NetBSD/sys/dev/pcmcia/if_xe.c
2000-03-30 12:41:09 +00:00

1654 lines
39 KiB
C

/* $OpenBSD: if_xe.c,v 1.9 1999/09/16 11:28:42 niklas Exp $ */
/* $NetBSD: if_xe.c,v 1.6 2000/03/30 12:45:36 augustss Exp $ */
/*
* Copyright (c) 1999 Niklas Hallqvist, C Stone, Job de Haas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Niklas Hallqvist,
* C Stone and Job de Haas.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* A driver for Xircom ethernet PC-cards.
*
* The driver has been inspired by the xirc2ps_cs.c driver found in Linux'
* PCMCIA package written by Werner Koch <werner.koch@guug.de>:
* [xirc2ps_cs.c wk 14.04.97] (1.31 1998/12/09 19:32:55)
* I will note that no code was used verbatim from that driver as it is under
* the much too strong GNU General Public License, it was only used as a
* "specification" of sorts.
* Other inspirations have been if_fxp.c, if_ep_pcmcia.c and elink3.c as
* they were found in OpenBSD 2.4.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#ifdef __NetBSD__
#include <net/if_ether.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#define ETHER_MIN_LEN 64
#define ETHER_CRC_LEN 4
/*
* Maximum number of bytes to read per interrupt. Linux recommends
* somewhere between 2000-22000.
* XXX This is currently a hard maximum.
*/
#define MAX_BYTES_INTR 12000
#include <dev/mii/miivar.h>
#include <dev/pcmcia/pcmciareg.h>
#include <dev/pcmcia/pcmciavar.h>
#include <dev/pcmcia/pcmciadevs.h>
#include <dev/pcmcia/if_xereg.h>
#ifdef __GNUC__
#define INLINE __inline
#else
#define INLINE
#endif /* __GNUC__ */
#ifdef XEDEBUG
#define XED_CONFIG 0x1
#define XED_MII 0x2
#define XED_INTR 0x4
#define XED_FIFO 0x8
#ifndef XEDEBUG_DEF
#define XEDEBUG_DEF (XED_CONFIG|XED_INTR)
#endif /* XEDEBUG_DEF */
int xedebug = XEDEBUG_DEF;
#define DPRINTF(cat, x) if (xedebug & (cat)) printf x
#else /* XEDEBUG */
#define DPRINTF(cat, x) (void)0
#endif /* XEDEBUG */
#ifdef __NetBSD__
int xe_pcmcia_match __P((struct device *, struct cfdata *, void *));
#else
int xe_pcmcia_match __P((struct device *, void *, void *));
#endif
void xe_pcmcia_attach __P((struct device *, struct device *, void *));
int xe_pcmcia_detach __P((struct device *, int));
int xe_pcmcia_activate __P((struct device *, enum devact));
/*
* In case this chipset ever turns up out of pcmcia attachments (very
* unlikely) do the driver splitup.
*/
struct xe_softc {
struct device sc_dev; /* Generic device info */
u_int32_t sc_flags; /* Misc. flags */
void *sc_ih; /* Interrupt handler */
#ifdef __NetBSD__
struct ethercom sc_ec; /* ethernet common */
u_int8_t sc_enaddr[6]; /* storage for MAC address */
#else
struct arpcom sc_arpcom; /* Ethernet common part */
#endif
struct ifmedia sc_media; /* Media control */
struct mii_data sc_mii; /* MII media information */
int sc_all_mcasts; /* Receive all multicasts */
bus_space_tag_t sc_bst; /* Bus cookie */
bus_space_handle_t sc_bsh; /* Bus I/O handle */
bus_addr_t sc_offset; /* Offset of registers */
u_int8_t sc_rev; /* Chip revision */
};
#define XEF_MOHAWK 0x001
#define XEF_DINGO 0x002
#define XEF_MODEM 0x004
#define XEF_UNSUPPORTED 0x008
#define XEF_CE 0x010
#define XEF_CE2 0x020
#define XEF_CE3 0x040
#define XEF_CE33 0x080
#define XEF_CE56 0x100
struct xe_pcmcia_softc {
struct xe_softc sc_xe; /* Generic device info */
struct pcmcia_mem_handle sc_pcmh; /* PCMCIA memspace info */
int sc_mem_window; /* mem window */
struct pcmcia_io_handle sc_pcioh; /* iospace info */
int sc_io_window; /* io window info */
struct pcmcia_function *sc_pf; /* PCMCIA function */
};
#ifdef __OpenBSD__
/* Autoconfig definition of driver back-end */
struct cfdriver xe_cd = {
NULL, "xe", DV_IFNET
};
#endif
struct cfattach xe_pcmcia_ca = {
sizeof (struct xe_pcmcia_softc), xe_pcmcia_match, xe_pcmcia_attach,
#ifdef __NetBSD__
NULL,
#else
xe_pcmcia_detach,
#endif
xe_pcmcia_activate
};
void xe_cycle_power __P((struct xe_softc *));
int xe_ether_ioctl __P((struct ifnet *, u_long cmd, caddr_t));
void xe_full_reset __P((struct xe_softc *));
void xe_init __P((struct xe_softc *));
int xe_intr __P((void *));
int xe_ioctl __P((struct ifnet *, u_long, caddr_t));
int xe_mdi_read __P((struct device *, int, int));
void xe_mdi_write __P((struct device *, int, int, int));
int xe_mediachange __P((struct ifnet *));
void xe_mediastatus __P((struct ifnet *, struct ifmediareq *));
int xe_pcmcia_funce_enaddr __P((struct device *, u_int8_t *));
u_int32_t xe_pcmcia_interpret_manfid __P((struct device *));
int xe_pcmcia_lan_nid_ciscallback __P((struct pcmcia_tuple *, void *));
int xe_pcmcia_manfid_ciscallback __P((struct pcmcia_tuple *, void *));
u_int16_t xe_get __P((struct xe_softc *));
void xe_reset __P((struct xe_softc *));
void xe_set_address __P((struct xe_softc *));
void xe_start __P((struct ifnet *));
void xe_statchg __P((struct device *));
void xe_stop __P((struct xe_softc *));
void xe_watchdog __P((struct ifnet *));
#ifdef XEDEBUG
void xe_reg_dump __P((struct xe_softc *));
#endif /* XEDEBUG */
#ifdef __NetBSD__
#define SC2IFNET(SC) (&(SC)->sc_ec.ec_if)
#define SC2ENADDR(SC) ((SC)->sc_enaddr)
#define bus_space_read_raw_multi_2 bus_space_read_multi_2 /* XXX */
#define bus_space_write_raw_multi_2 bus_space_write_multi_2 /* XXX */
#define ac_multicnt ec_multicnt /* XXX */
#else
#define SC2IFNET(SC) (&(SC)->sc_arpcom.ac_if)
#define SC2ENADDR(SC) ((SC)->sc_arpcom.ac_enaddr)
#endif
int
xe_pcmcia_match(parent, match, aux)
struct device *parent;
#ifdef __NetBSD__
struct cfdata *match;
#else
void *match;
#endif
void *aux;
{
struct pcmcia_attach_args *pa = aux;
if (pa->pf->function != PCMCIA_FUNCTION_NETWORK)
return (0);
switch (pa->manufacturer) {
case PCMCIA_VENDOR_COMPAQ:
case PCMCIA_VENDOR_COMPAQ2:
case PCMCIA_VENDOR_INTEL:
return (0);
case PCMCIA_VENDOR_XIRCOM:
/* XXX Per-productid checking here. */
return (1);
default:
return (0);
}
}
void
xe_pcmcia_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct xe_pcmcia_softc *psc = (struct xe_pcmcia_softc *)self;
struct xe_softc *sc = &psc->sc_xe;
struct pcmcia_attach_args *pa = aux;
struct pcmcia_function *pf = pa->pf;
struct pcmcia_config_entry *cfe;
struct ifnet *ifp;
u_int8_t myla[ETHER_ADDR_LEN], *enaddr = NULL;
int state = 0;
struct pcmcia_mem_handle pcmh;
int ccr_window;
bus_addr_t ccr_offset;
psc->sc_pf = pf;
#if 0
/* Figure out what card we are. */
sc->sc_flags = xe_pcmcia_interpret_manfid(parent);
#endif
if (sc->sc_flags & XEF_UNSUPPORTED) {
printf(": card unsupported\n");
goto bad;
}
/* Tell the pcmcia framework where the CCR is. */
pf->ccr_base = 0x800;
pf->ccr_mask = 0x67;
/* Fake a cfe. */
SIMPLEQ_FIRST(&pa->pf->cfe_head) = cfe = (struct pcmcia_config_entry *)
malloc(sizeof *cfe, M_DEVBUF, M_NOWAIT);
if (!cfe) {
printf(": function enable failed\n");
return;
}
bzero(cfe, sizeof *cfe);
/*
* XXX Use preprocessor symbols instead.
* Enable ethernet & its interrupts, wiring them to -INT
* No I/O base.
*/
cfe->number = 0x5;
cfe->flags = 0; /* XXX Check! */
cfe->iftype = PCMCIA_IFTYPE_IO;
cfe->num_iospace = 0;
cfe->num_memspace = 0;
cfe->irqmask = 0x8eb0;
/* Enable the card. */
pcmcia_function_init(pa->pf, cfe);
if (pcmcia_function_enable(pa->pf)) {
printf(": function enable failed\n");
goto bad;
}
state++;
if (pcmcia_io_alloc(pa->pf, 0, 16, 16, &psc->sc_pcioh)) {
printf(": io allocation failed\n");
goto bad;
}
state++;
if (pcmcia_io_map(pa->pf, PCMCIA_WIDTH_IO16, 0, 16, &psc->sc_pcioh,
&psc->sc_io_window)) {
printf(": can't map io space\n");
goto bad;
}
sc->sc_bst = psc->sc_pcioh.iot;
sc->sc_bsh = psc->sc_pcioh.ioh;
sc->sc_offset = 0;
printf(" port 0x%lx/%d", psc->sc_pcioh.addr, 16);
#if 0
if (pcmcia_mem_alloc(pf, 16, &psc->sc_pcmh)) {
printf(": pcmcia memory allocation failed\n");
goto bad;
}
state++;
if (pcmcia_mem_map(pf, PCMCIA_MEM_ATTR, 0x300, 16, &psc->sc_pcmh,
&sc->sc_offset, &psc->sc_mem_window)) {
printf(": pcmcia memory mapping failed\n");
goto bad;
}
sc->sc_bst = psc->sc_pcmh.memt;
sc->sc_bsh = psc->sc_pcmh.memh;
#endif
/* Figure out what card we are. */
sc->sc_flags = xe_pcmcia_interpret_manfid(parent);
/*
* Configuration as adviced by DINGO documentation.
* We only know about this flag after the manfid interpretation.
* Dingo has some extra configuration registers in the CCR space.
*/
if (sc->sc_flags & XEF_DINGO) {
if (pcmcia_mem_alloc(pf, PCMCIA_CCR_SIZE_DINGO, &pcmh)) {
DPRINTF(XED_CONFIG, ("bad mem alloc\n"));
goto bad;
}
if (pcmcia_mem_map(pf, PCMCIA_MEM_ATTR, pf->ccr_base,
PCMCIA_CCR_SIZE_DINGO, &pcmh, &ccr_offset,
&ccr_window)) {
DPRINTF(XED_CONFIG, ("bad mem map\n"));
pcmcia_mem_free(pf, &pcmh);
goto bad;
}
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR0, PCMCIA_CCR_DCOR0_SFINT);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR1,
PCMCIA_CCR_DCOR1_FORCE_LEVIREQ | PCMCIA_CCR_DCOR1_D6);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR2, 0);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR3, 0);
bus_space_write_1(pcmh.memt, pcmh.memh,
ccr_offset + PCMCIA_CCR_DCOR4, 0);
/* We don't need them anymore and can free them (I think). */
pcmcia_mem_unmap(pf, ccr_window);
pcmcia_mem_free(pf, &pcmh);
}
/*
* Try to get the ethernet address from FUNCE/LAN_NID tuple.
*/
if (xe_pcmcia_funce_enaddr(parent, myla))
enaddr = myla;
ifp = SC2IFNET(sc);
if (enaddr)
bcopy(enaddr, SC2ENADDR(sc), ETHER_ADDR_LEN);
else {
printf(", unable to get ethernet address\n");
goto bad;
}
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags =
IFF_BROADCAST | IFF_NOTRAILERS | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = xe_ioctl;
ifp->if_start = xe_start;
ifp->if_watchdog = xe_watchdog;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
/* Establish the interrupt. */
sc->sc_ih = pcmcia_intr_establish(pa->pf, IPL_NET, xe_intr, sc);
if (sc->sc_ih == NULL) {
printf(", couldn't establish interrupt\n");
goto bad;
}
printf(": address %s\n", ether_sprintf(SC2ENADDR(sc)));
/* Reset and initialize the card. */
xe_full_reset(sc);
/* Initialize our media structures and probe the phy. */
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = xe_mdi_read;
sc->sc_mii.mii_writereg = xe_mdi_write;
sc->sc_mii.mii_statchg = xe_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, xe_mediachange,
xe_mediastatus);
DPRINTF(XED_MII | XED_CONFIG,
("bmsr %x\n", xe_mdi_read(&sc->sc_dev, 0, 1)));
mii_attach(self, &sc->sc_mii, 0xffffffff
#ifdef __NetBSD__
,MII_PHY_ANY, MII_OFFSET_ANY, 0
#endif
);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL)
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO, 0,
NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp
#ifdef __NetBSD__
, sc->sc_enaddr
#endif
);
#if NBPFILTER > 0
bpfattach(&SC2IFNET(sc)->if_bpf, ifp, DLT_EN10MB,
sizeof(struct ether_header));
#endif /* NBPFILTER > 0 */
/*
* Reset and initialize the card again for DINGO (as found in Linux
* driver). Without this Dingo will get a watchdog timeout the first
* time. The ugly media tickling seems to be necessary for getting
* autonegotiation to work too.
*/
if (sc->sc_flags & XEF_DINGO) {
xe_full_reset(sc);
xe_init(sc);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_NONE);
xe_stop(sc);
}
#ifdef notyet
pcmcia_function_disable(pa->pf);
#endif /* notyet */
return;
bad:
if (state > 2)
pcmcia_io_unmap(pf, psc->sc_io_window);
if (state > 1)
pcmcia_io_free(pf, &psc->sc_pcioh);
if (state > 0)
pcmcia_function_disable(pa->pf);
free(cfe, M_DEVBUF);
}
#ifndef __NetBSD__
int
xe_pcmcia_detach(dev, flags)
struct device *dev;
int flags;
{
struct xe_pcmcia_softc *psc = (struct xe_pcmcia_softc *)dev;
struct xe_softc *sc = &psc->sc_xe;
struct ifnet *ifp = SC2IFNET(sc);
struct mii_softc *msc;
int rv = 0;
for (msc = LIST_FIRST(&sc->sc_mii.mii_phys); msc;
msc = LIST_FIRST(&sc->sc_mii.mii_phys)) {
LIST_REMOVE(msc, mii_list);
rv |= config_detach(&msc->mii_dev, flags);
}
pcmcia_io_unmap(psc->sc_pf, psc->sc_io_window);
pcmcia_io_free(psc->sc_pf, &psc->sc_pcioh);
ether_ifdetach(ifp);
if_detach(ifp);
return (rv);
}
#endif
int
xe_pcmcia_activate(dev, act)
struct device *dev;
enum devact act;
{
struct xe_pcmcia_softc *sc = (struct xe_pcmcia_softc *)dev;
int s;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
pcmcia_function_enable(sc->sc_pf);
sc->sc_xe.sc_ih =
pcmcia_intr_establish(sc->sc_pf, IPL_NET, xe_intr, sc);
break;
case DVACT_DEACTIVATE:
pcmcia_function_disable(sc->sc_pf);
pcmcia_intr_disestablish(sc->sc_pf, sc->sc_xe.sc_ih);
break;
}
splx(s);
return (0);
}
/*
* XXX These two functions might be OK to factor out into pcmcia.c since
* if_sm_pcmcia.c uses similar ones.
*/
int
xe_pcmcia_funce_enaddr(parent, myla)
struct device *parent;
u_int8_t *myla;
{
/* XXX The Linux driver has more ways to do this in case of failure. */
return (pcmcia_scan_cis(parent, xe_pcmcia_lan_nid_ciscallback, myla));
}
int
xe_pcmcia_lan_nid_ciscallback(tuple, arg)
struct pcmcia_tuple *tuple;
void *arg;
{
u_int8_t *myla = arg;
int i;
if (tuple->code == PCMCIA_CISTPL_FUNCE) {
if (tuple->length < 2)
return (0);
switch (pcmcia_tuple_read_1(tuple, 0)) {
case PCMCIA_TPLFE_TYPE_LAN_NID:
if (pcmcia_tuple_read_1(tuple, 1) != ETHER_ADDR_LEN)
return (0);
break;
case 0x02:
/*
* Not sure about this, I don't have a CE2
* that puts the ethernet addr here.
*/
if (pcmcia_tuple_read_1(tuple, 1) != 13)
return (0);
break;
default:
return (0);
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
myla[i] = pcmcia_tuple_read_1(tuple, i + 2);
return (1);
}
/* Yet another spot where this might be. */
if (tuple->code == 0x89) {
pcmcia_tuple_read_1(tuple, 1);
for (i = 0; i < ETHER_ADDR_LEN; i++)
myla[i] = pcmcia_tuple_read_1(tuple, i + 2);
return (1);
}
return (0);
}
u_int32_t
xe_pcmcia_interpret_manfid (parent)
struct device *parent;
{
u_int32_t flags = 0;
struct pcmcia_softc *psc = (struct pcmcia_softc *)parent;
char *tptr;
if (!pcmcia_scan_cis(parent, xe_pcmcia_manfid_ciscallback, &flags))
return (XEF_UNSUPPORTED);
if (flags & XEF_CE) {
tptr = memchr(psc->card.cis1_info[2], 'C',
strlen(psc->card.cis1_info[2]));
/* XXX not sure if other CE2s hide "CE2" in different places */
if (tptr && *(tptr + 1) == 'E' && *(tptr + 2) == '2') {
flags ^= (XEF_CE | XEF_UNSUPPORTED);
flags |= XEF_CE2;
}
}
return (flags);
}
int
xe_pcmcia_manfid_ciscallback(tuple, arg)
struct pcmcia_tuple *tuple;
void *arg;
{
u_int32_t *flagsp = arg;
u_int8_t media, product;
if (tuple->code == PCMCIA_CISTPL_MANFID) {
if (tuple->length < 2)
return (0);
media = pcmcia_tuple_read_1(tuple, 3);
product = pcmcia_tuple_read_1(tuple, 4);
if (!(product & XEPROD_CREDITCARD) ||
!(media & XEMEDIA_ETHER)) {
*flagsp |= XEF_UNSUPPORTED;
return (1);
}
if (media & XEMEDIA_MODEM)
*flagsp |= XEF_MODEM;
switch (product & XEPROD_IDMASK) {
case 1:
/* XXX Can be CE2 too (we double-check later). */
*flagsp |= XEF_CE | XEF_UNSUPPORTED;
break;
case 2:
*flagsp |= XEF_CE2;
break;
case 3:
if (!(*flagsp & XEF_MODEM))
*flagsp |= XEF_MOHAWK;
*flagsp |= XEF_CE3;
break;
case 4:
*flagsp |= XEF_CE33;
break;
case 5:
*flagsp |= XEF_CE56 | XEF_MOHAWK;
break;
case 6:
case 7:
*flagsp |= XEF_CE56 | XEF_MOHAWK | XEF_DINGO;
break;
default:
*flagsp |= XEF_UNSUPPORTED;
break;
}
return (1);
}
return (0);
}
int
xe_intr(arg)
void *arg;
{
struct xe_softc *sc = arg;
struct ifnet *ifp = SC2IFNET(sc);
u_int8_t esr, rsr, isr, rx_status, savedpage;
u_int16_t tx_status, recvcount = 0, tempint;
ifp->if_timer = 0; /* turn watchdog timer off */
if (sc->sc_flags & XEF_MOHAWK) {
/* Disable interrupt (Linux does it). */
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
0);
}
savedpage =
bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + PR);
PAGE(sc, 0);
esr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + ESR);
isr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + ISR0);
rsr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RSR);
/* Check to see if card has been ejected. */
if (isr == 0xff) {
printf("%s: interrupt for dead card\n", sc->sc_dev.dv_xname);
goto end;
}
PAGE(sc, 40);
rx_status =
bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RXST0);
tx_status =
bus_space_read_2(sc->sc_bst, sc->sc_bsh, sc->sc_offset + TXST0);
/*
* XXX Linux writes to RXST0 and TXST* here. My CE2 works just fine
* without it, and I can't see an obvious reason for it.
*/
PAGE(sc, 0);
while (esr & FULL_PKT_RCV) {
if (!(rsr & RSR_RX_OK))
break;
/* Compare bytes read this interrupt to hard maximum. */
if (recvcount > MAX_BYTES_INTR) {
DPRINTF(XED_INTR,
("%s: too many bytes this interrupt\n",
sc->sc_dev.dv_xname));
ifp->if_iqdrops++;
/* Drop packet. */
bus_space_write_2(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + DO0, DO_SKIP_RX_PKT);
}
tempint = xe_get(sc);
recvcount += tempint;
ifp->if_ibytes += tempint;
esr = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + ESR);
rsr = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + RSR);
}
/* Packet too long? */
if (rsr & RSR_TOO_LONG) {
ifp->if_ierrors++;
DPRINTF(XED_INTR,
("%s: packet too long\n", sc->sc_dev.dv_xname));
}
/* CRC error? */
if (rsr & RSR_CRCERR) {
ifp->if_ierrors++;
DPRINTF(XED_INTR,
("%s: CRC error detected\n", sc->sc_dev.dv_xname));
}
/* Alignment error? */
if (rsr & RSR_ALIGNERR) {
ifp->if_ierrors++;
DPRINTF(XED_INTR,
("%s: alignment error detected\n", sc->sc_dev.dv_xname));
}
/* Check for rx overrun. */
if (rx_status & RX_OVERRUN) {
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
CLR_RX_OVERRUN);
DPRINTF(XED_INTR, ("overrun cleared\n"));
}
/* Try to start more packets transmitting. */
if (ifp->if_snd.ifq_head)
xe_start(ifp);
/* Detected excessive collisions? */
if ((tx_status & EXCESSIVE_COLL) && ifp->if_opackets > 0) {
DPRINTF(XED_INTR,
("%s: excessive collisions\n", sc->sc_dev.dv_xname));
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
RESTART_TX);
ifp->if_oerrors++;
}
if ((tx_status & TX_ABORT) && ifp->if_opackets > 0)
ifp->if_oerrors++;
end:
/* Reenable interrupts. */
PAGE(sc, savedpage);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR,
ENABLE_INT);
return (1);
}
u_int16_t
xe_get(sc)
struct xe_softc *sc;
{
u_int8_t rsr;
struct mbuf *top, **mp, *m;
struct ifnet *ifp = SC2IFNET(sc);
u_int16_t pktlen, len, recvcount = 0;
u_int8_t *data;
struct ether_header *eh;
PAGE(sc, 0);
rsr = bus_space_read_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RSR);
pktlen =
bus_space_read_2(sc->sc_bst, sc->sc_bsh, sc->sc_offset + RBC0) &
RBC_COUNT_MASK;
if (pktlen == 0) {
/*
* XXX At least one CE2 sets RBC0 == 0 occasionally, and only
* when MPE is set. It is not known why.
*/
return (0);
}
recvcount += pktlen;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (recvcount);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = pktlen;
len = MHLEN;
top = 0;
mp = &top;
while (pktlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return (recvcount);
}
len = MLEN;
}
if (pktlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
m_freem(top);
return (recvcount);
}
len = MCLBYTES;
}
if (!top) {
caddr_t newdata = (caddr_t)ALIGN(m->m_data +
sizeof (struct ether_header)) -
sizeof (struct ether_header);
len -= newdata - m->m_data;
m->m_data = newdata;
}
len = min(pktlen, len);
data = mtod(m, u_int8_t *);
if (len > 1) {
len &= ~1;
bus_space_read_raw_multi_2(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + EDP, data, len);
} else
*data = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + EDP);
m->m_len = len;
pktlen -= len;
*mp = m;
mp = &m->m_next;
}
/* Skip Rx packet. */
bus_space_write_2(sc->sc_bst, sc->sc_bsh, sc->sc_offset + DO0,
DO_SKIP_RX_PKT);
ifp->if_ipackets++;
eh = mtod(top, struct ether_header *);
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, top);
#endif
#ifdef __NetBSD__
(*ifp->if_input)(ifp, top);
#else
m_adj(top, sizeof(struct ether_header));
ether_input(ifp, eh, top);
#endif
return (recvcount);
}
/*
* Serial management for the MII.
* The DELAY's below stem from the fact that the maximum frequency
* acceptable on the MDC pin is 2.5 MHz and fast processors can easily
* go much faster than that.
*/
/* Let the MII serial management be idle for one period. */
static INLINE void xe_mdi_idle __P((struct xe_softc *));
static INLINE void
xe_mdi_idle(sc)
struct xe_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
/* Drive MDC low... */
bus_space_write_1(bst, bsh, offset + GP2, MDC_LOW);
DELAY(1);
/* and high again. */
bus_space_write_1(bst, bsh, offset + GP2, MDC_HIGH);
DELAY(1);
}
/* Pulse out one bit of data. */
static INLINE void xe_mdi_pulse __P((struct xe_softc *, int));
static INLINE void
xe_mdi_pulse(sc, data)
struct xe_softc *sc;
int data;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
u_int8_t bit = data ? MDIO_HIGH : MDIO_LOW;
/* First latch the data bit MDIO with clock bit MDC low...*/
bus_space_write_1(bst, bsh, offset + GP2, bit | MDC_LOW);
DELAY(1);
/* then raise the clock again, preserving the data bit. */
bus_space_write_1(bst, bsh, offset + GP2, bit | MDC_HIGH);
DELAY(1);
}
/* Probe one bit of data. */
static INLINE int xe_mdi_probe __P((struct xe_softc *sc));
static INLINE int
xe_mdi_probe(sc)
struct xe_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
u_int8_t x;
/* Pull clock bit MDCK low... */
bus_space_write_1(bst, bsh, offset + GP2, MDC_LOW);
DELAY(1);
/* Read data and drive clock high again. */
x = bus_space_read_1(bst, bsh, offset + GP2) & MDIO;
bus_space_write_1(bst, bsh, offset + GP2, MDC_HIGH);
DELAY(1);
return (x);
}
/* Pulse out a sequence of data bits. */
static INLINE void xe_mdi_pulse_bits __P((struct xe_softc *, u_int32_t, int));
static INLINE void
xe_mdi_pulse_bits(sc, data, len)
struct xe_softc *sc;
u_int32_t data;
int len;
{
u_int32_t mask;
for (mask = 1 << (len - 1); mask; mask >>= 1)
xe_mdi_pulse (sc, data & mask);
}
/* Read a PHY register. */
int
xe_mdi_read(self, phy, reg)
struct device *self;
int phy;
int reg;
{
struct xe_softc *sc = (struct xe_softc *)self;
int i;
u_int32_t mask;
u_int32_t data = 0;
PAGE(sc, 2);
for (i = 0; i < 32; i++) /* Synchronize. */
xe_mdi_pulse(sc, 1);
xe_mdi_pulse_bits(sc, 0x06, 4); /* Start + Read opcode */
xe_mdi_pulse_bits(sc, phy, 5); /* PHY address */
xe_mdi_pulse_bits(sc, reg, 5); /* PHY register */
xe_mdi_idle(sc); /* Turn around. */
xe_mdi_probe(sc); /* Drop initial zero bit. */
for (mask = 1 << 15; mask; mask >>= 1)
if (xe_mdi_probe(sc))
data |= mask;
xe_mdi_idle(sc);
DPRINTF(XED_MII,
("xe_mdi_read: phy %d reg %d -> %x\n", phy, reg, data));
return (data);
}
/* Write a PHY register. */
void
xe_mdi_write(self, phy, reg, value)
struct device *self;
int phy;
int reg;
int value;
{
struct xe_softc *sc = (struct xe_softc *)self;
int i;
PAGE(sc, 2);
for (i = 0; i < 32; i++) /* Synchronize. */
xe_mdi_pulse(sc, 1);
xe_mdi_pulse_bits(sc, 0x05, 4); /* Start + Write opcode */
xe_mdi_pulse_bits(sc, phy, 5); /* PHY address */
xe_mdi_pulse_bits(sc, reg, 5); /* PHY register */
xe_mdi_pulse_bits(sc, 0x02, 2); /* Turn around. */
xe_mdi_pulse_bits(sc, value, 16); /* Write the data */
xe_mdi_idle(sc); /* Idle away. */
DPRINTF(XED_MII,
("xe_mdi_write: phy %d reg %d val %x\n", phy, reg, value));
}
void
xe_statchg(self)
struct device *self;
{
/* Nothing to do. */
}
/*
* Change media according to request.
*/
int
xe_mediachange(ifp)
struct ifnet *ifp;
{
if (ifp->if_flags & IFF_UP)
xe_init(ifp->if_softc);
return (0);
}
/*
* Notify the world which media we're using.
*/
void
xe_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct xe_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
void
xe_reset(sc)
struct xe_softc *sc;
{
int s;
s = splnet();
xe_stop(sc);
xe_full_reset(sc);
xe_init(sc);
splx(s);
}
void
xe_watchdog(ifp)
struct ifnet *ifp;
{
struct xe_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++SC2IFNET(sc)->if_oerrors;
xe_reset(sc);
}
void
xe_stop(sc)
struct xe_softc *sc;
{
/* Disable interrupts. */
PAGE(sc, 0);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + CR, 0);
PAGE(sc, 1);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + IMR0, 0);
/* Power down, wait. */
PAGE(sc, 4);
bus_space_write_1(sc->sc_bst, sc->sc_bsh, sc->sc_offset + GP1, 0);
DELAY(40000);
/* Cancel watchdog timer. */
SC2IFNET(sc)->if_timer = 0;
}
void
xe_init(sc)
struct xe_softc *sc;
{
struct ifnet *ifp = SC2IFNET(sc);
int s;
DPRINTF(XED_CONFIG, ("xe_init\n"));
s = splimp();
xe_set_address(sc);
/* Set current media. */
mii_mediachg(&sc->sc_mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
}
/*
* Start outputting on the interface.
* Always called as splnet().
*/
void
xe_start(ifp)
struct ifnet *ifp;
{
struct xe_softc *sc = ifp->if_softc;
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
unsigned int s, len, pad = 0;
struct mbuf *m0, *m;
u_int16_t space;
/* Don't transmit if interface is busy or not running. */
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/* Peek at the next packet. */
m0 = ifp->if_snd.ifq_head;
if (m0 == 0)
return;
/* We need to use m->m_pkthdr.len, so require the header. */
if (!(m0->m_flags & M_PKTHDR))
panic("xe_start: no header mbuf");
len = m0->m_pkthdr.len;
/* Pad to ETHER_MIN_LEN - ETHER_CRC_LEN. */
if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
space = bus_space_read_2(bst, bsh, offset + TSO0) & 0x7fff;
if (len + pad + 2 > space) {
DPRINTF(XED_FIFO,
("%s: not enough space in output FIFO (%d > %d)\n",
sc->sc_dev.dv_xname, len + pad + 2, space));
return;
}
IF_DEQUEUE(&ifp->if_snd, m0);
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
/*
* Do the output at splhigh() so that an interrupt from another device
* won't cause a FIFO underrun.
*/
s = splhigh();
PAGE(sc, 0);
bus_space_write_2(bst, bsh, offset + TSO2, (u_int16_t)len + pad + 2);
bus_space_write_2(bst, bsh, offset + EDP, (u_int16_t)len + pad);
for (m = m0; m; ) {
if (m->m_len > 1)
bus_space_write_raw_multi_2(bst, bsh, offset + EDP,
mtod(m, u_int8_t *), m->m_len & ~1);
if (m->m_len & 1)
bus_space_write_1(bst, bsh, offset + EDP,
*(mtod(m, u_int8_t *) + m->m_len - 1));
MFREE(m, m0);
m = m0;
}
if (sc->sc_flags & XEF_MOHAWK)
bus_space_write_1(bst, bsh, offset + CR, TX_PKT | ENABLE_INT);
else {
for (; pad > 1; pad -= 2)
bus_space_write_2(bst, bsh, offset + EDP, 0);
if (pad == 1)
bus_space_write_1(bst, bsh, offset + EDP, 0);
}
splx(s);
ifp->if_timer = 5;
++ifp->if_opackets;
}
int
xe_ether_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ifaddr *ifa = (struct ifaddr *)data;
struct xe_softc *sc = ifp->if_softc;
#ifdef NS
struct ns_addr *ina;
#endif /* NS */
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
xe_init(sc);
arp_ifinit(&sc->sc_arpcom, ifa);
break;
#endif /* INET */
#ifdef NS
case AF_NS:
ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)sc->sc_arpcom.ac_enaddr;
else
bcopy(ina->x_host.c_host,
sc->sc_arpcom.ac_enaddr, ifp->if_addrlen);
/* Set new address. */
xe_init(sc);
break;
#endif /* NS */
default:
xe_init(sc);
break;
}
break;
default:
return (EINVAL);
}
return (0);
}
int
xe_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct xe_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
error = xe_ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
sc->sc_all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
PAGE(sc, 0x42);
if ((ifp->if_flags & IFF_PROMISC) ||
(ifp->if_flags & IFF_ALLMULTI))
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + SWC1,
SWC1_PROMISC | SWC1_MCAST_PROM);
else
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + SWC1, 0);
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
xe_full_reset(sc);
xe_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
xe_stop(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
sc->sc_all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
#ifdef __NetBSD__
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ec) :
ether_delmulti(ifr, &sc->sc_ec);
#else
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom) :
ether_delmulti(ifr, &sc->sc_arpcom);
#endif
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
if (!sc->sc_all_mcasts &&
!(ifp->if_flags & IFF_PROMISC))
xe_set_address(sc);
/*
* xe_set_address() can turn on all_mcasts if we run
* out of space, so check it again rather than else {}.
*/
if (sc->sc_all_mcasts)
xe_init(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error =
ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
void
xe_set_address(sc)
struct xe_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
#ifdef __NetBSD__
struct ethercom *arp = &sc->sc_ec;
#else
struct arpcom *arp = &sc->sc_arpcom;
#endif
struct ether_multi *enm;
struct ether_multistep step;
struct ifnet *ifp = SC2IFNET(sc);
int i, page, pos, num;
PAGE(sc, 0x50);
for (i = 0; i < 6; i++) {
bus_space_write_1(bst, bsh, offset + IA + i,
SC2ENADDR(sc)[(sc->sc_flags & XEF_MOHAWK) ?
5 - i : i]);
}
if (arp->ac_multicnt > 0) {
if (arp->ac_multicnt > 9) {
PAGE(sc, 0x42);
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
sc->sc_offset + SWC1,
SWC1_PROMISC | SWC1_MCAST_PROM);
return;
}
ETHER_FIRST_MULTI(step, arp, enm);
pos = IA + 6;
for (page = 0x50, num = arp->ac_multicnt; num > 0 && enm;
num--) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof (enm->enm_addrlo)) != 0) {
/*
* The multicast address is really a range;
* it's easier just to accept all multicasts.
* XXX should we be setting IFF_ALLMULTI here?
*/
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_all_mcasts=1;
break;
}
for (i = 0; i < 6; i++) {
bus_space_write_1(bst, bsh, offset + pos,
enm->enm_addrlo[
(sc->sc_flags & XEF_MOHAWK) ? 5 - i : i]);
if (++pos > 15) {
pos = IA;
page++;
PAGE(sc, page);
}
}
}
}
}
void
xe_cycle_power (sc)
struct xe_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
PAGE(sc, 4);
DELAY(1);
bus_space_write_1(bst, bsh, offset + GP1, 0);
DELAY(40000);
if (sc->sc_flags & XEF_MOHAWK)
bus_space_write_1(bst, bsh, offset + GP1, POWER_UP);
else
/* XXX What is bit 2 (aka AIC)? */
bus_space_write_1(bst, bsh, offset + GP1, POWER_UP | 4);
DELAY(20000);
}
void
xe_full_reset (sc)
struct xe_softc *sc;
{
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
/* Do an as extensive reset as possible on all functions. */
xe_cycle_power (sc);
bus_space_write_1(bst, bsh, offset + CR, SOFT_RESET);
DELAY(20000);
bus_space_write_1(bst, bsh, offset + CR, 0);
DELAY(20000);
if (sc->sc_flags & XEF_MOHAWK) {
PAGE(sc, 4);
/*
* Drive GP1 low to power up ML6692 and GP2 high to power up
* the 10Mhz chip. XXX What chip is that? The phy?
*/
bus_space_write_1(bst, bsh, offset + GP0,
GP1_OUT | GP2_OUT | GP2_WR);
}
DELAY(500000);
/* Get revision information. XXX Symbolic constants. */
sc->sc_rev = bus_space_read_1(bst, bsh, offset + BV) &
((sc->sc_flags & XEF_MOHAWK) ? 0x70 : 0x30) >> 4;
/* Media selection. XXX Maybe manual overriding too? */
if (!(sc->sc_flags & XEF_MOHAWK)) {
PAGE(sc, 4);
/*
* XXX I have no idea what this really does, it is from the
* Linux driver.
*/
bus_space_write_1(bst, bsh, offset + GP0, GP1_OUT);
}
DELAY(40000);
/* Setup the ethernet interrupt mask. */
PAGE(sc, 1);
bus_space_write_1(bst, bsh, offset + IMR0,
ISR_TX_OFLOW | ISR_PKT_TX | ISR_MAC_INT | /* ISR_RX_EARLY | */
ISR_RX_FULL | ISR_RX_PKT_REJ | ISR_FORCED_INT);
#if 0
bus_space_write_1(bst, bsh, offset + IMR0, 0xff);
#endif
if (!(sc->sc_flags & XEF_DINGO))
/* XXX What is this? Not for Dingo at least. */
bus_space_write_1(bst, bsh, offset + IMR1, 1);
/*
* Disable source insertion.
* XXX Dingo does not have this bit, but Linux does it unconditionally.
*/
if (!(sc->sc_flags & XEF_DINGO)) {
PAGE(sc, 0x42);
bus_space_write_1(bst, bsh, offset + SWC0, 0x20);
}
/* Set the local memory dividing line. */
if (sc->sc_rev != 1) {
PAGE(sc, 2);
/* XXX Symbolic constant preferrable. */
bus_space_write_2(bst, bsh, offset + RBS0, 0x2000);
}
xe_set_address(sc);
/*
* Apparently the receive byte pointer can be bad after a reset, so
* we hardwire it correctly.
*/
PAGE(sc, 0);
bus_space_write_2(bst, bsh, offset + DO0, DO_CHG_OFFSET);
/* Setup ethernet MAC registers. XXX Symbolic constants. */
PAGE(sc, 0x40);
bus_space_write_1(bst, bsh, offset + RX0MSK,
PKT_TOO_LONG | CRC_ERR | RX_OVERRUN | RX_ABORT | RX_OK);
bus_space_write_1(bst, bsh, offset + TX0MSK,
CARRIER_LOST | EXCESSIVE_COLL | TX_UNDERRUN | LATE_COLLISION |
SQE | TX_ABORT | TX_OK);
if (!(sc->sc_flags & XEF_DINGO))
/* XXX From Linux, dunno what 0xb0 means. */
bus_space_write_1(bst, bsh, offset + TX1MSK, 0xb0);
bus_space_write_1(bst, bsh, offset + RXST0, 0);
bus_space_write_1(bst, bsh, offset + TXST0, 0);
bus_space_write_1(bst, bsh, offset + TXST1, 0);
/* Enable MII function if available. */
if (LIST_FIRST(&sc->sc_mii.mii_phys)) {
PAGE(sc, 2);
bus_space_write_1(bst, bsh, offset + MSR,
bus_space_read_1(bst, bsh, offset + MSR) | SELECT_MII);
DELAY(20000);
} else {
PAGE(sc, 0);
/* XXX Do we need to do this? */
PAGE(sc, 0x42);
bus_space_write_1(bst, bsh, offset + SWC1, SWC1_AUTO_MEDIA);
DELAY(50000);
/* XXX Linux probes the media here. */
}
/* Configure the LED registers. */
PAGE(sc, 2);
/* XXX This is not good for 10base2. */
bus_space_write_1(bst, bsh, offset + LED,
LED_TX_ACT << LED1_SHIFT | LED_10MB_LINK << LED0_SHIFT);
if (sc->sc_flags & XEF_DINGO)
bus_space_write_1(bst, bsh, offset + LED3,
LED_100MB_LINK << LED3_SHIFT);
/* Enable receiver and go online. */
PAGE(sc, 0x40);
bus_space_write_1(bst, bsh, offset + CMD0, ENABLE_RX | ONLINE);
#if 0
/* XXX Linux does this here - is it necessary? */
PAGE(sc, 1);
bus_space_write_1(bst, bsh, offset + IMR0, 0xff);
if (!(sc->sc_flags & XEF_DINGO))
/* XXX What is this? Not for Dingo at least. */
bus_space_write_1(bst, bsh, offset + IMR1, 1);
#endif
/* Enable interrupts. */
PAGE(sc, 0);
bus_space_write_1(bst, bsh, offset + CR, ENABLE_INT);
/* XXX This is pure magic for me, found in the Linux driver. */
if ((sc->sc_flags & (XEF_DINGO | XEF_MODEM)) == XEF_MODEM) {
if ((bus_space_read_1(bst, bsh, offset + 0x10) & 0x01) == 0)
/* Unmask the master interrupt bit. */
bus_space_write_1(bst, bsh, offset + 0x10, 0x11);
}
/*
* The Linux driver says this:
* We should switch back to page 0 to avoid a bug in revision 0
* where regs with offset below 8 can't be read after an access
* to the MAC registers.
*/
PAGE(sc, 0);
}
#ifdef XEDEBUG
void
xe_reg_dump (sc)
struct xe_softc *sc;
{
int page, i;
bus_space_tag_t bst = sc->sc_bst;
bus_space_handle_t bsh = sc->sc_bsh;
bus_addr_t offset = sc->sc_offset;
printf("%x: Common registers: ", sc->sc_dev.dv_xname);
for (i = 0; i < 8; i++) {
printf(" %2.2x", bus_space_read_1(bst, bsh, offset + i));
}
printf("\n");
for (page = 0; page < 8; page++) {
printf("%s: Register page %2.2x: ", sc->sc_dev.dv_xname, page);
PAGE(sc, page);
for (i = 8; i < 16; i++) {
printf(" %2.2x",
bus_space_read_1(bst, bsh, offset + i));
}
printf("\n");
}
for (page = 0x40; page < 0x5f; page++) {
if (page == 0x43 || (page >= 0x46 && page <= 0x4f) ||
(page >= 0x51 && page <= 0x5e))
continue;
printf("%s: Register page %2.2x: ", sc->sc_dev.dv_xname, page);
PAGE(sc, page);
for (i = 8; i < 16; i++) {
printf(" %2.2x",
bus_space_read_1(bst, bsh, offset + i));
}
printf("\n");
}
}
#endif /* XEDEBUG */