NetBSD/sys/arch/sparc/sparc/vm_machdep.c

403 lines
12 KiB
C

/* $NetBSD: vm_machdep.c,v 1.52 2000/03/26 20:42:37 kleink Exp $ */
/*
* Copyright (c) 1996
* The President and Fellows of Harvard College. All rights reserved.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
* This product includes software developed by Harvard University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Harvard University.
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_machdep.c 8.2 (Berkeley) 9/23/93
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/core.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/vnode.h>
#include <sys/map.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <machine/trap.h>
#include <sparc/sparc/cpuvar.h>
/*
* Move pages from one kernel virtual address to another.
*/
void
pagemove(from, to, size)
caddr_t from, to;
size_t size;
{
paddr_t pa;
if (size & PGOFSET || (int)from & PGOFSET || (int)to & PGOFSET)
panic("pagemove 1");
while (size > 0) {
if (pmap_extract(pmap_kernel(), (vaddr_t)from, &pa) == FALSE)
panic("pagemove 2");
pmap_remove(pmap_kernel(),
(vaddr_t)from, (vaddr_t)from + PAGE_SIZE);
pmap_enter(pmap_kernel(),
(vaddr_t)to, pa, VM_PROT_READ|VM_PROT_WRITE,
VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
from += PAGE_SIZE;
to += PAGE_SIZE;
size -= PAGE_SIZE;
}
}
/*
* Map a user I/O request into kernel virtual address space.
* Note: the pages are already locked by uvm_vslock(), so we
* do not need to pass an access_type to pmap_enter().
*/
void
vmapbuf(bp, len)
struct buf *bp;
vsize_t len;
{
struct pmap *upmap, *kpmap;
vaddr_t uva; /* User VA (map from) */
vaddr_t kva; /* Kernel VA (new to) */
paddr_t pa; /* physical address */
vsize_t off;
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
/*
* XXX: It might be better to round/trunc to a
* segment boundary to avoid VAC problems!
*/
bp->b_saveaddr = bp->b_data;
uva = trunc_page((vaddr_t)bp->b_data);
off = (vaddr_t)bp->b_data - uva;
len = round_page(off + len);
kva = uvm_km_valloc_wait(kernel_map, len);
bp->b_data = (caddr_t)(kva + off);
/*
* We have to flush any write-back cache on the
* user-space mappings so our new mappings will
* have the correct contents.
*/
if (CACHEINFO.c_vactype != VAC_NONE)
cpuinfo.cache_flush((caddr_t)uva, len);
upmap = vm_map_pmap(&bp->b_proc->p_vmspace->vm_map);
kpmap = vm_map_pmap(kernel_map);
do {
if (pmap_extract(upmap, uva, &pa) == FALSE)
panic("vmapbuf: null page frame");
/* Now map the page into kernel space. */
pmap_enter(kpmap, kva, pa | PMAP_NC,
VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
uva += PAGE_SIZE;
kva += PAGE_SIZE;
len -= PAGE_SIZE;
} while (len);
}
/*
* Unmap a previously-mapped user I/O request.
*/
void
vunmapbuf(bp, len)
struct buf *bp;
vsize_t len;
{
vaddr_t kva;
vsize_t off;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
kva = trunc_page((vaddr_t)bp->b_data);
off = (vaddr_t)bp->b_data - kva;
len = round_page(off + len);
/* This will call pmap_remove() for us. */
uvm_km_free_wakeup(kernel_map, kva, len);
bp->b_data = bp->b_saveaddr;
bp->b_saveaddr = NULL;
#if 0 /* XXX: The flush above is sufficient, right? */
if (CACHEINFO.c_vactype != VAC_NONE)
cpuinfo.cache_flush(bp->b_data, len);
#endif
}
/*
* The offset of the topmost frame in the kernel stack.
*/
#define TOPFRAMEOFF (USPACE-sizeof(struct trapframe)-sizeof(struct frame))
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the pcb and trap frame, making the child ready to run.
*
* Rig the child's kernel stack so that it will start out in
* proc_trampoline() and call child_return() with p2 as an
* argument. This causes the newly-created child process to go
* directly to user level with an apparent return value of 0 from
* fork(), while the parent process returns normally.
*
* p1 is the process being forked; if p1 == &proc0, we are creating
* a kernel thread, and the return path will later be changed in cpu_set_kpc.
*
* If an alternate user-level stack is requested (with non-zero values
* in both the stack and stacksize args), set up the user stack pointer
* accordingly.
*/
void
cpu_fork(p1, p2, stack, stacksize)
struct proc *p1, *p2;
void *stack;
size_t stacksize;
{
struct pcb *opcb = &p1->p_addr->u_pcb;
struct pcb *npcb = &p2->p_addr->u_pcb;
struct trapframe *tf2;
struct rwindow *rp;
/*
* Save all user registers to p1's stack or, in the case of
* user registers and invalid stack pointers, to opcb.
* We then copy the whole pcb to p2; when switch() selects p2
* to run, it will run at the `proc_trampoline' stub, rather
* than returning at the copying code below.
*
* If process p1 has an FPU state, we must copy it. If it is
* the FPU user, we must save the FPU state first.
*/
if (p1 == curproc) {
write_user_windows();
opcb->pcb_psr = getpsr();
}
#ifdef DIAGNOSTIC
else if (p1 != &proc0)
panic("cpu_fork: curproc");
#endif
bcopy((caddr_t)opcb, (caddr_t)npcb, sizeof(struct pcb));
if (p1->p_md.md_fpstate) {
if (p1 == cpuinfo.fpproc)
savefpstate(p1->p_md.md_fpstate);
else if (p1->p_md.md_fpumid != -1)
panic("FPU on module %d; fix this", p1->p_md.md_fpumid);
p2->p_md.md_fpstate = malloc(sizeof(struct fpstate),
M_SUBPROC, M_WAITOK);
bcopy(p1->p_md.md_fpstate, p2->p_md.md_fpstate,
sizeof(struct fpstate));
} else
p2->p_md.md_fpstate = NULL;
p2->p_md.md_fpumid = -1;
/*
* Setup (kernel) stack frame that will by-pass the child
* out of the kernel. (The trap frame invariably resides at
* the tippity-top of the u. area.)
*/
tf2 = p2->p_md.md_tf = (struct trapframe *)
((int)npcb + USPACE - sizeof(*tf2));
/* Copy parent's trapframe */
*tf2 = *(struct trapframe *)((int)opcb + USPACE - sizeof(*tf2));
/*
* If specified, give the child a different stack.
*/
if (stack != NULL)
tf2->tf_out[6] = (u_int)stack + stacksize;
/* Duplicate efforts of syscall(), but slightly differently */
if (tf2->tf_global[1] & SYSCALL_G2RFLAG) {
/* jmp %g2 (or %g7, deprecated) on success */
tf2->tf_npc = tf2->tf_global[2];
} else {
/*
* old system call convention: clear C on success
* note: proc_trampoline() sets a fresh psr when
* returning to user mode.
*/
/*tf2->tf_psr &= ~PSR_C; -* success */
}
/* Set return values in child mode */
tf2->tf_out[0] = 0;
tf2->tf_out[1] = 1;
/* Construct kernel frame to return to in cpu_switch() */
rp = (struct rwindow *)((u_int)npcb + TOPFRAMEOFF);
rp->rw_local[0] = (int)child_return; /* Function to call */
rp->rw_local[1] = (int)p2; /* and its argument */
npcb->pcb_pc = (int)proc_trampoline - 8;
npcb->pcb_sp = (int)rp;
npcb->pcb_psr &= ~PSR_CWP; /* Run in window #0 */
npcb->pcb_wim = 1; /* Fence at window #1 */
}
/*
* cpu_set_kpc:
*
* Arrange for in-kernel execution of a process to continue at the
* named pc, as if the code at that address were called as a function
* with the supplied argument.
*
* Note that it's assumed that when the named process returns,
* we immediately return to user mode.
*
* (Note that cpu_fork(), above, uses an open-coded version of this.)
*/
void
cpu_set_kpc(p, pc, arg)
struct proc *p;
void (*pc) __P((void *));
void *arg;
{
struct pcb *pcb;
struct rwindow *rp;
pcb = &p->p_addr->u_pcb;
rp = (struct rwindow *)((u_int)pcb + TOPFRAMEOFF);
rp->rw_local[0] = (int)pc; /* Function to call */
rp->rw_local[1] = (int)arg; /* and its argument */
/*
* Frob PCB:
* - arrange to return to proc_trampoline() from cpu_switch()
* - point it at the stack frame constructed above
* - make it run in a clear set of register windows
*/
pcb->pcb_pc = (int)proc_trampoline - 8;
pcb->pcb_sp = (int)rp;
pcb->pcb_psr &= ~PSR_CWP; /* Run in window #0 */
pcb->pcb_wim = 1; /* Fence at window #1 */
}
/*
* cpu_exit is called as the last action during exit.
*
* We clean up a little and then call switchexit() with the old proc
* as an argument. switchexit() switches to the idle context, schedules
* the old vmspace and stack to be freed, then selects a new process to
* run.
*/
void
cpu_exit(p)
struct proc *p;
{
struct fpstate *fs;
if ((fs = p->p_md.md_fpstate) != NULL) {
if (p == cpuinfo.fpproc) {
savefpstate(fs);
cpuinfo.fpproc = NULL;
}
free((void *)fs, M_SUBPROC);
}
switchexit(p);
/* NOTREACHED */
}
/*
* cpu_coredump is called to write a core dump header.
* (should this be defined elsewhere? machdep.c?)
*/
int
cpu_coredump(p, vp, cred, chdr)
struct proc *p;
struct vnode *vp;
struct ucred *cred;
struct core *chdr;
{
int error;
struct md_coredump md_core;
struct coreseg cseg;
CORE_SETMAGIC(*chdr, COREMAGIC, MID_MACHINE, 0);
chdr->c_hdrsize = ALIGN(sizeof(*chdr));
chdr->c_seghdrsize = ALIGN(sizeof(cseg));
chdr->c_cpusize = sizeof(md_core);
md_core.md_tf = *p->p_md.md_tf;
if (p->p_md.md_fpstate) {
if (p == cpuinfo.fpproc)
savefpstate(p->p_md.md_fpstate);
md_core.md_fpstate = *p->p_md.md_fpstate;
} else
bzero((caddr_t)&md_core.md_fpstate, sizeof(struct fpstate));
CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MACHINE, CORE_CPU);
cseg.c_addr = 0;
cseg.c_size = chdr->c_cpusize;
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
(off_t)chdr->c_hdrsize, UIO_SYSSPACE,
IO_NODELOCKED|IO_UNIT, cred, NULL, p);
if (error)
return error;
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&md_core, sizeof(md_core),
(off_t)(chdr->c_hdrsize + chdr->c_seghdrsize), UIO_SYSSPACE,
IO_NODELOCKED|IO_UNIT, cred, NULL, p);
if (!error)
chdr->c_nseg++;
return error;
}