a9ca7a3734
1.173 for details.
2200 lines
52 KiB
C
2200 lines
52 KiB
C
/* $NetBSD: kern_sig.c,v 1.274 2008/03/21 21:55:00 ad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.274 2008/03/21 21:55:00 ad Exp $");
|
|
|
|
#include "opt_ptrace.h"
|
|
#include "opt_multiprocessor.h"
|
|
#include "opt_compat_sunos.h"
|
|
#include "opt_compat_netbsd.h"
|
|
#include "opt_compat_netbsd32.h"
|
|
#include "opt_pax.h"
|
|
|
|
#define SIGPROP /* include signal properties table */
|
|
#include <sys/param.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/file.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/cpu.h>
|
|
|
|
#ifdef PAX_SEGVGUARD
|
|
#include <sys/pax.h>
|
|
#endif /* PAX_SEGVGUARD */
|
|
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
static void ksiginfo_exechook(struct proc *, void *);
|
|
static void proc_stop_callout(void *);
|
|
|
|
int sigunwait(struct proc *, const ksiginfo_t *);
|
|
void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
|
|
int sigpost(struct lwp *, sig_t, int, int);
|
|
int sigchecktrace(sigpend_t **);
|
|
void sigswitch(bool, int, int);
|
|
void sigrealloc(ksiginfo_t *);
|
|
|
|
sigset_t contsigmask, stopsigmask, sigcantmask;
|
|
struct pool sigacts_pool; /* memory pool for sigacts structures */
|
|
static void sigacts_poolpage_free(struct pool *, void *);
|
|
static void *sigacts_poolpage_alloc(struct pool *, int);
|
|
static callout_t proc_stop_ch;
|
|
|
|
static struct pool_allocator sigactspool_allocator = {
|
|
.pa_alloc = sigacts_poolpage_alloc,
|
|
.pa_free = sigacts_poolpage_free,
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
int kern_logsigexit = 1;
|
|
#else
|
|
int kern_logsigexit = 0;
|
|
#endif
|
|
|
|
static const char logcoredump[] =
|
|
"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
|
|
static const char lognocoredump[] =
|
|
"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
|
|
|
|
POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo",
|
|
NULL, IPL_VM);
|
|
|
|
/*
|
|
* signal_init:
|
|
*
|
|
* Initialize global signal-related data structures.
|
|
*/
|
|
void
|
|
signal_init(void)
|
|
{
|
|
|
|
sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
|
|
|
|
pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
|
|
sizeof(struct sigacts) > PAGE_SIZE ?
|
|
&sigactspool_allocator : &pool_allocator_nointr,
|
|
IPL_NONE);
|
|
|
|
exechook_establish(ksiginfo_exechook, NULL);
|
|
|
|
callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
|
|
callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
|
|
}
|
|
|
|
/*
|
|
* sigacts_poolpage_alloc:
|
|
*
|
|
* Allocate a page for the sigacts memory pool.
|
|
*/
|
|
static void *
|
|
sigacts_poolpage_alloc(struct pool *pp, int flags)
|
|
{
|
|
|
|
return (void *)uvm_km_alloc(kernel_map,
|
|
(PAGE_SIZE)*2, (PAGE_SIZE)*2,
|
|
((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
|
|
| UVM_KMF_WIRED);
|
|
}
|
|
|
|
/*
|
|
* sigacts_poolpage_free:
|
|
*
|
|
* Free a page on behalf of the sigacts memory pool.
|
|
*/
|
|
static void
|
|
sigacts_poolpage_free(struct pool *pp, void *v)
|
|
{
|
|
uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
|
|
}
|
|
|
|
/*
|
|
* sigactsinit:
|
|
*
|
|
* Create an initial sigctx structure, using the same signal state as
|
|
* p. If 'share' is set, share the sigctx_proc part, otherwise just
|
|
* copy it from parent.
|
|
*/
|
|
struct sigacts *
|
|
sigactsinit(struct proc *pp, int share)
|
|
{
|
|
struct sigacts *ps, *ps2;
|
|
|
|
ps = pp->p_sigacts;
|
|
|
|
if (share) {
|
|
mutex_enter(&ps->sa_mutex);
|
|
ps->sa_refcnt++;
|
|
mutex_exit(&ps->sa_mutex);
|
|
ps2 = ps;
|
|
} else {
|
|
ps2 = pool_get(&sigacts_pool, PR_WAITOK);
|
|
/* XXX IPL_SCHED to match p_smutex */
|
|
mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
|
|
mutex_enter(&ps->sa_mutex);
|
|
memcpy(&ps2->sa_sigdesc, ps->sa_sigdesc,
|
|
sizeof(ps2->sa_sigdesc));
|
|
mutex_exit(&ps->sa_mutex);
|
|
ps2->sa_refcnt = 1;
|
|
}
|
|
|
|
return ps2;
|
|
}
|
|
|
|
/*
|
|
* sigactsunshare:
|
|
*
|
|
* Make this process not share its sigctx, maintaining all
|
|
* signal state.
|
|
*/
|
|
void
|
|
sigactsunshare(struct proc *p)
|
|
{
|
|
struct sigacts *ps, *oldps;
|
|
|
|
oldps = p->p_sigacts;
|
|
if (oldps->sa_refcnt == 1)
|
|
return;
|
|
ps = pool_get(&sigacts_pool, PR_WAITOK);
|
|
/* XXX IPL_SCHED to match p_smutex */
|
|
mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
|
|
memset(&ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
|
|
p->p_sigacts = ps;
|
|
sigactsfree(oldps);
|
|
}
|
|
|
|
/*
|
|
* sigactsfree;
|
|
*
|
|
* Release a sigctx structure.
|
|
*/
|
|
void
|
|
sigactsfree(struct sigacts *ps)
|
|
{
|
|
int refcnt;
|
|
|
|
mutex_enter(&ps->sa_mutex);
|
|
refcnt = --ps->sa_refcnt;
|
|
mutex_exit(&ps->sa_mutex);
|
|
|
|
if (refcnt == 0) {
|
|
mutex_destroy(&ps->sa_mutex);
|
|
pool_put(&sigacts_pool, ps);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* siginit:
|
|
*
|
|
* Initialize signal state for process 0; set to ignore signals that
|
|
* are ignored by default and disable the signal stack. Locking not
|
|
* required as the system is still cold.
|
|
*/
|
|
void
|
|
siginit(struct proc *p)
|
|
{
|
|
struct lwp *l;
|
|
struct sigacts *ps;
|
|
int signo, prop;
|
|
|
|
ps = p->p_sigacts;
|
|
sigemptyset(&contsigmask);
|
|
sigemptyset(&stopsigmask);
|
|
sigemptyset(&sigcantmask);
|
|
for (signo = 1; signo < NSIG; signo++) {
|
|
prop = sigprop[signo];
|
|
if (prop & SA_CONT)
|
|
sigaddset(&contsigmask, signo);
|
|
if (prop & SA_STOP)
|
|
sigaddset(&stopsigmask, signo);
|
|
if (prop & SA_CANTMASK)
|
|
sigaddset(&sigcantmask, signo);
|
|
if (prop & SA_IGNORE && signo != SIGCONT)
|
|
sigaddset(&p->p_sigctx.ps_sigignore, signo);
|
|
sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
|
|
SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
|
|
}
|
|
sigemptyset(&p->p_sigctx.ps_sigcatch);
|
|
p->p_sflag &= ~PS_NOCLDSTOP;
|
|
|
|
ksiginfo_queue_init(&p->p_sigpend.sp_info);
|
|
sigemptyset(&p->p_sigpend.sp_set);
|
|
|
|
/*
|
|
* Reset per LWP state.
|
|
*/
|
|
l = LIST_FIRST(&p->p_lwps);
|
|
l->l_sigwaited = NULL;
|
|
l->l_sigstk.ss_flags = SS_DISABLE;
|
|
l->l_sigstk.ss_size = 0;
|
|
l->l_sigstk.ss_sp = 0;
|
|
ksiginfo_queue_init(&l->l_sigpend.sp_info);
|
|
sigemptyset(&l->l_sigpend.sp_set);
|
|
|
|
/* One reference. */
|
|
ps->sa_refcnt = 1;
|
|
}
|
|
|
|
/*
|
|
* execsigs:
|
|
*
|
|
* Reset signals for an exec of the specified process.
|
|
*/
|
|
void
|
|
execsigs(struct proc *p)
|
|
{
|
|
struct sigacts *ps;
|
|
struct lwp *l;
|
|
int signo, prop;
|
|
sigset_t tset;
|
|
ksiginfoq_t kq;
|
|
|
|
KASSERT(p->p_nlwps == 1);
|
|
|
|
sigactsunshare(p);
|
|
ps = p->p_sigacts;
|
|
|
|
/*
|
|
* Reset caught signals. Held signals remain held through
|
|
* l->l_sigmask (unless they were caught, and are now ignored
|
|
* by default).
|
|
*
|
|
* No need to lock yet, the process has only one LWP and
|
|
* at this point the sigacts are private to the process.
|
|
*/
|
|
sigemptyset(&tset);
|
|
for (signo = 1; signo < NSIG; signo++) {
|
|
if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
|
|
prop = sigprop[signo];
|
|
if (prop & SA_IGNORE) {
|
|
if ((prop & SA_CONT) == 0)
|
|
sigaddset(&p->p_sigctx.ps_sigignore,
|
|
signo);
|
|
sigaddset(&tset, signo);
|
|
}
|
|
SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
|
|
}
|
|
sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
|
|
SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
|
|
}
|
|
ksiginfo_queue_init(&kq);
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
sigclearall(p, &tset, &kq);
|
|
sigemptyset(&p->p_sigctx.ps_sigcatch);
|
|
|
|
/*
|
|
* Reset no zombies if child dies flag as Solaris does.
|
|
*/
|
|
p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
|
|
if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
|
|
SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
|
|
|
|
/*
|
|
* Reset per-LWP state.
|
|
*/
|
|
l = LIST_FIRST(&p->p_lwps);
|
|
l->l_sigwaited = NULL;
|
|
l->l_sigstk.ss_flags = SS_DISABLE;
|
|
l->l_sigstk.ss_size = 0;
|
|
l->l_sigstk.ss_sp = 0;
|
|
ksiginfo_queue_init(&l->l_sigpend.sp_info);
|
|
sigemptyset(&l->l_sigpend.sp_set);
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
ksiginfo_queue_drain(&kq);
|
|
}
|
|
|
|
/*
|
|
* ksiginfo_exechook:
|
|
*
|
|
* Free all pending ksiginfo entries from a process on exec.
|
|
* Additionally, drain any unused ksiginfo structures in the
|
|
* system back to the pool.
|
|
*
|
|
* XXX This should not be a hook, every process has signals.
|
|
*/
|
|
static void
|
|
ksiginfo_exechook(struct proc *p, void *v)
|
|
{
|
|
ksiginfoq_t kq;
|
|
|
|
ksiginfo_queue_init(&kq);
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
sigclearall(p, NULL, &kq);
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
ksiginfo_queue_drain(&kq);
|
|
}
|
|
|
|
/*
|
|
* ksiginfo_alloc:
|
|
*
|
|
* Allocate a new ksiginfo structure from the pool, and optionally copy
|
|
* an existing one. If the existing ksiginfo_t is from the pool, and
|
|
* has not been queued somewhere, then just return it. Additionally,
|
|
* if the existing ksiginfo_t does not contain any information beyond
|
|
* the signal number, then just return it.
|
|
*/
|
|
ksiginfo_t *
|
|
ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
|
|
{
|
|
ksiginfo_t *kp;
|
|
int s;
|
|
|
|
if (ok != NULL) {
|
|
if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
|
|
KSI_FROMPOOL)
|
|
return ok;
|
|
if (KSI_EMPTY_P(ok))
|
|
return ok;
|
|
}
|
|
|
|
s = splvm();
|
|
kp = pool_get(&ksiginfo_pool, flags);
|
|
splx(s);
|
|
if (kp == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("Out of memory allocating ksiginfo for pid %d\n",
|
|
p->p_pid);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
if (ok != NULL) {
|
|
memcpy(kp, ok, sizeof(*kp));
|
|
kp->ksi_flags &= ~KSI_QUEUED;
|
|
} else
|
|
KSI_INIT_EMPTY(kp);
|
|
|
|
kp->ksi_flags |= KSI_FROMPOOL;
|
|
|
|
return kp;
|
|
}
|
|
|
|
/*
|
|
* ksiginfo_free:
|
|
*
|
|
* If the given ksiginfo_t is from the pool and has not been queued,
|
|
* then free it.
|
|
*/
|
|
void
|
|
ksiginfo_free(ksiginfo_t *kp)
|
|
{
|
|
int s;
|
|
|
|
if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
|
|
return;
|
|
s = splvm();
|
|
pool_put(&ksiginfo_pool, kp);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* ksiginfo_queue_drain:
|
|
*
|
|
* Drain a non-empty ksiginfo_t queue.
|
|
*/
|
|
void
|
|
ksiginfo_queue_drain0(ksiginfoq_t *kq)
|
|
{
|
|
ksiginfo_t *ksi;
|
|
int s;
|
|
|
|
KASSERT(!CIRCLEQ_EMPTY(kq));
|
|
|
|
KERNEL_LOCK(1, curlwp); /* XXXSMP */
|
|
while (!CIRCLEQ_EMPTY(kq)) {
|
|
ksi = CIRCLEQ_FIRST(kq);
|
|
CIRCLEQ_REMOVE(kq, ksi, ksi_list);
|
|
s = splvm();
|
|
pool_put(&ksiginfo_pool, ksi);
|
|
splx(s);
|
|
}
|
|
KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
|
|
}
|
|
|
|
/*
|
|
* sigget:
|
|
*
|
|
* Fetch the first pending signal from a set. Optionally, also fetch
|
|
* or manufacture a ksiginfo element. Returns the number of the first
|
|
* pending signal, or zero.
|
|
*/
|
|
int
|
|
sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
|
|
{
|
|
ksiginfo_t *ksi;
|
|
sigset_t tset;
|
|
|
|
/* If there's no pending set, the signal is from the debugger. */
|
|
if (sp == NULL) {
|
|
if (out != NULL) {
|
|
KSI_INIT(out);
|
|
out->ksi_info._signo = signo;
|
|
out->ksi_info._code = SI_USER;
|
|
}
|
|
return signo;
|
|
}
|
|
|
|
/* Construct mask from signo, and 'mask'. */
|
|
if (signo == 0) {
|
|
if (mask != NULL) {
|
|
tset = *mask;
|
|
__sigandset(&sp->sp_set, &tset);
|
|
} else
|
|
tset = sp->sp_set;
|
|
|
|
/* If there are no signals pending, that's it. */
|
|
if ((signo = firstsig(&tset)) == 0)
|
|
return 0;
|
|
} else {
|
|
KASSERT(sigismember(&sp->sp_set, signo));
|
|
}
|
|
|
|
sigdelset(&sp->sp_set, signo);
|
|
|
|
/* Find siginfo and copy it out. */
|
|
CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
|
|
if (ksi->ksi_signo == signo) {
|
|
CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
|
|
KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
|
|
KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
|
|
ksi->ksi_flags &= ~KSI_QUEUED;
|
|
if (out != NULL) {
|
|
memcpy(out, ksi, sizeof(*out));
|
|
out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
|
|
}
|
|
ksiginfo_free(ksi);
|
|
return signo;
|
|
}
|
|
}
|
|
|
|
/* If there's no siginfo, then manufacture it. */
|
|
if (out != NULL) {
|
|
KSI_INIT(out);
|
|
out->ksi_info._signo = signo;
|
|
out->ksi_info._code = SI_USER;
|
|
}
|
|
|
|
return signo;
|
|
}
|
|
|
|
/*
|
|
* sigput:
|
|
*
|
|
* Append a new ksiginfo element to the list of pending ksiginfo's, if
|
|
* we need to (e.g. SA_SIGINFO was requested).
|
|
*/
|
|
void
|
|
sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
|
|
{
|
|
ksiginfo_t *kp;
|
|
struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
|
|
|
|
sigaddset(&sp->sp_set, ksi->ksi_signo);
|
|
|
|
/*
|
|
* If siginfo is not required, or there is none, then just mark the
|
|
* signal as pending.
|
|
*/
|
|
if ((sa->sa_flags & SA_SIGINFO) == 0 || KSI_EMPTY_P(ksi))
|
|
return;
|
|
|
|
KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
|
|
|
|
#ifdef notyet /* XXX: QUEUING */
|
|
if (ksi->ksi_signo < SIGRTMIN)
|
|
#endif
|
|
{
|
|
CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
|
|
if (kp->ksi_signo == ksi->ksi_signo) {
|
|
KSI_COPY(ksi, kp);
|
|
kp->ksi_flags |= KSI_QUEUED;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
ksi->ksi_flags |= KSI_QUEUED;
|
|
CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
|
|
}
|
|
|
|
/*
|
|
* sigclear:
|
|
*
|
|
* Clear all pending signals in the specified set.
|
|
*/
|
|
void
|
|
sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
|
|
{
|
|
ksiginfo_t *ksi, *next;
|
|
|
|
if (mask == NULL)
|
|
sigemptyset(&sp->sp_set);
|
|
else
|
|
sigminusset(mask, &sp->sp_set);
|
|
|
|
ksi = CIRCLEQ_FIRST(&sp->sp_info);
|
|
for (; ksi != (void *)&sp->sp_info; ksi = next) {
|
|
next = CIRCLEQ_NEXT(ksi, ksi_list);
|
|
if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
|
|
CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
|
|
KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
|
|
KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
|
|
CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sigclearall:
|
|
*
|
|
* Clear all pending signals in the specified set from a process and
|
|
* its LWPs.
|
|
*/
|
|
void
|
|
sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
|
|
{
|
|
struct lwp *l;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
sigclear(&p->p_sigpend, mask, kq);
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
sigclear(&l->l_sigpend, mask, kq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sigispending:
|
|
*
|
|
* Return true if there are pending signals for the current LWP. May
|
|
* be called unlocked provided that LW_PENDSIG is set, and that the
|
|
* signal has been posted to the appopriate queue before LW_PENDSIG is
|
|
* set.
|
|
*/
|
|
int
|
|
sigispending(struct lwp *l, int signo)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
sigset_t tset;
|
|
|
|
membar_consumer();
|
|
|
|
tset = l->l_sigpend.sp_set;
|
|
sigplusset(&p->p_sigpend.sp_set, &tset);
|
|
sigminusset(&p->p_sigctx.ps_sigignore, &tset);
|
|
sigminusset(&l->l_sigmask, &tset);
|
|
|
|
if (signo == 0) {
|
|
if (firstsig(&tset) != 0)
|
|
return EINTR;
|
|
} else if (sigismember(&tset, signo))
|
|
return EINTR;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* siginfo_alloc:
|
|
*
|
|
* Allocate a new siginfo_t structure from the pool.
|
|
*/
|
|
siginfo_t *
|
|
siginfo_alloc(int flags)
|
|
{
|
|
|
|
return pool_get(&siginfo_pool, flags);
|
|
}
|
|
|
|
/*
|
|
* siginfo_free:
|
|
*
|
|
* Return a siginfo_t structure to the pool.
|
|
*/
|
|
void
|
|
siginfo_free(void *arg)
|
|
{
|
|
|
|
pool_put(&siginfo_pool, arg);
|
|
}
|
|
|
|
void
|
|
getucontext(struct lwp *l, ucontext_t *ucp)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
ucp->uc_flags = 0;
|
|
ucp->uc_link = l->l_ctxlink;
|
|
|
|
ucp->uc_sigmask = l->l_sigmask;
|
|
ucp->uc_flags |= _UC_SIGMASK;
|
|
|
|
/*
|
|
* The (unsupplied) definition of the `current execution stack'
|
|
* in the System V Interface Definition appears to allow returning
|
|
* the main context stack.
|
|
*/
|
|
if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
|
|
ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
|
|
ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
|
|
ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
|
|
} else {
|
|
/* Simply copy alternate signal execution stack. */
|
|
ucp->uc_stack = l->l_sigstk;
|
|
}
|
|
ucp->uc_flags |= _UC_STACK;
|
|
mutex_exit(&p->p_smutex);
|
|
cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
|
|
mutex_enter(&p->p_smutex);
|
|
}
|
|
|
|
int
|
|
setucontext(struct lwp *l, const ucontext_t *ucp)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
int error;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
|
|
error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
|
|
if (error != 0)
|
|
return error;
|
|
}
|
|
|
|
mutex_exit(&p->p_smutex);
|
|
error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
|
|
mutex_enter(&p->p_smutex);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
l->l_ctxlink = ucp->uc_link;
|
|
|
|
/*
|
|
* If there was stack information, update whether or not we are
|
|
* still running on an alternate signal stack.
|
|
*/
|
|
if ((ucp->uc_flags & _UC_STACK) != 0) {
|
|
if (ucp->uc_stack.ss_flags & SS_ONSTACK)
|
|
l->l_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
l->l_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Common code for kill process group/broadcast kill. cp is calling
|
|
* process.
|
|
*/
|
|
int
|
|
killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
|
|
{
|
|
struct proc *p, *cp;
|
|
kauth_cred_t pc;
|
|
struct pgrp *pgrp;
|
|
int nfound;
|
|
int signo = ksi->ksi_signo;
|
|
|
|
cp = l->l_proc;
|
|
pc = l->l_cred;
|
|
nfound = 0;
|
|
|
|
mutex_enter(&proclist_lock);
|
|
if (all) {
|
|
/*
|
|
* broadcast
|
|
*/
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM || p == cp)
|
|
continue;
|
|
mutex_enter(&p->p_mutex);
|
|
if (kauth_authorize_process(pc,
|
|
KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
|
|
NULL) == 0) {
|
|
nfound++;
|
|
if (signo) {
|
|
mutex_enter(&proclist_mutex);
|
|
mutex_enter(&p->p_smutex);
|
|
kpsignal2(p, ksi);
|
|
mutex_exit(&p->p_smutex);
|
|
mutex_exit(&proclist_mutex);
|
|
}
|
|
}
|
|
mutex_exit(&p->p_mutex);
|
|
}
|
|
} else {
|
|
if (pgid == 0)
|
|
/*
|
|
* zero pgid means send to my process group.
|
|
*/
|
|
pgrp = cp->p_pgrp;
|
|
else {
|
|
pgrp = pg_find(pgid, PFIND_LOCKED);
|
|
if (pgrp == NULL)
|
|
goto out;
|
|
}
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
|
|
if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
|
|
continue;
|
|
mutex_enter(&p->p_mutex);
|
|
if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
|
|
p, KAUTH_ARG(signo), NULL, NULL) == 0) {
|
|
nfound++;
|
|
if (signo) {
|
|
mutex_enter(&proclist_mutex);
|
|
mutex_enter(&p->p_smutex);
|
|
if (P_ZOMBIE(p) == 0)
|
|
kpsignal2(p, ksi);
|
|
mutex_exit(&p->p_smutex);
|
|
mutex_exit(&proclist_mutex);
|
|
}
|
|
}
|
|
mutex_exit(&p->p_mutex);
|
|
}
|
|
}
|
|
out:
|
|
mutex_exit(&proclist_lock);
|
|
return (nfound ? 0 : ESRCH);
|
|
}
|
|
|
|
/*
|
|
* Send a signal to a process group. If checktty is 1, limit to members
|
|
* which have a controlling terminal.
|
|
*/
|
|
void
|
|
pgsignal(struct pgrp *pgrp, int sig, int checkctty)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
|
|
KSI_INIT_EMPTY(&ksi);
|
|
ksi.ksi_signo = sig;
|
|
kpgsignal(pgrp, &ksi, NULL, checkctty);
|
|
}
|
|
|
|
void
|
|
kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
|
|
{
|
|
struct proc *p;
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
|
|
if (pgrp)
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
|
|
if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
|
|
kpsignal(p, ksi, data);
|
|
}
|
|
|
|
/*
|
|
* Send a signal caused by a trap to the current LWP. If it will be caught
|
|
* immediately, deliver it with correct code. Otherwise, post it normally.
|
|
*/
|
|
void
|
|
trapsignal(struct lwp *l, ksiginfo_t *ksi)
|
|
{
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
int signo = ksi->ksi_signo;
|
|
|
|
KASSERT(KSI_TRAP_P(ksi));
|
|
|
|
ksi->ksi_lid = l->l_lid;
|
|
p = l->l_proc;
|
|
|
|
mutex_enter(&proclist_mutex);
|
|
mutex_enter(&p->p_smutex);
|
|
ps = p->p_sigacts;
|
|
if ((p->p_slflag & PSL_TRACED) == 0 &&
|
|
sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
|
|
!sigismember(&l->l_sigmask, signo)) {
|
|
mutex_exit(&proclist_mutex);
|
|
p->p_stats->p_ru.ru_nsignals++;
|
|
kpsendsig(l, ksi, &l->l_sigmask);
|
|
mutex_exit(&p->p_smutex);
|
|
ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler,
|
|
&l->l_sigmask, ksi);
|
|
} else {
|
|
/* XXX for core dump/debugger */
|
|
p->p_sigctx.ps_lwp = l->l_lid;
|
|
p->p_sigctx.ps_signo = ksi->ksi_signo;
|
|
p->p_sigctx.ps_code = ksi->ksi_trap;
|
|
kpsignal2(p, ksi);
|
|
mutex_exit(&proclist_mutex);
|
|
mutex_exit(&p->p_smutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in signal information and signal the parent for a child status change.
|
|
*/
|
|
void
|
|
child_psignal(struct proc *p, int mask)
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct proc *q;
|
|
int xstat;
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
xstat = p->p_xstat;
|
|
|
|
KSI_INIT(&ksi);
|
|
ksi.ksi_signo = SIGCHLD;
|
|
ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
|
|
ksi.ksi_pid = p->p_pid;
|
|
ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
|
|
ksi.ksi_status = xstat;
|
|
ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
|
|
ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
|
|
|
|
q = p->p_pptr;
|
|
|
|
mutex_exit(&p->p_smutex);
|
|
mutex_enter(&q->p_smutex);
|
|
|
|
if ((q->p_sflag & mask) == 0)
|
|
kpsignal2(q, &ksi);
|
|
|
|
mutex_exit(&q->p_smutex);
|
|
mutex_enter(&p->p_smutex);
|
|
}
|
|
|
|
void
|
|
psignal(struct proc *p, int signo)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
|
|
KSI_INIT_EMPTY(&ksi);
|
|
ksi.ksi_signo = signo;
|
|
mutex_enter(&p->p_smutex);
|
|
kpsignal2(p, &ksi);
|
|
mutex_exit(&p->p_smutex);
|
|
}
|
|
|
|
void
|
|
kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
|
|
{
|
|
fdfile_t *ff;
|
|
file_t *fp;
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
|
|
if ((p->p_sflag & PS_WEXIT) == 0 && data) {
|
|
size_t fd;
|
|
filedesc_t *fdp = p->p_fd;
|
|
|
|
/* XXXSMP locking */
|
|
ksi->ksi_fd = -1;
|
|
for (fd = 0; fd < fdp->fd_nfiles; fd++) {
|
|
if ((ff = fdp->fd_ofiles[fd]) == NULL)
|
|
continue;
|
|
if ((fp = ff->ff_file) == NULL)
|
|
continue;
|
|
if (fp->f_data == data) {
|
|
ksi->ksi_fd = fd;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mutex_enter(&p->p_smutex);
|
|
kpsignal2(p, ksi);
|
|
mutex_exit(&p->p_smutex);
|
|
}
|
|
|
|
/*
|
|
* sigismasked:
|
|
*
|
|
* Returns true if signal is ignored or masked for the specified LWP.
|
|
*/
|
|
int
|
|
sigismasked(struct lwp *l, int sig)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
|
|
return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
|
|
sigismember(&l->l_sigmask, sig));
|
|
}
|
|
|
|
/*
|
|
* sigpost:
|
|
*
|
|
* Post a pending signal to an LWP. Returns non-zero if the LWP was
|
|
* able to take the signal.
|
|
*/
|
|
int
|
|
sigpost(struct lwp *l, sig_t action, int prop, int sig)
|
|
{
|
|
int rv, masked;
|
|
|
|
KASSERT(mutex_owned(&l->l_proc->p_smutex));
|
|
|
|
/*
|
|
* If the LWP is on the way out, sigclear() will be busy draining all
|
|
* pending signals. Don't give it more.
|
|
*/
|
|
if (l->l_refcnt == 0)
|
|
return 0;
|
|
|
|
lwp_lock(l);
|
|
|
|
/*
|
|
* Have the LWP check for signals. This ensures that even if no LWP
|
|
* is found to take the signal immediately, it should be taken soon.
|
|
*/
|
|
l->l_flag |= LW_PENDSIG;
|
|
|
|
/*
|
|
* SIGCONT can be masked, but must always restart stopped LWPs.
|
|
*/
|
|
masked = sigismember(&l->l_sigmask, sig);
|
|
if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
|
|
lwp_unlock(l);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If killing the process, make it run fast.
|
|
*/
|
|
if (__predict_false((prop & SA_KILL) != 0) &&
|
|
action == SIG_DFL && l->l_priority < MAXPRI_USER) {
|
|
KASSERT(l->l_class == SCHED_OTHER);
|
|
lwp_changepri(l, MAXPRI_USER);
|
|
}
|
|
|
|
/*
|
|
* If the LWP is running or on a run queue, then we win. If it's
|
|
* sleeping interruptably, wake it and make it take the signal. If
|
|
* the sleep isn't interruptable, then the chances are it will get
|
|
* to see the signal soon anyhow. If suspended, it can't take the
|
|
* signal right now. If it's LWP private or for all LWPs, save it
|
|
* for later; otherwise punt.
|
|
*/
|
|
rv = 0;
|
|
|
|
switch (l->l_stat) {
|
|
case LSRUN:
|
|
case LSONPROC:
|
|
lwp_need_userret(l);
|
|
rv = 1;
|
|
break;
|
|
|
|
case LSSLEEP:
|
|
if ((l->l_flag & LW_SINTR) != 0) {
|
|
/* setrunnable() will release the lock. */
|
|
setrunnable(l);
|
|
return 1;
|
|
}
|
|
break;
|
|
|
|
case LSSUSPENDED:
|
|
if ((prop & SA_KILL) != 0) {
|
|
/* lwp_continue() will release the lock. */
|
|
lwp_continue(l);
|
|
return 1;
|
|
}
|
|
break;
|
|
|
|
case LSSTOP:
|
|
if ((prop & SA_STOP) != 0)
|
|
break;
|
|
|
|
/*
|
|
* If the LWP is stopped and we are sending a continue
|
|
* signal, then start it again.
|
|
*/
|
|
if ((prop & SA_CONT) != 0) {
|
|
if (l->l_wchan != NULL) {
|
|
l->l_stat = LSSLEEP;
|
|
l->l_proc->p_nrlwps++;
|
|
rv = 1;
|
|
break;
|
|
}
|
|
/* setrunnable() will release the lock. */
|
|
setrunnable(l);
|
|
return 1;
|
|
} else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
|
|
/* setrunnable() will release the lock. */
|
|
setrunnable(l);
|
|
return 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
lwp_unlock(l);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Notify an LWP that it has a pending signal.
|
|
*/
|
|
void
|
|
signotify(struct lwp *l)
|
|
{
|
|
KASSERT(lwp_locked(l, NULL));
|
|
|
|
l->l_flag |= LW_PENDSIG;
|
|
lwp_need_userret(l);
|
|
}
|
|
|
|
/*
|
|
* Find an LWP within process p that is waiting on signal ksi, and hand
|
|
* it on.
|
|
*/
|
|
int
|
|
sigunwait(struct proc *p, const ksiginfo_t *ksi)
|
|
{
|
|
struct lwp *l;
|
|
int signo;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
signo = ksi->ksi_signo;
|
|
|
|
if (ksi->ksi_lid != 0) {
|
|
/*
|
|
* Signal came via _lwp_kill(). Find the LWP and see if
|
|
* it's interested.
|
|
*/
|
|
if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
|
|
return 0;
|
|
if (l->l_sigwaited == NULL ||
|
|
!sigismember(&l->l_sigwaitset, signo))
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* Look for any LWP that may be interested.
|
|
*/
|
|
LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
|
|
KASSERT(l->l_sigwaited != NULL);
|
|
if (sigismember(&l->l_sigwaitset, signo))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (l != NULL) {
|
|
l->l_sigwaited->ksi_info = ksi->ksi_info;
|
|
l->l_sigwaited = NULL;
|
|
LIST_REMOVE(l, l_sigwaiter);
|
|
cv_signal(&l->l_sigcv);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send the signal to the process. If the signal has an action, the action
|
|
* is usually performed by the target process rather than the caller; we add
|
|
* the signal to the set of pending signals for the process.
|
|
*
|
|
* Exceptions:
|
|
* o When a stop signal is sent to a sleeping process that takes the
|
|
* default action, the process is stopped without awakening it.
|
|
* o SIGCONT restarts stopped processes (or puts them back to sleep)
|
|
* regardless of the signal action (eg, blocked or ignored).
|
|
*
|
|
* Other ignored signals are discarded immediately.
|
|
*/
|
|
void
|
|
kpsignal2(struct proc *p, ksiginfo_t *ksi)
|
|
{
|
|
int prop, lid, toall, signo = ksi->ksi_signo;
|
|
struct sigacts *sa;
|
|
struct lwp *l;
|
|
ksiginfo_t *kp;
|
|
ksiginfoq_t kq;
|
|
sig_t action;
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
|
|
KASSERT(signo > 0 && signo < NSIG);
|
|
|
|
/*
|
|
* If the process is being created by fork, is a zombie or is
|
|
* exiting, then just drop the signal here and bail out.
|
|
*/
|
|
if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
|
|
return;
|
|
|
|
/*
|
|
* Notify any interested parties of the signal.
|
|
*/
|
|
KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
|
|
|
|
/*
|
|
* Some signals including SIGKILL must act on the entire process.
|
|
*/
|
|
kp = NULL;
|
|
prop = sigprop[signo];
|
|
toall = ((prop & SA_TOALL) != 0);
|
|
|
|
if (toall)
|
|
lid = 0;
|
|
else
|
|
lid = ksi->ksi_lid;
|
|
|
|
/*
|
|
* If proc is traced, always give parent a chance.
|
|
*/
|
|
if (p->p_slflag & PSL_TRACED) {
|
|
action = SIG_DFL;
|
|
|
|
if (lid == 0) {
|
|
/*
|
|
* If the process is being traced and the signal
|
|
* is being caught, make sure to save any ksiginfo.
|
|
*/
|
|
if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
|
|
return;
|
|
sigput(&p->p_sigpend, p, kp);
|
|
}
|
|
} else {
|
|
/*
|
|
* If the signal was the result of a trap and is not being
|
|
* caught, then reset it to default action so that the
|
|
* process dumps core immediately.
|
|
*/
|
|
if (KSI_TRAP_P(ksi)) {
|
|
sa = p->p_sigacts;
|
|
mutex_enter(&sa->sa_mutex);
|
|
if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
|
|
sigdelset(&p->p_sigctx.ps_sigignore, signo);
|
|
SIGACTION(p, signo).sa_handler = SIG_DFL;
|
|
}
|
|
mutex_exit(&sa->sa_mutex);
|
|
}
|
|
|
|
/*
|
|
* If the signal is being ignored, then drop it. Note: we
|
|
* don't set SIGCONT in ps_sigignore, and if it is set to
|
|
* SIG_IGN, action will be SIG_DFL here.
|
|
*/
|
|
if (sigismember(&p->p_sigctx.ps_sigignore, signo))
|
|
return;
|
|
|
|
else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
|
|
action = SIG_CATCH;
|
|
else {
|
|
action = SIG_DFL;
|
|
|
|
/*
|
|
* If sending a tty stop signal to a member of an
|
|
* orphaned process group, discard the signal here if
|
|
* the action is default; don't stop the process below
|
|
* if sleeping, and don't clear any pending SIGCONT.
|
|
*/
|
|
if (prop & SA_TTYSTOP &&
|
|
(p->p_sflag & PS_ORPHANPG) != 0)
|
|
return;
|
|
|
|
if (prop & SA_KILL && p->p_nice > NZERO)
|
|
p->p_nice = NZERO;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If stopping or continuing a process, discard any pending
|
|
* signals that would do the inverse.
|
|
*/
|
|
if ((prop & (SA_CONT | SA_STOP)) != 0) {
|
|
ksiginfo_queue_init(&kq);
|
|
if ((prop & SA_CONT) != 0)
|
|
sigclear(&p->p_sigpend, &stopsigmask, &kq);
|
|
if ((prop & SA_STOP) != 0)
|
|
sigclear(&p->p_sigpend, &contsigmask, &kq);
|
|
ksiginfo_queue_drain(&kq); /* XXXSMP */
|
|
}
|
|
|
|
/*
|
|
* If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
|
|
* please!), check if any LWPs are waiting on it. If yes, pass on
|
|
* the signal info. The signal won't be processed further here.
|
|
*/
|
|
if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
|
|
p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
|
|
sigunwait(p, ksi))
|
|
return;
|
|
|
|
/*
|
|
* XXXSMP Should be allocated by the caller, we're holding locks
|
|
* here.
|
|
*/
|
|
if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
|
|
return;
|
|
|
|
/*
|
|
* LWP private signals are easy - just find the LWP and post
|
|
* the signal to it.
|
|
*/
|
|
if (lid != 0) {
|
|
l = lwp_find(p, lid);
|
|
if (l != NULL) {
|
|
sigput(&l->l_sigpend, p, kp);
|
|
membar_producer();
|
|
(void)sigpost(l, action, prop, kp->ksi_signo);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Some signals go to all LWPs, even if posted with _lwp_kill().
|
|
*/
|
|
if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
|
|
if ((p->p_slflag & PSL_TRACED) != 0)
|
|
goto deliver;
|
|
|
|
/*
|
|
* If SIGCONT is default (or ignored) and process is
|
|
* asleep, we are finished; the process should not
|
|
* be awakened.
|
|
*/
|
|
if ((prop & SA_CONT) != 0 && action == SIG_DFL)
|
|
goto out;
|
|
|
|
sigput(&p->p_sigpend, p, kp);
|
|
} else {
|
|
/*
|
|
* Process is stopped or stopping. If traced, then no
|
|
* further action is necessary.
|
|
*/
|
|
if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL)
|
|
goto out;
|
|
|
|
if ((prop & (SA_CONT | SA_KILL)) != 0) {
|
|
/*
|
|
* Re-adjust p_nstopchild if the process wasn't
|
|
* collected by its parent.
|
|
*/
|
|
p->p_stat = SACTIVE;
|
|
p->p_sflag &= ~PS_STOPPING;
|
|
if (!p->p_waited)
|
|
p->p_pptr->p_nstopchild--;
|
|
|
|
/*
|
|
* If SIGCONT is default (or ignored), we continue
|
|
* the process but don't leave the signal in
|
|
* ps_siglist, as it has no further action. If
|
|
* SIGCONT is held, we continue the process and
|
|
* leave the signal in ps_siglist. If the process
|
|
* catches SIGCONT, let it handle the signal itself.
|
|
* If it isn't waiting on an event, then it goes
|
|
* back to run state. Otherwise, process goes back
|
|
* to sleep state.
|
|
*/
|
|
if ((prop & SA_CONT) == 0 || action != SIG_DFL)
|
|
sigput(&p->p_sigpend, p, kp);
|
|
} else if ((prop & SA_STOP) != 0) {
|
|
/*
|
|
* Already stopped, don't need to stop again.
|
|
* (If we did the shell could get confused.)
|
|
*/
|
|
goto out;
|
|
} else
|
|
sigput(&p->p_sigpend, p, kp);
|
|
}
|
|
|
|
deliver:
|
|
/*
|
|
* Before we set LW_PENDSIG on any LWP, ensure that the signal is
|
|
* visible on the per process list (for sigispending()). This
|
|
* is unlikely to be needed in practice, but...
|
|
*/
|
|
membar_producer();
|
|
|
|
/*
|
|
* Try to find an LWP that can take the signal.
|
|
*/
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling)
|
|
if (sigpost(l, action, prop, kp->ksi_signo) && !toall)
|
|
break;
|
|
|
|
out:
|
|
/*
|
|
* If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
|
|
* with locks held. The caller should take care of this.
|
|
*/
|
|
ksiginfo_free(kp);
|
|
}
|
|
|
|
void
|
|
kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
(*p->p_emul->e_sendsig)(ksi, mask);
|
|
}
|
|
|
|
/*
|
|
* Stop any LWPs sleeping interruptably.
|
|
*/
|
|
static void
|
|
proc_stop_lwps(struct proc *p)
|
|
{
|
|
struct lwp *l;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
KASSERT((p->p_sflag & PS_STOPPING) != 0);
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
lwp_lock(l);
|
|
if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
|
|
l->l_stat = LSSTOP;
|
|
p->p_nrlwps--;
|
|
}
|
|
lwp_unlock(l);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish stopping of a process. Mark it stopped and notify the parent.
|
|
*
|
|
* Drop p_smutex briefly if PS_NOTIFYSTOP is set and ppsig is true.
|
|
*/
|
|
static void
|
|
proc_stop_done(struct proc *p, bool ppsig, int ppmask)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
KASSERT((p->p_sflag & PS_STOPPING) != 0);
|
|
KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
|
|
|
|
p->p_sflag &= ~PS_STOPPING;
|
|
p->p_stat = SSTOP;
|
|
p->p_waited = 0;
|
|
p->p_pptr->p_nstopchild++;
|
|
if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
|
|
if (ppsig) {
|
|
/* child_psignal drops p_smutex briefly. */
|
|
child_psignal(p, ppmask);
|
|
}
|
|
cv_broadcast(&p->p_pptr->p_waitcv);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop the current process and switch away when being stopped or traced.
|
|
*/
|
|
void
|
|
sigswitch(bool ppsig, int ppmask, int signo)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
struct proc *p = l->l_proc;
|
|
#ifdef MULTIPROCESSOR
|
|
int biglocks;
|
|
#endif
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
KASSERT(l->l_stat == LSONPROC);
|
|
KASSERT(p->p_nrlwps > 0);
|
|
|
|
/*
|
|
* On entry we know that the process needs to stop. If it's
|
|
* the result of a 'sideways' stop signal that has been sourced
|
|
* through issignal(), then stop other LWPs in the process too.
|
|
*/
|
|
if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
|
|
KASSERT(signo != 0);
|
|
proc_stop(p, 1, signo);
|
|
KASSERT(p->p_nrlwps > 0);
|
|
}
|
|
|
|
/*
|
|
* If we are the last live LWP, and the stop was a result of
|
|
* a new signal, then signal the parent.
|
|
*/
|
|
if ((p->p_sflag & PS_STOPPING) != 0) {
|
|
if (!mutex_tryenter(&proclist_mutex)) {
|
|
mutex_exit(&p->p_smutex);
|
|
mutex_enter(&proclist_mutex);
|
|
mutex_enter(&p->p_smutex);
|
|
}
|
|
|
|
if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
|
|
/*
|
|
* Note that proc_stop_done() can drop
|
|
* p->p_smutex briefly.
|
|
*/
|
|
proc_stop_done(p, ppsig, ppmask);
|
|
}
|
|
|
|
mutex_exit(&proclist_mutex);
|
|
}
|
|
|
|
/*
|
|
* Unlock and switch away.
|
|
*/
|
|
KERNEL_UNLOCK_ALL(l, &biglocks);
|
|
if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
|
|
p->p_nrlwps--;
|
|
lwp_lock(l);
|
|
KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
|
|
l->l_stat = LSSTOP;
|
|
lwp_unlock(l);
|
|
}
|
|
|
|
mutex_exit(&p->p_smutex);
|
|
lwp_lock(l);
|
|
mi_switch(l);
|
|
KERNEL_LOCK(biglocks, l);
|
|
mutex_enter(&p->p_smutex);
|
|
}
|
|
|
|
/*
|
|
* Check for a signal from the debugger.
|
|
*/
|
|
int
|
|
sigchecktrace(sigpend_t **spp)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
struct proc *p = l->l_proc;
|
|
int signo;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
/*
|
|
* If we are no longer being traced, or the parent didn't
|
|
* give us a signal, look for more signals.
|
|
*/
|
|
if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
|
|
return 0;
|
|
|
|
/* If there's a pending SIGKILL, process it immediately. */
|
|
if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
|
|
return 0;
|
|
|
|
/*
|
|
* If the new signal is being masked, look for other signals.
|
|
* `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
|
|
*/
|
|
signo = p->p_xstat;
|
|
p->p_xstat = 0;
|
|
if ((sigprop[signo] & SA_TOLWP) != 0)
|
|
*spp = &l->l_sigpend;
|
|
else
|
|
*spp = &p->p_sigpend;
|
|
if (sigismember(&l->l_sigmask, signo))
|
|
signo = 0;
|
|
|
|
return signo;
|
|
}
|
|
|
|
/*
|
|
* If the current process has received a signal (should be caught or cause
|
|
* termination, should interrupt current syscall), return the signal number.
|
|
*
|
|
* Stop signals with default action are processed immediately, then cleared;
|
|
* they aren't returned. This is checked after each entry to the system for
|
|
* a syscall or trap.
|
|
*
|
|
* We will also return -1 if the process is exiting and the current LWP must
|
|
* follow suit.
|
|
*
|
|
* Note that we may be called while on a sleep queue, so MUST NOT sleep. We
|
|
* can switch away, though.
|
|
*/
|
|
int
|
|
issignal(struct lwp *l)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
int signo = 0, prop;
|
|
sigpend_t *sp = NULL;
|
|
sigset_t ss;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
for (;;) {
|
|
/* Discard any signals that we have decided not to take. */
|
|
if (signo != 0)
|
|
(void)sigget(sp, NULL, signo, NULL);
|
|
|
|
/*
|
|
* If the process is stopped/stopping, then stop ourselves
|
|
* now that we're on the kernel/userspace boundary. When
|
|
* we awaken, check for a signal from the debugger.
|
|
*/
|
|
if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
|
|
sigswitch(true, PS_NOCLDSTOP, 0);
|
|
signo = sigchecktrace(&sp);
|
|
} else
|
|
signo = 0;
|
|
|
|
/*
|
|
* If the debugger didn't provide a signal, find a pending
|
|
* signal from our set. Check per-LWP signals first, and
|
|
* then per-process.
|
|
*/
|
|
if (signo == 0) {
|
|
sp = &l->l_sigpend;
|
|
ss = sp->sp_set;
|
|
if ((p->p_sflag & PS_PPWAIT) != 0)
|
|
sigminusset(&stopsigmask, &ss);
|
|
sigminusset(&l->l_sigmask, &ss);
|
|
|
|
if ((signo = firstsig(&ss)) == 0) {
|
|
sp = &p->p_sigpend;
|
|
ss = sp->sp_set;
|
|
if ((p->p_sflag & PS_PPWAIT) != 0)
|
|
sigminusset(&stopsigmask, &ss);
|
|
sigminusset(&l->l_sigmask, &ss);
|
|
|
|
if ((signo = firstsig(&ss)) == 0) {
|
|
/*
|
|
* No signal pending - clear the
|
|
* indicator and bail out.
|
|
*/
|
|
lwp_lock(l);
|
|
l->l_flag &= ~LW_PENDSIG;
|
|
lwp_unlock(l);
|
|
sp = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We should see pending but ignored signals only if
|
|
* we are being traced.
|
|
*/
|
|
if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
|
|
(p->p_slflag & PSL_TRACED) == 0) {
|
|
/* Discard the signal. */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If traced, always stop, and stay stopped until released
|
|
* by the debugger. If the our parent process is waiting
|
|
* for us, don't hang as we could deadlock.
|
|
*/
|
|
if ((p->p_slflag & PSL_TRACED) != 0 &&
|
|
(p->p_sflag & PS_PPWAIT) == 0 && signo != SIGKILL) {
|
|
/* Take the signal. */
|
|
(void)sigget(sp, NULL, signo, NULL);
|
|
p->p_xstat = signo;
|
|
|
|
/* Emulation-specific handling of signal trace */
|
|
if (p->p_emul->e_tracesig == NULL ||
|
|
(*p->p_emul->e_tracesig)(p, signo) == 0)
|
|
sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
|
|
signo);
|
|
|
|
/* Check for a signal from the debugger. */
|
|
if ((signo = sigchecktrace(&sp)) == 0)
|
|
continue;
|
|
}
|
|
|
|
prop = sigprop[signo];
|
|
|
|
/*
|
|
* Decide whether the signal should be returned.
|
|
*/
|
|
switch ((long)SIGACTION(p, signo).sa_handler) {
|
|
case (long)SIG_DFL:
|
|
/*
|
|
* Don't take default actions on system processes.
|
|
*/
|
|
if (p->p_pid <= 1) {
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Are you sure you want to ignore SIGSEGV
|
|
* in init? XXX
|
|
*/
|
|
printf_nolog("Process (pid %d) got sig %d\n",
|
|
p->p_pid, signo);
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If there is a pending stop signal to process with
|
|
* default action, stop here, then clear the signal.
|
|
* However, if process is member of an orphaned
|
|
* process group, ignore tty stop signals.
|
|
*/
|
|
if (prop & SA_STOP) {
|
|
if (p->p_slflag & PSL_TRACED ||
|
|
((p->p_sflag & PS_ORPHANPG) != 0 &&
|
|
prop & SA_TTYSTOP)) {
|
|
/* Ignore the signal. */
|
|
continue;
|
|
}
|
|
/* Take the signal. */
|
|
(void)sigget(sp, NULL, signo, NULL);
|
|
p->p_xstat = signo;
|
|
signo = 0;
|
|
sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
|
|
} else if (prop & SA_IGNORE) {
|
|
/*
|
|
* Except for SIGCONT, shouldn't get here.
|
|
* Default action is to ignore; drop it.
|
|
*/
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case (long)SIG_IGN:
|
|
#ifdef DEBUG_ISSIGNAL
|
|
/*
|
|
* Masking above should prevent us ever trying
|
|
* to take action on an ignored signal other
|
|
* than SIGCONT, unless process is traced.
|
|
*/
|
|
if ((prop & SA_CONT) == 0 &&
|
|
(p->p_slflag & PSL_TRACED) == 0)
|
|
printf_nolog("issignal\n");
|
|
#endif
|
|
continue;
|
|
|
|
default:
|
|
/*
|
|
* This signal has an action, let postsig() process
|
|
* it.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
l->l_sigpendset = sp;
|
|
return signo;
|
|
}
|
|
|
|
/*
|
|
* Take the action for the specified signal
|
|
* from the current set of pending signals.
|
|
*/
|
|
void
|
|
postsig(int signo)
|
|
{
|
|
struct lwp *l;
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
sig_t action;
|
|
sigset_t *returnmask;
|
|
ksiginfo_t ksi;
|
|
|
|
l = curlwp;
|
|
p = l->l_proc;
|
|
ps = p->p_sigacts;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
KASSERT(signo > 0);
|
|
|
|
/*
|
|
* Set the new mask value and also defer further occurrences of this
|
|
* signal.
|
|
*
|
|
* Special case: user has done a sigsuspend. Here the current mask is
|
|
* not of interest, but rather the mask from before the sigsuspen is
|
|
* what we want restored after the signal processing is completed.
|
|
*/
|
|
if (l->l_sigrestore) {
|
|
returnmask = &l->l_sigoldmask;
|
|
l->l_sigrestore = 0;
|
|
} else
|
|
returnmask = &l->l_sigmask;
|
|
|
|
/*
|
|
* Commit to taking the signal before releasing the mutex.
|
|
*/
|
|
action = SIGACTION_PS(ps, signo).sa_handler;
|
|
p->p_stats->p_ru.ru_nsignals++;
|
|
sigget(l->l_sigpendset, &ksi, signo, NULL);
|
|
|
|
if (ktrpoint(KTR_PSIG)) {
|
|
mutex_exit(&p->p_smutex);
|
|
ktrpsig(signo, action, returnmask, NULL);
|
|
mutex_enter(&p->p_smutex);
|
|
}
|
|
|
|
if (action == SIG_DFL) {
|
|
/*
|
|
* Default action, where the default is to kill
|
|
* the process. (Other cases were ignored above.)
|
|
*/
|
|
sigexit(l, signo);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we get here, the signal must be caught.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
|
|
panic("postsig action");
|
|
#endif
|
|
|
|
kpsendsig(l, &ksi, returnmask);
|
|
}
|
|
|
|
/*
|
|
* sendsig_reset:
|
|
*
|
|
* Reset the signal action. Called from emulation specific sendsig()
|
|
* before unlocking to deliver the signal.
|
|
*/
|
|
void
|
|
sendsig_reset(struct lwp *l, int signo)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
struct sigacts *ps = p->p_sigacts;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
p->p_sigctx.ps_lwp = 0;
|
|
p->p_sigctx.ps_code = 0;
|
|
p->p_sigctx.ps_signo = 0;
|
|
|
|
mutex_enter(&ps->sa_mutex);
|
|
sigplusset(&SIGACTION_PS(ps, signo).sa_mask, &l->l_sigmask);
|
|
if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signo);
|
|
if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
|
|
sigaddset(&p->p_sigctx.ps_sigignore, signo);
|
|
SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
|
|
}
|
|
mutex_exit(&ps->sa_mutex);
|
|
}
|
|
|
|
/*
|
|
* Kill the current process for stated reason.
|
|
*/
|
|
void
|
|
killproc(struct proc *p, const char *why)
|
|
{
|
|
log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
|
|
uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
|
|
mutex_enter(&proclist_mutex); /* XXXSMP */
|
|
psignal(p, SIGKILL);
|
|
mutex_exit(&proclist_mutex); /* XXXSMP */
|
|
}
|
|
|
|
/*
|
|
* Force the current process to exit with the specified signal, dumping core
|
|
* if appropriate. We bypass the normal tests for masked and caught
|
|
* signals, allowing unrecoverable failures to terminate the process without
|
|
* changing signal state. Mark the accounting record with the signal
|
|
* termination. If dumping core, save the signal number for the debugger.
|
|
* Calls exit and does not return.
|
|
*/
|
|
void
|
|
sigexit(struct lwp *l, int signo)
|
|
{
|
|
int exitsig, error, docore;
|
|
struct proc *p;
|
|
struct lwp *t;
|
|
|
|
p = l->l_proc;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
KERNEL_UNLOCK_ALL(l, NULL);
|
|
|
|
/*
|
|
* Don't permit coredump() multiple times in the same process.
|
|
* Call back into sigexit, where we will be suspended until
|
|
* the deed is done. Note that this is a recursive call, but
|
|
* LW_WCORE will prevent us from coming back this way.
|
|
*/
|
|
if ((p->p_sflag & PS_WCORE) != 0) {
|
|
lwp_lock(l);
|
|
l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
|
|
lwp_unlock(l);
|
|
mutex_exit(&p->p_smutex);
|
|
lwp_userret(l);
|
|
#ifdef DIAGNOSTIC
|
|
panic("sigexit");
|
|
#endif
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Prepare all other LWPs for exit. If dumping core, suspend them
|
|
* so that their registers are available long enough to be dumped.
|
|
*/
|
|
if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
|
|
p->p_sflag |= PS_WCORE;
|
|
for (;;) {
|
|
LIST_FOREACH(t, &p->p_lwps, l_sibling) {
|
|
lwp_lock(t);
|
|
if (t == l) {
|
|
t->l_flag &= ~LW_WSUSPEND;
|
|
lwp_unlock(t);
|
|
continue;
|
|
}
|
|
t->l_flag |= (LW_WCORE | LW_WEXIT);
|
|
lwp_suspend(l, t);
|
|
}
|
|
|
|
if (p->p_nrlwps == 1)
|
|
break;
|
|
|
|
/*
|
|
* Kick any LWPs sitting in lwp_wait1(), and wait
|
|
* for everyone else to stop before proceeding.
|
|
*/
|
|
p->p_nlwpwait++;
|
|
cv_broadcast(&p->p_lwpcv);
|
|
cv_wait(&p->p_lwpcv, &p->p_smutex);
|
|
p->p_nlwpwait--;
|
|
}
|
|
}
|
|
|
|
exitsig = signo;
|
|
p->p_acflag |= AXSIG;
|
|
p->p_sigctx.ps_signo = signo;
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
KERNEL_LOCK(1, l);
|
|
|
|
if (docore) {
|
|
if ((error = coredump(l, NULL)) == 0)
|
|
exitsig |= WCOREFLAG;
|
|
|
|
if (kern_logsigexit) {
|
|
int uid = l->l_cred ?
|
|
(int)kauth_cred_geteuid(l->l_cred) : -1;
|
|
|
|
if (error)
|
|
log(LOG_INFO, lognocoredump, p->p_pid,
|
|
p->p_comm, uid, signo, error);
|
|
else
|
|
log(LOG_INFO, logcoredump, p->p_pid,
|
|
p->p_comm, uid, signo);
|
|
}
|
|
|
|
#ifdef PAX_SEGVGUARD
|
|
pax_segvguard(l, p->p_textvp, p->p_comm, true);
|
|
#endif /* PAX_SEGVGUARD */
|
|
}
|
|
|
|
/* Acquire the sched state mutex. exit1() will release it. */
|
|
mutex_enter(&p->p_smutex);
|
|
|
|
/* No longer dumping core. */
|
|
p->p_sflag &= ~PS_WCORE;
|
|
|
|
exit1(l, W_EXITCODE(0, exitsig));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Put process 'p' into the stopped state and optionally, notify the parent.
|
|
*/
|
|
void
|
|
proc_stop(struct proc *p, int notify, int signo)
|
|
{
|
|
struct lwp *l;
|
|
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
/*
|
|
* First off, set the stopping indicator and bring all sleeping
|
|
* LWPs to a halt so they are included in p->p_nrlwps. We musn't
|
|
* unlock between here and the p->p_nrlwps check below.
|
|
*/
|
|
p->p_sflag |= PS_STOPPING;
|
|
if (notify)
|
|
p->p_sflag |= PS_NOTIFYSTOP;
|
|
else
|
|
p->p_sflag &= ~PS_NOTIFYSTOP;
|
|
membar_producer();
|
|
|
|
proc_stop_lwps(p);
|
|
|
|
/*
|
|
* If there are no LWPs available to take the signal, then we
|
|
* signal the parent process immediately. Otherwise, the last
|
|
* LWP to stop will take care of it.
|
|
*/
|
|
|
|
if (p->p_nrlwps == 0) {
|
|
proc_stop_done(p, true, PS_NOCLDSTOP);
|
|
} else {
|
|
/*
|
|
* Have the remaining LWPs come to a halt, and trigger
|
|
* proc_stop_callout() to ensure that they do.
|
|
*/
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling)
|
|
sigpost(l, SIG_DFL, SA_STOP, signo);
|
|
callout_schedule(&proc_stop_ch, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When stopping a process, we do not immediatly set sleeping LWPs stopped,
|
|
* but wait for them to come to a halt at the kernel-user boundary. This is
|
|
* to allow LWPs to release any locks that they may hold before stopping.
|
|
*
|
|
* Non-interruptable sleeps can be long, and there is the potential for an
|
|
* LWP to begin sleeping interruptably soon after the process has been set
|
|
* stopping (PS_STOPPING). These LWPs will not notice that the process is
|
|
* stopping, and so complete halt of the process and the return of status
|
|
* information to the parent could be delayed indefinitely.
|
|
*
|
|
* To handle this race, proc_stop_callout() runs once per tick while there
|
|
* are stopping processes in the system. It sets LWPs that are sleeping
|
|
* interruptably into the LSSTOP state.
|
|
*
|
|
* Note that we are not concerned about keeping all LWPs stopped while the
|
|
* process is stopped: stopped LWPs can awaken briefly to handle signals.
|
|
* What we do need to ensure is that all LWPs in a stopping process have
|
|
* stopped at least once, so that notification can be sent to the parent
|
|
* process.
|
|
*/
|
|
static void
|
|
proc_stop_callout(void *cookie)
|
|
{
|
|
bool more, restart;
|
|
struct proc *p;
|
|
|
|
(void)cookie;
|
|
|
|
do {
|
|
restart = false;
|
|
more = false;
|
|
|
|
mutex_enter(&proclist_lock);
|
|
mutex_enter(&proclist_mutex);
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
mutex_enter(&p->p_smutex);
|
|
|
|
if ((p->p_sflag & PS_STOPPING) == 0) {
|
|
mutex_exit(&p->p_smutex);
|
|
continue;
|
|
}
|
|
|
|
/* Stop any LWPs sleeping interruptably. */
|
|
proc_stop_lwps(p);
|
|
if (p->p_nrlwps == 0) {
|
|
/*
|
|
* We brought the process to a halt.
|
|
* Mark it as stopped and notify the
|
|
* parent.
|
|
*/
|
|
if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
|
|
/*
|
|
* Note that proc_stop_done() will
|
|
* drop p->p_smutex briefly.
|
|
* Arrange to restart and check
|
|
* all processes again.
|
|
*/
|
|
restart = true;
|
|
}
|
|
proc_stop_done(p, true, PS_NOCLDSTOP);
|
|
} else
|
|
more = true;
|
|
|
|
mutex_exit(&p->p_smutex);
|
|
if (restart)
|
|
break;
|
|
}
|
|
mutex_exit(&proclist_mutex);
|
|
mutex_exit(&proclist_lock);
|
|
} while (restart);
|
|
|
|
/*
|
|
* If we noted processes that are stopping but still have
|
|
* running LWPs, then arrange to check again in 1 tick.
|
|
*/
|
|
if (more)
|
|
callout_schedule(&proc_stop_ch, 1);
|
|
}
|
|
|
|
/*
|
|
* Given a process in state SSTOP, set the state back to SACTIVE and
|
|
* move LSSTOP'd LWPs to LSSLEEP or make them runnable.
|
|
*/
|
|
void
|
|
proc_unstop(struct proc *p)
|
|
{
|
|
struct lwp *l;
|
|
int sig;
|
|
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
KASSERT(mutex_owned(&p->p_smutex));
|
|
|
|
p->p_stat = SACTIVE;
|
|
p->p_sflag &= ~PS_STOPPING;
|
|
sig = p->p_xstat;
|
|
|
|
if (!p->p_waited)
|
|
p->p_pptr->p_nstopchild--;
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
lwp_lock(l);
|
|
if (l->l_stat != LSSTOP) {
|
|
lwp_unlock(l);
|
|
continue;
|
|
}
|
|
if (l->l_wchan == NULL) {
|
|
setrunnable(l);
|
|
continue;
|
|
}
|
|
if (sig && (l->l_flag & LW_SINTR) != 0) {
|
|
setrunnable(l);
|
|
sig = 0;
|
|
} else {
|
|
l->l_stat = LSSLEEP;
|
|
p->p_nrlwps++;
|
|
lwp_unlock(l);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
filt_sigattach(struct knote *kn)
|
|
{
|
|
struct proc *p = curproc;
|
|
|
|
kn->kn_obj = p;
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_sigdetach(struct knote *kn)
|
|
{
|
|
struct proc *p = kn->kn_obj;
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
|
|
mutex_exit(&p->p_smutex);
|
|
}
|
|
|
|
/*
|
|
* signal knotes are shared with proc knotes, so we apply a mask to
|
|
* the hint in order to differentiate them from process hints. This
|
|
* could be avoided by using a signal-specific knote list, but probably
|
|
* isn't worth the trouble.
|
|
*/
|
|
static int
|
|
filt_signal(struct knote *kn, long hint)
|
|
{
|
|
|
|
if (hint & NOTE_SIGNAL) {
|
|
hint &= ~NOTE_SIGNAL;
|
|
|
|
if (kn->kn_id == hint)
|
|
kn->kn_data++;
|
|
}
|
|
return (kn->kn_data != 0);
|
|
}
|
|
|
|
const struct filterops sig_filtops = {
|
|
0, filt_sigattach, filt_sigdetach, filt_signal
|
|
};
|