NetBSD/sys/kern/sys_aio.c
pgoyette 9120d4511b Use the module subsystem's ability to process SYSCTL_SETUP() entries to
automate installation of sysctl nodes.

Note that there are still a number of device and pseudo-device modules
that create entries tied to individual device units, rather than to the
module itself.  These are not changed.
2020-03-16 21:20:09 +00:00

1171 lines
26 KiB
C

/* $NetBSD: sys_aio.c,v 1.47 2020/03/16 21:20:10 pgoyette Exp $ */
/*
* Copyright (c) 2007 Mindaugas Rasiukevicius <rmind at NetBSD org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Implementation of POSIX asynchronous I/O.
* Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.47 2020/03/16 21:20:10 pgoyette Exp $");
#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#endif
#include <sys/param.h>
#include <sys/condvar.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/lwp.h>
#include <sys/mutex.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/syscall.h>
#include <sys/syscallargs.h>
#include <sys/syscallvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/vnode.h>
#include <sys/atomic.h>
#include <sys/module.h>
#include <sys/buf.h>
#include <uvm/uvm_extern.h>
MODULE(MODULE_CLASS_MISC, aio, NULL);
/*
* System-wide limits and counter of AIO operations.
*/
u_int aio_listio_max = AIO_LISTIO_MAX;
static u_int aio_max = AIO_MAX;
static u_int aio_jobs_count;
static struct pool aio_job_pool;
static struct pool aio_lio_pool;
static void * aio_ehook;
static void aio_worker(void *);
static void aio_process(struct aio_job *);
static void aio_sendsig(struct proc *, struct sigevent *);
static int aio_enqueue_job(int, void *, struct lio_req *);
static void aio_exit(proc_t *, void *);
static int sysctl_aio_listio_max(SYSCTLFN_PROTO);
static int sysctl_aio_max(SYSCTLFN_PROTO);
static const struct syscall_package aio_syscalls[] = {
{ SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
{ SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
{ SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
{ SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
{ SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
{ SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
{ SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
{ SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
{ 0, 0, NULL },
};
/*
* Tear down all AIO state.
*/
static int
aio_fini(bool interface)
{
int error;
proc_t *p;
if (interface) {
/* Stop syscall activity. */
error = syscall_disestablish(NULL, aio_syscalls);
if (error != 0)
return error;
/* Abort if any processes are using AIO. */
mutex_enter(proc_lock);
PROCLIST_FOREACH(p, &allproc) {
if (p->p_aio != NULL)
break;
}
mutex_exit(proc_lock);
if (p != NULL) {
error = syscall_establish(NULL, aio_syscalls);
KASSERT(error == 0);
return EBUSY;
}
}
KASSERT(aio_jobs_count == 0);
exithook_disestablish(aio_ehook);
pool_destroy(&aio_job_pool);
pool_destroy(&aio_lio_pool);
return 0;
}
/*
* Initialize global AIO state.
*/
static int
aio_init(void)
{
int error;
pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
"aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
"aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
aio_ehook = exithook_establish(aio_exit, NULL);
error = syscall_establish(NULL, aio_syscalls);
if (error != 0)
(void)aio_fini(false);
return error;
}
/*
* Module interface.
*/
static int
aio_modcmd(modcmd_t cmd, void *arg)
{
switch (cmd) {
case MODULE_CMD_INIT:
return aio_init();
case MODULE_CMD_FINI:
return aio_fini(true);
default:
return ENOTTY;
}
}
/*
* Initialize Asynchronous I/O data structures for the process.
*/
static int
aio_procinit(struct proc *p)
{
struct aioproc *aio;
struct lwp *l;
int error;
vaddr_t uaddr;
/* Allocate and initialize AIO structure */
aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
/* Initialize queue and their synchronization structures */
mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&aio->aio_worker_cv, "aiowork");
cv_init(&aio->done_cv, "aiodone");
TAILQ_INIT(&aio->jobs_queue);
/*
* Create an AIO worker thread.
* XXX: Currently, AIO thread is not protected against user's actions.
*/
uaddr = uvm_uarea_alloc();
if (uaddr == 0) {
aio_exit(p, aio);
return EAGAIN;
}
error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
NULL, &l, curlwp->l_class, &curlwp->l_sigmask, &curlwp->l_sigstk);
if (error != 0) {
uvm_uarea_free(uaddr);
aio_exit(p, aio);
return error;
}
/* Recheck if we are really first */
mutex_enter(p->p_lock);
if (p->p_aio) {
mutex_exit(p->p_lock);
aio_exit(p, aio);
lwp_exit(l);
return 0;
}
p->p_aio = aio;
/* Complete the initialization of thread, and run it */
aio->aio_worker = l;
lwp_lock(l);
lwp_changepri(l, MAXPRI_USER);
setrunnable(l);
/* LWP now unlocked */
mutex_exit(p->p_lock);
return 0;
}
/*
* Exit of Asynchronous I/O subsystem of process.
*/
static void
aio_exit(struct proc *p, void *cookie)
{
struct aio_job *a_job;
struct aioproc *aio;
if (cookie != NULL)
aio = cookie;
else if ((aio = p->p_aio) == NULL)
return;
/* Free AIO queue */
while (!TAILQ_EMPTY(&aio->jobs_queue)) {
a_job = TAILQ_FIRST(&aio->jobs_queue);
TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
pool_put(&aio_job_pool, a_job);
atomic_dec_uint(&aio_jobs_count);
}
/* Destroy and free the entire AIO data structure */
cv_destroy(&aio->aio_worker_cv);
cv_destroy(&aio->done_cv);
mutex_destroy(&aio->aio_mtx);
kmem_free(aio, sizeof(struct aioproc));
}
/*
* AIO worker thread and processor.
*/
static void
aio_worker(void *arg)
{
struct proc *p = curlwp->l_proc;
struct aioproc *aio = p->p_aio;
struct aio_job *a_job;
struct lio_req *lio;
sigset_t oss, nss;
int error __diagused, refcnt;
/*
* Make an empty signal mask, so it
* handles only SIGKILL and SIGSTOP.
*/
sigfillset(&nss);
mutex_enter(p->p_lock);
error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
mutex_exit(p->p_lock);
KASSERT(error == 0);
for (;;) {
/*
* Loop for each job in the queue. If there
* are no jobs then sleep.
*/
mutex_enter(&aio->aio_mtx);
while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
/*
* Thread was interrupted - check for
* pending exit or suspend.
*/
mutex_exit(&aio->aio_mtx);
lwp_userret(curlwp);
mutex_enter(&aio->aio_mtx);
}
}
/* Take the job from the queue */
aio->curjob = a_job;
TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
atomic_dec_uint(&aio_jobs_count);
aio->jobs_count--;
mutex_exit(&aio->aio_mtx);
/* Process an AIO operation */
aio_process(a_job);
/* Copy data structure back to the user-space */
(void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
sizeof(struct aiocb));
mutex_enter(&aio->aio_mtx);
KASSERT(aio->curjob == a_job);
aio->curjob = NULL;
/* Decrease a reference counter, if there is a LIO structure */
lio = a_job->lio;
refcnt = (lio != NULL ? --lio->refcnt : -1);
/* Notify all suspenders */
cv_broadcast(&aio->done_cv);
mutex_exit(&aio->aio_mtx);
/* Send a signal, if any */
aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
/* Destroy the LIO structure */
if (refcnt == 0) {
aio_sendsig(p, &lio->sig);
pool_put(&aio_lio_pool, lio);
}
/* Destroy the job */
pool_put(&aio_job_pool, a_job);
}
/* NOTREACHED */
}
static void
aio_process(struct aio_job *a_job)
{
struct proc *p = curlwp->l_proc;
struct aiocb *aiocbp = &a_job->aiocbp;
struct file *fp;
int fd = aiocbp->aio_fildes;
int error = 0;
KASSERT(a_job->aio_op != 0);
if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
struct iovec aiov;
struct uio auio;
if (aiocbp->aio_nbytes > SSIZE_MAX) {
error = EINVAL;
goto done;
}
fp = fd_getfile(fd);
if (fp == NULL) {
error = EBADF;
goto done;
}
aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
aiov.iov_len = aiocbp->aio_nbytes;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = aiocbp->aio_nbytes;
auio.uio_vmspace = p->p_vmspace;
if (a_job->aio_op & AIO_READ) {
/*
* Perform a Read operation
*/
KASSERT((a_job->aio_op & AIO_WRITE) == 0);
if ((fp->f_flag & FREAD) == 0) {
fd_putfile(fd);
error = EBADF;
goto done;
}
auio.uio_rw = UIO_READ;
error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
&auio, fp->f_cred, FOF_UPDATE_OFFSET);
} else {
/*
* Perform a Write operation
*/
KASSERT(a_job->aio_op & AIO_WRITE);
if ((fp->f_flag & FWRITE) == 0) {
fd_putfile(fd);
error = EBADF;
goto done;
}
auio.uio_rw = UIO_WRITE;
error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
&auio, fp->f_cred, FOF_UPDATE_OFFSET);
}
fd_putfile(fd);
/* Store the result value */
a_job->aiocbp.aio_nbytes -= auio.uio_resid;
a_job->aiocbp._retval = (error == 0) ?
a_job->aiocbp.aio_nbytes : -1;
} else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
/*
* Perform a file Sync operation
*/
struct vnode *vp;
if ((error = fd_getvnode(fd, &fp)) != 0)
goto done;
if ((fp->f_flag & FWRITE) == 0) {
fd_putfile(fd);
error = EBADF;
goto done;
}
vp = fp->f_vnode;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (a_job->aio_op & AIO_DSYNC) {
error = VOP_FSYNC(vp, fp->f_cred,
FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
} else if (a_job->aio_op & AIO_SYNC) {
error = VOP_FSYNC(vp, fp->f_cred,
FSYNC_WAIT, 0, 0);
}
VOP_UNLOCK(vp);
fd_putfile(fd);
/* Store the result value */
a_job->aiocbp._retval = (error == 0) ? 0 : -1;
} else
panic("aio_process: invalid operation code\n");
done:
/* Job is done, set the error, if any */
a_job->aiocbp._errno = error;
a_job->aiocbp._state = JOB_DONE;
}
/*
* Send AIO signal.
*/
static void
aio_sendsig(struct proc *p, struct sigevent *sig)
{
ksiginfo_t ksi;
if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
return;
KSI_INIT(&ksi);
ksi.ksi_signo = sig->sigev_signo;
ksi.ksi_code = SI_ASYNCIO;
ksi.ksi_value = sig->sigev_value;
mutex_enter(proc_lock);
kpsignal(p, &ksi, NULL);
mutex_exit(proc_lock);
}
/*
* Enqueue the job.
*/
static int
aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
{
struct proc *p = curlwp->l_proc;
struct aioproc *aio;
struct aio_job *a_job;
struct aiocb aiocbp;
struct sigevent *sig;
int error;
/* Non-accurate check for the limit */
if (aio_jobs_count + 1 > aio_max)
return EAGAIN;
/* Get the data structure from user-space */
error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
if (error)
return error;
/* Check if signal is set, and validate it */
sig = &aiocbp.aio_sigevent;
if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
return EINVAL;
/* Buffer and byte count */
if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
return EINVAL;
/* Check the opcode, if LIO_NOP - simply ignore */
if (op == AIO_LIO) {
KASSERT(lio != NULL);
if (aiocbp.aio_lio_opcode == LIO_WRITE)
op = AIO_WRITE;
else if (aiocbp.aio_lio_opcode == LIO_READ)
op = AIO_READ;
else
return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
} else {
KASSERT(lio == NULL);
}
/*
* Look for already existing job. If found - the job is in-progress.
* According to POSIX this is invalid, so return the error.
*/
aio = p->p_aio;
if (aio) {
mutex_enter(&aio->aio_mtx);
TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
if (a_job->aiocb_uptr != aiocb_uptr)
continue;
mutex_exit(&aio->aio_mtx);
return EINVAL;
}
mutex_exit(&aio->aio_mtx);
}
/*
* Check if AIO structure is initialized, if not - initialize it.
* In LIO case, we did that already. We will recheck this with
* the lock in aio_procinit().
*/
if (lio == NULL && p->p_aio == NULL)
if (aio_procinit(p))
return EAGAIN;
aio = p->p_aio;
/*
* Set the state with errno, and copy data
* structure back to the user-space.
*/
aiocbp._state = JOB_WIP;
aiocbp._errno = EINPROGRESS;
aiocbp._retval = -1;
error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
if (error)
return error;
/* Allocate and initialize a new AIO job */
a_job = pool_get(&aio_job_pool, PR_WAITOK | PR_ZERO);
/*
* Set the data.
* Store the user-space pointer for searching. Since we
* are storing only per proc pointers - it is safe.
*/
memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
a_job->aiocb_uptr = aiocb_uptr;
a_job->aio_op |= op;
a_job->lio = lio;
/*
* Add the job to the queue, update the counters, and
* notify the AIO worker thread to handle the job.
*/
mutex_enter(&aio->aio_mtx);
/* Fail, if the limit was reached */
if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
aio->jobs_count >= aio_listio_max) {
atomic_dec_uint(&aio_jobs_count);
mutex_exit(&aio->aio_mtx);
pool_put(&aio_job_pool, a_job);
return EAGAIN;
}
TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
aio->jobs_count++;
if (lio)
lio->refcnt++;
cv_signal(&aio->aio_worker_cv);
mutex_exit(&aio->aio_mtx);
/*
* One would handle the errors only with aio_error() function.
* This way is appropriate according to POSIX.
*/
return 0;
}
/*
* Syscall functions.
*/
int
sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
register_t *retval)
{
/* {
syscallarg(int) fildes;
syscallarg(struct aiocb *) aiocbp;
} */
struct proc *p = l->l_proc;
struct aioproc *aio;
struct aio_job *a_job;
struct aiocb *aiocbp_ptr;
struct lio_req *lio;
struct filedesc *fdp = p->p_fd;
unsigned int cn, errcnt, fildes;
fdtab_t *dt;
TAILQ_HEAD(, aio_job) tmp_jobs_list;
/* Check for invalid file descriptor */
fildes = (unsigned int)SCARG(uap, fildes);
dt = atomic_load_consume(&fdp->fd_dt);
if (fildes >= dt->dt_nfiles)
return EBADF;
if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
return EBADF;
/* Check if AIO structure is initialized */
if (p->p_aio == NULL) {
*retval = AIO_NOTCANCELED;
return 0;
}
aio = p->p_aio;
aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
mutex_enter(&aio->aio_mtx);
/* Cancel the jobs, and remove them from the queue */
cn = 0;
TAILQ_INIT(&tmp_jobs_list);
TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
if (aiocbp_ptr) {
if (aiocbp_ptr != a_job->aiocb_uptr)
continue;
if (fildes != a_job->aiocbp.aio_fildes) {
mutex_exit(&aio->aio_mtx);
return EBADF;
}
} else if (a_job->aiocbp.aio_fildes != fildes)
continue;
TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
/* Decrease the counters */
atomic_dec_uint(&aio_jobs_count);
aio->jobs_count--;
lio = a_job->lio;
if (lio != NULL && --lio->refcnt != 0)
a_job->lio = NULL;
cn++;
if (aiocbp_ptr)
break;
}
/* There are canceled jobs */
if (cn)
*retval = AIO_CANCELED;
/* We cannot cancel current job */
a_job = aio->curjob;
if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
(a_job->aiocb_uptr == aiocbp_ptr)))
*retval = AIO_NOTCANCELED;
mutex_exit(&aio->aio_mtx);
/* Free the jobs after the lock */
errcnt = 0;
while (!TAILQ_EMPTY(&tmp_jobs_list)) {
a_job = TAILQ_FIRST(&tmp_jobs_list);
TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
/* Set the errno and copy structures back to the user-space */
a_job->aiocbp._errno = ECANCELED;
a_job->aiocbp._state = JOB_DONE;
if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
sizeof(struct aiocb)))
errcnt++;
/* Send a signal if any */
aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
if (a_job->lio) {
lio = a_job->lio;
aio_sendsig(p, &lio->sig);
pool_put(&aio_lio_pool, lio);
}
pool_put(&aio_job_pool, a_job);
}
if (errcnt)
return EFAULT;
/* Set a correct return value */
if (*retval == 0)
*retval = AIO_ALLDONE;
return 0;
}
int
sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
register_t *retval)
{
/* {
syscallarg(const struct aiocb *) aiocbp;
} */
struct proc *p = l->l_proc;
struct aioproc *aio = p->p_aio;
struct aiocb aiocbp;
int error;
if (aio == NULL)
return EINVAL;
error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
if (error)
return error;
if (aiocbp._state == JOB_NONE)
return EINVAL;
*retval = aiocbp._errno;
return 0;
}
int
sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
register_t *retval)
{
/* {
syscallarg(int) op;
syscallarg(struct aiocb *) aiocbp;
} */
int op = SCARG(uap, op);
if ((op != O_DSYNC) && (op != O_SYNC))
return EINVAL;
op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
}
int
sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
register_t *retval)
{
/* {
syscallarg(struct aiocb *) aiocbp;
} */
return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
}
int
sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
register_t *retval)
{
/* {
syscallarg(struct aiocb *) aiocbp;
} */
struct proc *p = l->l_proc;
struct aioproc *aio = p->p_aio;
struct aiocb aiocbp;
int error;
if (aio == NULL)
return EINVAL;
error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
if (error)
return error;
if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
return EINVAL;
*retval = aiocbp._retval;
/* Reset the internal variables */
aiocbp._errno = 0;
aiocbp._retval = -1;
aiocbp._state = JOB_NONE;
error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
return error;
}
int
sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
register_t *retval)
{
/* {
syscallarg(const struct aiocb *const[]) list;
syscallarg(int) nent;
syscallarg(const struct timespec *) timeout;
} */
struct aiocb **list;
struct timespec ts;
int error, nent;
nent = SCARG(uap, nent);
if (nent <= 0 || nent > aio_listio_max)
return EAGAIN;
if (SCARG(uap, timeout)) {
/* Convert timespec to ticks */
error = copyin(SCARG(uap, timeout), &ts,
sizeof(struct timespec));
if (error)
return error;
}
list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
if (error)
goto out;
error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
out:
kmem_free(list, nent * sizeof(*list));
return error;
}
int
aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
struct timespec *ts)
{
struct proc *p = l->l_proc;
struct aioproc *aio;
struct aio_job *a_job;
int i, error, timo;
if (p->p_aio == NULL)
return EAGAIN;
aio = p->p_aio;
if (ts) {
timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
timo = 1;
if (timo <= 0)
return EAGAIN;
} else
timo = 0;
mutex_enter(&aio->aio_mtx);
for (;;) {
for (i = 0; i < nent; i++) {
/* Skip NULL entries */
if (aiocbp_list[i] == NULL)
continue;
/* Skip current job */
if (aio->curjob) {
a_job = aio->curjob;
if (a_job->aiocb_uptr == aiocbp_list[i])
continue;
}
/* Look for a job in the queue */
TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
if (a_job->aiocb_uptr == aiocbp_list[i])
break;
if (a_job == NULL) {
struct aiocb aiocbp;
mutex_exit(&aio->aio_mtx);
/* Check if the job is done. */
error = copyin(aiocbp_list[i], &aiocbp,
sizeof(struct aiocb));
if (error == 0 && aiocbp._state != JOB_DONE) {
mutex_enter(&aio->aio_mtx);
continue;
}
return error;
}
}
/* Wait for a signal or when timeout occurs */
error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
if (error) {
if (error == EWOULDBLOCK)
error = EAGAIN;
break;
}
}
mutex_exit(&aio->aio_mtx);
return error;
}
int
sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
register_t *retval)
{
/* {
syscallarg(struct aiocb *) aiocbp;
} */
return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
}
int
sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
register_t *retval)
{
/* {
syscallarg(int) mode;
syscallarg(struct aiocb *const[]) list;
syscallarg(int) nent;
syscallarg(struct sigevent *) sig;
} */
struct proc *p = l->l_proc;
struct aioproc *aio;
struct aiocb **aiocbp_list;
struct lio_req *lio;
int i, error, errcnt, mode, nent;
mode = SCARG(uap, mode);
nent = SCARG(uap, nent);
/* Non-accurate checks for the limit and invalid values */
if (nent < 1 || nent > aio_listio_max)
return EINVAL;
if (aio_jobs_count + nent > aio_max)
return EAGAIN;
/* Check if AIO structure is initialized, if not - initialize it */
if (p->p_aio == NULL)
if (aio_procinit(p))
return EAGAIN;
aio = p->p_aio;
/* Create a LIO structure */
lio = pool_get(&aio_lio_pool, PR_WAITOK);
lio->refcnt = 1;
error = 0;
switch (mode) {
case LIO_WAIT:
memset(&lio->sig, 0, sizeof(struct sigevent));
break;
case LIO_NOWAIT:
/* Check for signal, validate it */
if (SCARG(uap, sig)) {
struct sigevent *sig = &lio->sig;
error = copyin(SCARG(uap, sig), &lio->sig,
sizeof(struct sigevent));
if (error == 0 &&
(sig->sigev_signo < 0 ||
sig->sigev_signo >= NSIG ||
sig->sigev_notify < SIGEV_NONE ||
sig->sigev_notify > SIGEV_SA))
error = EINVAL;
} else
memset(&lio->sig, 0, sizeof(struct sigevent));
break;
default:
error = EINVAL;
break;
}
if (error != 0) {
pool_put(&aio_lio_pool, lio);
return error;
}
/* Get the list from user-space */
aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
error = copyin(SCARG(uap, list), aiocbp_list,
nent * sizeof(*aiocbp_list));
if (error) {
mutex_enter(&aio->aio_mtx);
goto err;
}
/* Enqueue all jobs */
errcnt = 0;
for (i = 0; i < nent; i++) {
error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
/*
* According to POSIX, in such error case it may
* fail with other I/O operations initiated.
*/
if (error)
errcnt++;
}
mutex_enter(&aio->aio_mtx);
/* Return an error, if any */
if (errcnt) {
error = EIO;
goto err;
}
if (mode == LIO_WAIT) {
/*
* Wait for AIO completion. In such case,
* the LIO structure will be freed here.
*/
while (lio->refcnt > 1 && error == 0)
error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
if (error)
error = EINTR;
}
err:
if (--lio->refcnt != 0)
lio = NULL;
mutex_exit(&aio->aio_mtx);
if (lio != NULL) {
aio_sendsig(p, &lio->sig);
pool_put(&aio_lio_pool, lio);
}
kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
return error;
}
/*
* SysCtl
*/
static int
sysctl_aio_listio_max(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int error, newsize;
node = *rnode;
node.sysctl_data = &newsize;
newsize = aio_listio_max;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (newsize < 1 || newsize > aio_max)
return EINVAL;
aio_listio_max = newsize;
return 0;
}
static int
sysctl_aio_max(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int error, newsize;
node = *rnode;
node.sysctl_data = &newsize;
newsize = aio_max;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (newsize < 1 || newsize < aio_listio_max)
return EINVAL;
aio_max = newsize;
return 0;
}
SYSCTL_SETUP(sysctl_aio_init, "aio sysctl")
{
int rv;
rv = sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_aio",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Asynchronous I/O option to which the "
"system attempts to conform"),
NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
if (rv != 0)
return;
rv = sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "aio_listio_max",
SYSCTL_DESCR("Maximum number of asynchronous I/O "
"operations in a single list I/O call"),
sysctl_aio_listio_max, 0, &aio_listio_max, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
if (rv != 0)
return;
rv = sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "aio_max",
SYSCTL_DESCR("Maximum number of asynchronous I/O "
"operations"),
sysctl_aio_max, 0, &aio_max, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
return;
}
/*
* Debugging
*/
#if defined(DDB)
void
aio_print_jobs(void (*pr)(const char *, ...))
{
struct proc *p = curlwp->l_proc;
struct aioproc *aio;
struct aio_job *a_job;
struct aiocb *aiocbp;
if (p == NULL) {
(*pr)("AIO: We are not in the processes right now.\n");
return;
}
aio = p->p_aio;
if (aio == NULL) {
(*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
return;
}
(*pr)("AIO: PID = %d\n", p->p_pid);
(*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
(*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
if (aio->curjob) {
a_job = aio->curjob;
(*pr)("\nAIO current job:\n");
(*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
a_job->aio_op, a_job->aiocbp._errno,
a_job->aiocbp._state, a_job->aiocb_uptr);
aiocbp = &a_job->aiocbp;
(*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
aiocbp->aio_fildes, aiocbp->aio_offset,
aiocbp->aio_buf, aiocbp->aio_nbytes);
}
(*pr)("\nAIO queue:\n");
TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
(*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
a_job->aio_op, a_job->aiocbp._errno,
a_job->aiocbp._state, a_job->aiocb_uptr);
aiocbp = &a_job->aiocbp;
(*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
aiocbp->aio_fildes, aiocbp->aio_offset,
aiocbp->aio_buf, aiocbp->aio_nbytes);
}
}
#endif /* defined(DDB) */