read from packet" instructions
* in a linear block of instructions [from, to).
*/
static void
set_check_length(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
size_t from, size_t to, uint32_t length)
{
for (; from < to; from++) {
if (read_pkt_insn(&insns[from], NULL)) {
insn_dat[from].bj_aux.bj_rdata.bj_check_length = length;
length = 0;
}
}
}
/*
* The function divides instructions into blocks. Destination of a jump
* instruction starts a new block. BPF_RET and BPF_JMP instructions
* terminate a block. Blocks are linear, that is, there are no jumps out
* from the middle of a block and there are no jumps in to the middle of
* a block.
* If a block has one or more "read from packet" instructions,
* bj_check_length will be set to one value for the whole block and that
* value will be equal to the greatest value of safe lengths of "read from
* packet" instructions inside the block.
*/
static int
optimize(struct bpf_insn *insns,
struct bpfjit_insn_data *insn_dat, size_t insn_count)
{
size_t i;
size_t first_read;
bool unreachable;
uint32_t jt, jf;
uint32_t length, safe_length;
struct bpfjit_jump *jmp, *jtf;
for (i = 0; i < insn_count; i++)
SLIST_INIT(&insn_dat[i].bj_jumps);
safe_length = 0;
unreachable = false;
first_read = SIZE_MAX;
for (i = 0; i < insn_count; i++) {
if (!SLIST_EMPTY(&insn_dat[i].bj_jumps)) {
unreachable = false;
set_check_length(insns, insn_dat,
first_read, i, safe_length);
first_read = SIZE_MAX;
safe_length = UINT32_MAX;
SLIST_FOREACH(jmp, &insn_dat[i].bj_jumps, bj_entries) {
if (jmp->bj_safe_length < safe_length)
safe_length = jmp->bj_safe_length;
}
}
insn_dat[i].bj_unreachable = unreachable;
if (unreachable)
continue;
if (read_pkt_insn(&insns[i], &length)) {
if (first_read == SIZE_MAX)
first_read = i;
if (length > safe_length)
safe_length = length;
}
switch (BPF_CLASS(insns[i].code)) {
case BPF_RET:
unreachable = true;
continue;
case BPF_JMP:
if (insns[i].code == (BPF_JMP|BPF_JA)) {
jt = jf = insns[i].k;
} else {
jt = insns[i].jt;
jf = insns[i].jf;
}
if (jt >= insn_count - (i + 1) ||
jf >= insn_count - (i + 1)) {
return -1;
}
if (jt > 0 && jf > 0)
unreachable = true;
jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
jtf[0].bj_jump = NULL;
jtf[0].bj_safe_length = safe_length;
SLIST_INSERT_HEAD(&insn_dat[i + 1 + jt].bj_jumps,
&jtf[0], bj_entries);
if (jf != jt) {
jtf[1].bj_jump = NULL;
jtf[1].bj_safe_length = safe_length;
SLIST_INSERT_HEAD(&insn_dat[i + 1 + jf].bj_jumps,
&jtf[1], bj_entries);
}
continue;
}
}
set_check_length(insns, insn_dat, first_read, insn_count, safe_length);
return 0;
}
/*
* Count out-of-bounds and division by zero jumps.
*
* insn_dat should be initialized by optimize().
*/
static size_t
get_ret0_size(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
size_t insn_count)
{
size_t rv = 0;
size_t i;
for (i = 0; i < insn_count; i++) {
if (read_pkt_insn(&insns[i], NULL)) {
if (insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0)
rv++;
#ifdef _KERNEL
rv++;
#endif
}
if (insns[i].code == (BPF_LD|BPF_IND|BPF_B) ||
insns[i].code == (BPF_LD|BPF_IND|BPF_H) ||
insns[i].code == (BPF_LD|BPF_IND|BPF_W)) {
rv++;
}
if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_X))
rv++;
if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_K) &&
insns[i].k == 0) {
rv++;
}
}
return rv;
}
/*
* Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
*/
static int
bpf_alu_to_sljit_op(struct bpf_insn *pc)
{
/*
* Note: all supported 64bit arches have 32bit multiply
* instruction so SLJIT_INT_OP doesn't have any overhead.
*/
switch (BPF_OP(pc->code)) {
case BPF_ADD: return SLJIT_ADD;
case BPF_SUB: return SLJIT_SUB;
case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
case BPF_OR: return SLJIT_OR;
case BPF_AND: return SLJIT_AND;
case BPF_LSH: return SLJIT_SHL;
case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
default:
BPFJIT_ASSERT(false);
return 0;
}
}
/*
* Convert BPF_JMP operations except BPF_JA to sljit condition.
*/
static int
bpf_jmp_to_sljit_cond(struct bpf_insn *pc, bool negate)
{
/*
* Note: all supported 64bit arches have 32bit comparison
* instructions so SLJIT_INT_OP doesn't have any overhead.
*/
int rv = SLJIT_INT_OP;
switch (BPF_OP(pc->code)) {
case BPF_JGT:
rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
break;
case BPF_JGE:
rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
break;
case BPF_JEQ:
rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
break;
case BPF_JSET:
rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
break;
default:
BPFJIT_ASSERT(false);
}
return rv;
}
static unsigned int
bpfjit_optimization_hints(struct bpf_insn *insns, size_t insn_count)
{
unsigned int rv = BPFJIT_INIT_A;
struct bpf_insn *pc;
unsigned int minm, maxm;
BPFJIT_ASSERT(BPF_MEMWORDS - 1 <= 0xff);
maxm = 0;
minm = BPF_MEMWORDS - 1;
for (pc = insns; pc != insns + insn_count; pc++) {
switch (BPF_CLASS(pc->code)) {
case BPF_LD:
if (BPF_MODE(pc->code) == BPF_IND)
rv |= BPFJIT_INIT_X;
if (BPF_MODE(pc->code) == BPF_MEM &&
(uint32_t)pc->k < BPF_MEMWORDS) {
if (pc->k > maxm)
maxm = pc->k;
if (pc->k < minm)
minm = pc->k;
}
continue;
case BPF_LDX:
rv |= BPFJIT_INIT_X;
if (BPF_MODE(pc->code) == BPF_MEM &&
(uint32_t)pc->k < BPF_MEMWORDS) {
if (pc->k > maxm)
maxm = pc->k;
if (pc->k < minm)
minm = pc->k;
}
continue;
case BPF_ST:
if ((uint32_t)pc->k < BPF_MEMWORDS) {
if (pc->k > maxm)
maxm = pc->k;
if (pc->k < minm)
minm = pc->k;
}
continue;
case BPF_STX:
rv |= BPFJIT_INIT_X;
if ((uint32_t)pc->k < BPF_MEMWORDS) {
if (pc->k > maxm)
maxm = pc->k;
if (pc->k < minm)
minm = pc->k;
}
continue;
case BPF_ALU:
if (pc->code == (BPF_ALU|BPF_NEG))
continue;
if (BPF_SRC(pc->code) == BPF_X)
rv |= BPFJIT_INIT_X;
continue;
case BPF_JMP:
if (pc->code == (BPF_JMP|BPF_JA))
continue;
if (BPF_SRC(pc->code) == BPF_X)
rv |= BPFJIT_INIT_X;
continue;
case BPF_RET:
continue;
case BPF_MISC:
rv |= BPFJIT_INIT_X;
continue;
default:
BPFJIT_ASSERT(false);
}
}
return rv | (maxm << 8) | minm;
}
/*
* Convert BPF_K and BPF_X to sljit register.
*/
static int
kx_to_reg(struct bpf_insn *pc)
{
switch (BPF_SRC(pc->code)) {
case BPF_K: return SLJIT_IMM;
case BPF_X: return BPFJIT_X;
default:
BPFJIT_ASSERT(false);
return 0;
}
}
static sljit_w
kx_to_reg_arg(struct bpf_insn *pc)
{
switch (BPF_SRC(pc->code)) {
case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
case BPF_X: return 0; /* BPFJIT_X, 0, */
default:
BPFJIT_ASSERT(false);
return 0;
}
}
bpfjit_function_t
bpfjit_generate_code(struct bpf_insn *insns, size_t insn_count)
{
void *rv;
size_t i;
int status;
int branching, negate;
unsigned int rval, mode, src;
int ntmp;
unsigned int locals_size;
unsigned int minm, maxm; /* min/max k for M[k] */
size_t mem_locals_start; /* start of M[] array */
unsigned int opts;
struct bpf_insn *pc;
struct sljit_compiler* compiler;
/* a list of jumps to a normal return from a generated function */
struct sljit_jump **returns;
size_t returns_size, returns_maxsize;
/* a list of jumps to out-of-bound return from a generated function */
struct sljit_jump **ret0;
size_t ret0_size, ret0_maxsize;
struct bpfjit_insn_data *insn_dat;
/* for local use */
struct sljit_label *label;
struct sljit_jump *jump;
struct bpfjit_jump *bjump, *jtf;
struct sljit_jump *to_mchain_jump;
uint32_t jt, jf;
rv = NULL;
compiler = NULL;
insn_dat = NULL;
returns = NULL;
ret0 = NULL;
opts = bpfjit_optimization_hints(insns, insn_count);
minm = opts & 0xff;
maxm = (opts >> 8) & 0xff;
mem_locals_start = mem_local_offset(0, 0);
locals_size = (minm <= maxm) ?
mem_local_offset(maxm + 1, minm) : mem_locals_start;
ntmp = 4;
#ifdef _KERNEL
ntmp += 1; /* for BPFJIT_KERN_TMP */
#endif
returns_maxsize = count_returns(insns, insn_count);
if (returns_maxsize == 0)
goto fail;
insn_dat = BPFJIT_MALLOC(insn_count * sizeof(insn_dat[0]));
if (insn_dat == NULL)
goto fail;
if (optimize(insns, insn_dat, insn_count) < 0)
goto fail;
ret0_size = 0;
ret0_maxsize = get_ret0_size(insns, insn_dat, insn_count);
if (ret0_maxsize > 0) {
ret0 = BPFJIT_MALLOC(ret0_maxsize * sizeof(ret0[0]));
if (ret0 == NULL)
goto fail;
}
returns_size = 0;
returns = BPFJIT_MALLOC(returns_maxsize * sizeof(returns[0]));
if (returns == NULL)
goto fail;
compiler = sljit_create_compiler();
if (compiler == NULL)
goto fail;
#if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
sljit_compiler_verbose(compiler, stderr);
#endif
status = sljit_emit_enter(compiler, 3, ntmp, 3, locals_size);
if (status != SLJIT_SUCCESS)
goto fail;
for (i = mem_locals_start; i < locals_size; i+= sizeof(uint32_t)) {
status = sljit_emit_op1(compiler,
SLJIT_MOV_UI,
SLJIT_MEM1(SLJIT_LOCALS_REG), i,
SLJIT_IMM, 0);
if (status != SLJIT_SUCCESS)
goto fail;
}
if (opts & BPFJIT_INIT_A) {
/* A = 0; */
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
SLJIT_IMM, 0);
if (status != SLJIT_SUCCESS)
goto fail;
}
if (opts & BPFJIT_INIT_X) {
/* X = 0; */
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_X, 0,
SLJIT_IMM, 0);
if (status != SLJIT_SUCCESS)
goto fail;
}
for (i = 0; i < insn_count; i++) {
if (insn_dat[i].bj_unreachable)
continue;
to_mchain_jump = NULL;
/*
* Resolve jumps to the current insn.
*/
label = NULL;
SLIST_FOREACH(bjump, &insn_dat[i].bj_jumps, bj_entries) {
if (bjump->bj_jump != NULL) {
if (label == NULL)
label = sljit_emit_label(compiler);
if (label == NULL)
goto fail;
sljit_set_label(bjump->bj_jump, label);
}
}
if (read_pkt_insn(&insns[i], NULL) &&
insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0) {
/* if (buflen < bj_check_length) return 0; */
jump = sljit_emit_cmp(compiler,
SLJIT_C_LESS,
BPFJIT_BUFLEN, 0,
SLJIT_IMM,
insn_dat[i].bj_aux.bj_rdata.bj_check_length);
if (jump == NULL)
goto fail;
#ifdef _KERNEL
to_mchain_jump = jump;
#else
ret0[ret0_size++] = jump;
#endif
}
pc = &insns[i];
switch (BPF_CLASS(pc->code)) {
default:
goto fail;
case BPF_LD:
/* BPF_LD+BPF_IMM A <- k */
if (pc->code == (BPF_LD|BPF_IMM)) {
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
SLJIT_IMM, (uint32_t)pc->k);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
/* BPF_LD+BPF_MEM A <- M[k] */
if (pc->code == (BPF_LD|BPF_MEM)) {
if (pc->k < minm || pc->k > maxm)
goto fail;
status = sljit_emit_op1(compiler,
SLJIT_MOV_UI,
BPFJIT_A, 0,
SLJIT_MEM1(SLJIT_LOCALS_REG),
mem_local_offset(pc->k, minm));
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
/* BPF_LD+BPF_W+BPF_LEN A <- len */
if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
BPFJIT_WIRELEN, 0);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
mode = BPF_MODE(pc->code);
if (mode != BPF_ABS && mode != BPF_IND)
goto fail;
status = emit_pkt_read(compiler, pc,
to_mchain_jump, ret0, &ret0_size);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
case BPF_LDX:
mode = BPF_MODE(pc->code);
/* BPF_LDX+BPF_W+BPF_IMM X <- k */
if (mode == BPF_IMM) {
if (BPF_SIZE(pc->code) != BPF_W)
goto fail;
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_X, 0,
SLJIT_IMM, (uint32_t)pc->k);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
/* BPF_LDX+BPF_W+BPF_LEN X <- len */
if (mode == BPF_LEN) {
if (BPF_SIZE(pc->code) != BPF_W)
goto fail;
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_X, 0,
BPFJIT_WIRELEN, 0);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
/* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
if (mode == BPF_MEM) {
if (BPF_SIZE(pc->code) != BPF_W)
goto fail;
if (pc->k < minm || pc->k > maxm)
goto fail;
status = sljit_emit_op1(compiler,
SLJIT_MOV_UI,
BPFJIT_X, 0,
SLJIT_MEM1(SLJIT_LOCALS_REG),
mem_local_offset(pc->k, minm));
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
/* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
goto fail;
status = emit_msh(compiler, pc,
to_mchain_jump, ret0, &ret0_size);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
case BPF_ST:
if (pc->code != BPF_ST || pc->k < minm || pc->k > maxm)
goto fail;
status = sljit_emit_op1(compiler,
SLJIT_MOV_UI,
SLJIT_MEM1(SLJIT_LOCALS_REG),
mem_local_offset(pc->k, minm),
BPFJIT_A, 0);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
case BPF_STX:
if (pc->code != BPF_STX || pc->k < minm || pc->k > maxm)
goto fail;
status = sljit_emit_op1(compiler,
SLJIT_MOV_UI,
SLJIT_MEM1(SLJIT_LOCALS_REG),
mem_local_offset(pc->k, minm),
BPFJIT_X, 0);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
case BPF_ALU:
if (pc->code == (BPF_ALU|BPF_NEG)) {
status = sljit_emit_op1(compiler,
SLJIT_NEG,
BPFJIT_A, 0,
BPFJIT_A, 0);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
if (BPF_OP(pc->code) != BPF_DIV) {
status = sljit_emit_op2(compiler,
bpf_alu_to_sljit_op(pc),
BPFJIT_A, 0,
BPFJIT_A, 0,
kx_to_reg(pc), kx_to_reg_arg(pc));
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
/* BPF_DIV */
src = BPF_SRC(pc->code);
if (src != BPF_X && src != BPF_K)
goto fail;
/* division by zero? */
if (src == BPF_X) {
jump = sljit_emit_cmp(compiler,
SLJIT_C_EQUAL|SLJIT_INT_OP,
BPFJIT_X, 0,
SLJIT_IMM, 0);
if (jump == NULL)
goto fail;
ret0[ret0_size++] = jump;
} else if (pc->k == 0) {
jump = sljit_emit_jump(compiler, SLJIT_JUMP);
if (jump == NULL)
goto fail;
ret0[ret0_size++] = jump;
}
if (src == BPF_X) {
status = emit_division(compiler, BPFJIT_X, 0);
if (status != SLJIT_SUCCESS)
goto fail;
} else if (pc->k != 0) {
if (pc->k & (pc->k - 1)) {
status = emit_division(compiler,
SLJIT_IMM, (uint32_t)pc->k);
} else {
status = emit_pow2_division(compiler,
(uint32_t)pc->k);
}
if (status != SLJIT_SUCCESS)
goto fail;
}
continue;
case BPF_JMP:
if (pc->code == (BPF_JMP|BPF_JA)) {
jt = jf = pc->k;
} else {
jt = pc->jt;
jf = pc->jf;
}
negate = (jt == 0) ? 1 : 0;
branching = (jt == jf) ? 0 : 1;
jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
if (branching) {
if (BPF_OP(pc->code) != BPF_JSET) {
jump = sljit_emit_cmp(compiler,
bpf_jmp_to_sljit_cond(pc, negate),
BPFJIT_A, 0,
kx_to_reg(pc), kx_to_reg_arg(pc));
} else {
status = sljit_emit_op2(compiler,
SLJIT_AND,
BPFJIT_TMP1, 0,
BPFJIT_A, 0,
kx_to_reg(pc), kx_to_reg_arg(pc));
if (status != SLJIT_SUCCESS)
goto fail;
jump = sljit_emit_cmp(compiler,
bpf_jmp_to_sljit_cond(pc, negate),
BPFJIT_TMP1, 0,
SLJIT_IMM, 0);
}
if (jump == NULL)
goto fail;
BPFJIT_ASSERT(jtf[negate].bj_jump == NULL);
jtf[negate].bj_jump = jump;
}
if (!branching || (jt != 0 && jf != 0)) {
jump = sljit_emit_jump(compiler, SLJIT_JUMP);
if (jump == NULL)
goto fail;
BPFJIT_ASSERT(jtf[branching].bj_jump == NULL);
jtf[branching].bj_jump = jump;
}
continue;
case BPF_RET:
rval = BPF_RVAL(pc->code);
if (rval == BPF_X)
goto fail;
/* BPF_RET+BPF_K accept k bytes */
if (rval == BPF_K) {
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
SLJIT_IMM, (uint32_t)pc->k);
if (status != SLJIT_SUCCESS)
goto fail;
}
/* BPF_RET+BPF_A accept A bytes */
if (rval == BPF_A) {
#if BPFJIT_A != SLJIT_RETURN_REG
status = sljit_emit_op1(compiler,
SLJIT_MOV,
SLJIT_RETURN_REG, 0,
BPFJIT_A, 0);
if (status != SLJIT_SUCCESS)
goto fail;
#endif
}
/*
* Save a jump to a normal return. If the program
* ends with BPF_RET, no jump is needed because
* the normal return is generated right after the
* last instruction.
*/
if (i != insn_count - 1) {
jump = sljit_emit_jump(compiler, SLJIT_JUMP);
if (jump == NULL)
goto fail;
returns[returns_size++] = jump;
}
continue;
case BPF_MISC:
if (pc->code == (BPF_MISC|BPF_TAX)) {
status = sljit_emit_op1(compiler,
SLJIT_MOV_UI,
BPFJIT_X, 0,
BPFJIT_A, 0);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
if (pc->code == (BPF_MISC|BPF_TXA)) {
status = sljit_emit_op1(compiler,
SLJIT_MOV,
BPFJIT_A, 0,
BPFJIT_X, 0);
if (status != SLJIT_SUCCESS)
goto fail;
continue;
}
goto fail;
} /* switch */
} /* main loop */
BPFJIT_ASSERT(ret0_size == ret0_maxsize);
BPFJIT_ASSERT(returns_size <= returns_maxsize);
if (returns_size > 0) {
label = sljit_emit_label(compiler);
if (label == NULL)
goto fail;
for (i = 0; i < returns_size; i++)
sljit_set_label(returns[i], label);
}
status = sljit_emit_return(compiler,
SLJIT_MOV_UI,
BPFJIT_A, 0);
if (status != SLJIT_SUCCESS)
goto fail;
if (ret0_size > 0) {
label = sljit_emit_label(compiler);
if (label == NULL)
goto fail;
for (i = 0; i < ret0_size; i++)
sljit_set_label(ret0[i], label);
status = sljit_emit_op1(compiler,
SLJIT_MOV,
SLJIT_RETURN_REG, 0,
SLJIT_IMM, 0);
if (status != SLJIT_SUCCESS)
goto fail;
status = sljit_emit_return(compiler,
SLJIT_MOV_UI,
SLJIT_RETURN_REG, 0);
if (status != SLJIT_SUCCESS)
goto fail;
}
rv = sljit_generate_code(compiler);
fail:
if (compiler != NULL)
sljit_free_compiler(compiler);
if (insn_dat != NULL)
BPFJIT_FREE(insn_dat);
if (returns != NULL)
BPFJIT_FREE(returns);
if (ret0 != NULL)
BPFJIT_FREE(ret0);
return (bpfjit_function_t)rv;
}
void
bpfjit_free_code(bpfjit_function_t code)
{
sljit_free_code((void *)code);
}