NetBSD/sys/kern/subr_copy.c
ad 0eaaa024ea Move proc_lock into the data segment. It was dynamically allocated because
at the time we had mutex_obj_alloc() but not __cacheline_aligned.
2020-05-23 23:42:41 +00:00

670 lines
16 KiB
C

/* $NetBSD: subr_copy.c,v 1.14 2020/05/23 23:42:43 ad Exp $ */
/*-
* Copyright (c) 1997, 1998, 1999, 2002, 2007, 2008, 2019
* The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_subr.c 8.4 (Berkeley) 2/14/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_copy.c,v 1.14 2020/05/23 23:42:43 ad Exp $");
#define __UFETCHSTORE_PRIVATE
#define __UCAS_PRIVATE
#include <sys/param.h>
#include <sys/fcntl.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <uvm/uvm_extern.h>
void
uio_setup_sysspace(struct uio *uio)
{
uio->uio_vmspace = vmspace_kernel();
}
int
uiomove(void *buf, size_t n, struct uio *uio)
{
struct vmspace *vm = uio->uio_vmspace;
struct iovec *iov;
size_t cnt;
int error = 0;
char *cp = buf;
ASSERT_SLEEPABLE();
KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE);
while (n > 0 && uio->uio_resid) {
iov = uio->uio_iov;
cnt = iov->iov_len;
if (cnt == 0) {
KASSERT(uio->uio_iovcnt > 0);
uio->uio_iov++;
uio->uio_iovcnt--;
continue;
}
if (cnt > n)
cnt = n;
if (!VMSPACE_IS_KERNEL_P(vm)) {
preempt_point();
}
if (uio->uio_rw == UIO_READ) {
error = copyout_vmspace(vm, cp, iov->iov_base,
cnt);
} else {
error = copyin_vmspace(vm, iov->iov_base, cp,
cnt);
}
if (error) {
break;
}
iov->iov_base = (char *)iov->iov_base + cnt;
iov->iov_len -= cnt;
uio->uio_resid -= cnt;
uio->uio_offset += cnt;
cp += cnt;
KDASSERT(cnt <= n);
n -= cnt;
}
return (error);
}
/*
* Wrapper for uiomove() that validates the arguments against a known-good
* kernel buffer.
*/
int
uiomove_frombuf(void *buf, size_t buflen, struct uio *uio)
{
size_t offset;
if (uio->uio_offset < 0 || /* uio->uio_resid < 0 || */
(offset = uio->uio_offset) != uio->uio_offset)
return (EINVAL);
if (offset >= buflen)
return (0);
return (uiomove((char *)buf + offset, buflen - offset, uio));
}
/*
* Give next character to user as result of read.
*/
int
ureadc(int c, struct uio *uio)
{
struct iovec *iov;
if (uio->uio_resid <= 0)
panic("ureadc: non-positive resid");
again:
if (uio->uio_iovcnt <= 0)
panic("ureadc: non-positive iovcnt");
iov = uio->uio_iov;
if (iov->iov_len <= 0) {
uio->uio_iovcnt--;
uio->uio_iov++;
goto again;
}
if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
int error;
if ((error = ustore_char(iov->iov_base, c)) != 0)
return (error);
} else {
*(char *)iov->iov_base = c;
}
iov->iov_base = (char *)iov->iov_base + 1;
iov->iov_len--;
uio->uio_resid--;
uio->uio_offset++;
return (0);
}
/*
* Like copyin(), but operates on an arbitrary vmspace.
*/
int
copyin_vmspace(struct vmspace *vm, const void *uaddr, void *kaddr, size_t len)
{
struct iovec iov;
struct uio uio;
int error;
if (len == 0)
return (0);
if (VMSPACE_IS_KERNEL_P(vm)) {
return kcopy(uaddr, kaddr, len);
}
if (__predict_true(vm == curproc->p_vmspace)) {
return copyin(uaddr, kaddr, len);
}
iov.iov_base = kaddr;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = (off_t)(uintptr_t)uaddr;
uio.uio_resid = len;
uio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&uio);
error = uvm_io(&vm->vm_map, &uio, 0);
return (error);
}
/*
* Like copyout(), but operates on an arbitrary vmspace.
*/
int
copyout_vmspace(struct vmspace *vm, const void *kaddr, void *uaddr, size_t len)
{
struct iovec iov;
struct uio uio;
int error;
if (len == 0)
return (0);
if (VMSPACE_IS_KERNEL_P(vm)) {
return kcopy(kaddr, uaddr, len);
}
if (__predict_true(vm == curproc->p_vmspace)) {
return copyout(kaddr, uaddr, len);
}
iov.iov_base = __UNCONST(kaddr); /* XXXUNCONST cast away const */
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = (off_t)(uintptr_t)uaddr;
uio.uio_resid = len;
uio.uio_rw = UIO_WRITE;
UIO_SETUP_SYSSPACE(&uio);
error = uvm_io(&vm->vm_map, &uio, 0);
return (error);
}
/*
* Like copyin(), but operates on an arbitrary process.
*/
int
copyin_proc(struct proc *p, const void *uaddr, void *kaddr, size_t len)
{
struct vmspace *vm;
int error;
error = proc_vmspace_getref(p, &vm);
if (error) {
return error;
}
error = copyin_vmspace(vm, uaddr, kaddr, len);
uvmspace_free(vm);
return error;
}
/*
* Like copyout(), but operates on an arbitrary process.
*/
int
copyout_proc(struct proc *p, const void *kaddr, void *uaddr, size_t len)
{
struct vmspace *vm;
int error;
error = proc_vmspace_getref(p, &vm);
if (error) {
return error;
}
error = copyout_vmspace(vm, kaddr, uaddr, len);
uvmspace_free(vm);
return error;
}
/*
* Like copyin(), but operates on an arbitrary pid.
*/
int
copyin_pid(pid_t pid, const void *uaddr, void *kaddr, size_t len)
{
struct proc *p;
struct vmspace *vm;
int error;
mutex_enter(&proc_lock);
p = proc_find(pid);
if (p == NULL) {
mutex_exit(&proc_lock);
return ESRCH;
}
mutex_enter(p->p_lock);
error = proc_vmspace_getref(p, &vm);
mutex_exit(p->p_lock);
mutex_exit(&proc_lock);
if (error == 0) {
error = copyin_vmspace(vm, uaddr, kaddr, len);
uvmspace_free(vm);
}
return error;
}
/*
* Like copyin(), except it operates on kernel addresses when the FKIOCTL
* flag is passed in `ioctlflags' from the ioctl call.
*/
int
ioctl_copyin(int ioctlflags, const void *src, void *dst, size_t len)
{
if (ioctlflags & FKIOCTL)
return kcopy(src, dst, len);
return copyin(src, dst, len);
}
/*
* Like copyout(), except it operates on kernel addresses when the FKIOCTL
* flag is passed in `ioctlflags' from the ioctl call.
*/
int
ioctl_copyout(int ioctlflags, const void *src, void *dst, size_t len)
{
if (ioctlflags & FKIOCTL)
return kcopy(src, dst, len);
return copyout(src, dst, len);
}
/*
* User-space CAS / fetch / store
*/
#ifdef __NO_STRICT_ALIGNMENT
#define CHECK_ALIGNMENT(x) __nothing
#else /* ! __NO_STRICT_ALIGNMENT */
static bool
ufetchstore_aligned(uintptr_t uaddr, size_t size)
{
return (uaddr & (size - 1)) == 0;
}
#define CHECK_ALIGNMENT() \
do { \
if (!ufetchstore_aligned((uintptr_t)uaddr, sizeof(*uaddr))) \
return EFAULT; \
} while (/*CONSTCOND*/0)
#endif /* __NO_STRICT_ALIGNMENT */
/*
* __HAVE_UCAS_FULL platforms provide _ucas_32() and _ucas_64() themselves.
* _RUMPKERNEL also provides it's own _ucas_32() and _ucas_64().
*
* In all other cases, we provide generic implementations that work on
* all platforms.
*/
#if !defined(__HAVE_UCAS_FULL) && !defined(_RUMPKERNEL)
#if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
#include <sys/atomic.h>
#include <sys/cpu.h>
#include <sys/once.h>
#include <sys/mutex.h>
#include <sys/ipi.h>
static int ucas_critical_splcookie;
static volatile u_int ucas_critical_pausing_cpus;
static u_int ucas_critical_ipi;
static ONCE_DECL(ucas_critical_init_once)
static void
ucas_critical_cpu_gate(void *arg __unused)
{
int count = SPINLOCK_BACKOFF_MIN;
KASSERT(ucas_critical_pausing_cpus > 0);
atomic_dec_uint(&ucas_critical_pausing_cpus);
while (ucas_critical_pausing_cpus != (u_int)-1) {
SPINLOCK_BACKOFF(count);
}
}
static int
ucas_critical_init(void)
{
ucas_critical_ipi = ipi_register(ucas_critical_cpu_gate, NULL);
return 0;
}
static void
ucas_critical_wait(void)
{
int count = SPINLOCK_BACKOFF_MIN;
while (ucas_critical_pausing_cpus > 0) {
SPINLOCK_BACKOFF(count);
}
}
#endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
static inline void
ucas_critical_enter(lwp_t * const l)
{
#if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
if (ncpu > 1) {
RUN_ONCE(&ucas_critical_init_once, ucas_critical_init);
/*
* Acquire the mutex first, then go to splhigh() and
* broadcast the IPI to lock all of the other CPUs
* behind the gate.
*
* N.B. Going to splhigh() implicitly disables preemption,
* so there's no need to do it explicitly.
*/
mutex_enter(&cpu_lock);
ucas_critical_splcookie = splhigh();
ucas_critical_pausing_cpus = ncpu - 1;
membar_enter();
ipi_trigger_broadcast(ucas_critical_ipi, true);
ucas_critical_wait();
return;
}
#endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
KPREEMPT_DISABLE(l);
}
static inline void
ucas_critical_exit(lwp_t * const l)
{
#if !defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)
if (ncpu > 1) {
membar_exit();
ucas_critical_pausing_cpus = (u_int)-1;
splx(ucas_critical_splcookie);
mutex_exit(&cpu_lock);
return;
}
#endif /* ! __HAVE_UCAS_MP && MULTIPROCESSOR */
KPREEMPT_ENABLE(l);
}
int
_ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
{
lwp_t * const l = curlwp;
uint32_t *uva = ((void *)(uintptr_t)uaddr);
int error;
/*
* Wire the user address down to avoid taking a page fault during
* the critical section.
*/
error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
VM_PROT_READ | VM_PROT_WRITE);
if (error)
return error;
ucas_critical_enter(l);
error = _ufetch_32(uva, ret);
if (error == 0 && *ret == old) {
error = _ustore_32(uva, new);
}
ucas_critical_exit(l);
uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
return error;
}
#ifdef _LP64
int
_ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
{
lwp_t * const l = curlwp;
uint64_t *uva = ((void *)(uintptr_t)uaddr);
int error;
/*
* Wire the user address down to avoid taking a page fault during
* the critical section.
*/
error = uvm_vslock(l->l_proc->p_vmspace, uva, sizeof(*uaddr),
VM_PROT_READ | VM_PROT_WRITE);
if (error)
return error;
ucas_critical_enter(l);
error = _ufetch_64(uva, ret);
if (error == 0 && *ret == old) {
error = _ustore_64(uva, new);
}
ucas_critical_exit(l);
uvm_vsunlock(l->l_proc->p_vmspace, uva, sizeof(*uaddr));
return error;
}
#endif /* _LP64 */
#endif /* ! __HAVE_UCAS_FULL && ! _RUMPKERNEL */
int
ucas_32(volatile uint32_t *uaddr, uint32_t old, uint32_t new, uint32_t *ret)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
#if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
!defined(_RUMPKERNEL)
if (ncpu > 1) {
return _ucas_32_mp(uaddr, old, new, ret);
}
#endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
return _ucas_32(uaddr, old, new, ret);
}
#ifdef _LP64
int
ucas_64(volatile uint64_t *uaddr, uint64_t old, uint64_t new, uint64_t *ret)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
#if (defined(__HAVE_UCAS_MP) && defined(MULTIPROCESSOR)) && \
!defined(_RUMPKERNEL)
if (ncpu > 1) {
return _ucas_64_mp(uaddr, old, new, ret);
}
#endif /* __HAVE_UCAS_MP && MULTIPROCESSOR */
return _ucas_64(uaddr, old, new, ret);
}
#endif /* _LP64 */
__strong_alias(ucas_int,ucas_32);
#ifdef _LP64
__strong_alias(ucas_ptr,ucas_64);
#else
__strong_alias(ucas_ptr,ucas_32);
#endif /* _LP64 */
int
ufetch_8(const uint8_t *uaddr, uint8_t *valp)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ufetch_8(uaddr, valp);
}
int
ufetch_16(const uint16_t *uaddr, uint16_t *valp)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ufetch_16(uaddr, valp);
}
int
ufetch_32(const uint32_t *uaddr, uint32_t *valp)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ufetch_32(uaddr, valp);
}
#ifdef _LP64
int
ufetch_64(const uint64_t *uaddr, uint64_t *valp)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ufetch_64(uaddr, valp);
}
#endif /* _LP64 */
__strong_alias(ufetch_char,ufetch_8);
__strong_alias(ufetch_short,ufetch_16);
__strong_alias(ufetch_int,ufetch_32);
#ifdef _LP64
__strong_alias(ufetch_long,ufetch_64);
__strong_alias(ufetch_ptr,ufetch_64);
#else
__strong_alias(ufetch_long,ufetch_32);
__strong_alias(ufetch_ptr,ufetch_32);
#endif /* _LP64 */
int
ustore_8(uint8_t *uaddr, uint8_t val)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ustore_8(uaddr, val);
}
int
ustore_16(uint16_t *uaddr, uint16_t val)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ustore_16(uaddr, val);
}
int
ustore_32(uint32_t *uaddr, uint32_t val)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ustore_32(uaddr, val);
}
#ifdef _LP64
int
ustore_64(uint64_t *uaddr, uint64_t val)
{
ASSERT_SLEEPABLE();
CHECK_ALIGNMENT();
return _ustore_64(uaddr, val);
}
#endif /* _LP64 */
__strong_alias(ustore_char,ustore_8);
__strong_alias(ustore_short,ustore_16);
__strong_alias(ustore_int,ustore_32);
#ifdef _LP64
__strong_alias(ustore_long,ustore_64);
__strong_alias(ustore_ptr,ustore_64);
#else
__strong_alias(ustore_long,ustore_32);
__strong_alias(ustore_ptr,ustore_32);
#endif /* _LP64 */